Introduction to differential geometry

Ilkka Holopainen

October 17, 2022

Contents

0 Some basic notions in topology 3
0.1 Topological space 3
0.9 Topological manifold 6
0.17 Basic properties of a topological manifold 9
1 Review on differential calculus in \mathbb{R}^{n} 10
1.1 Differentiability 10
2 Differentiable manifolds 16
2.1 Definitions and examples 16
2.8 Tangent space 19
2.16 Tangent map 23
2.20 Tangent bundle 26
2.22 Submanifolds 27
2.29 Orientation 30
3 Vector fields and their flows 31
3.1 Vector fields 31
3.24 Integral curves 39
3.32 Flows 41
3.36 Flows of vector fields 44
3.50 Proof of the existence and uniqueness theorem 47
3.60 Lie derivative of a vector field 50
4 Tensors and tensor fields 53
4.1 Tensors 53
4.10 Cotangent bundle 54
4.12 Tensor bundles over M 56
4.16 Symmetric tensors and tensor fields 58
5 Differential forms 60
5.1 Exterior algebra, alternating tensors 60
5.12 Differential forms on manifolds 65
5.17 Exterior derivative 67
6 Integration of differential forms 75
6.3 Smooth partition of unity 76
6.8 Integration of a differential n-form 78
7 Stokes's theorem 79
7.1 Orientation 79
7.5 Smooth manifolds with boundary 80
7.6 Stokes's theorem 81
8 Whitney embedding and approximation 86
8.6 Tubular neighborhoods 88
8.14 Some consequences 909 A brief introduction to the de Rham cohomology91
10 Cochain complexes and their cohomology 94
11 De Rham Theorem 100
11.5 Some calculations and applications 102
11.14Čech cohomology (sketch) 104
11.22Singular (co-)homology 107
11.26Smooth singular homology 109
11.29 de Rham homomorphism, the de Rham's theorem 110

Preface

These are lecture notes for the course "Introduction to differential geonetry" at the Department of Mathematics and Statistics at the University of Helsinki.

The material has been compiled from several sources, for example from books $[\mathrm{AMR}],[\mathrm{Br}],[\mathrm{L} 2]$, [MT] and [Wa]. The main source has been the book [L2] by J.M. Lee.

0 Some basic notions in topology

0.1 Topological space

Let X be an arbitrary set and

$$
\mathcal{P}(X)=\{A: A \subset X\}
$$

its power set. A collection $\mathcal{T} \subset \mathcal{P}(X)$ is a topology on X if

1. \mathcal{T} contains the union of any family of its members:

$$
U_{\alpha} \in \mathcal{T} \Rightarrow \bigcup_{\alpha \in \mathcal{A}} U_{\alpha} \in \mathcal{T}
$$

where \mathcal{A} is an arbitrary set of indices;
2. \mathcal{T} contains the intersection of any finite family of its members:

$$
U_{1}, \ldots, U_{k} \in \mathcal{T} \Rightarrow \bigcap_{i=1}^{k} U_{i} \in \mathcal{T}
$$

3. $\emptyset \in \mathcal{T}, X \in \mathcal{T}$.

The pair (X, \mathcal{T}), or just X for short, is a topological space. The elements of \mathcal{T} are called open sets. A set $F \subset X$ is closed if the complement $X \backslash F$ is an open set.

Example 0.2. 1. Let (X, d) be a metric space. That is $d: X \times X \rightarrow \mathbb{R}$ satisfies the axioms of a metric:

$$
\begin{aligned}
d(x, y) & \geq 0 \quad \forall x, y \in X \\
d(x, y) & =0 \Longleftrightarrow x=y \\
d(x, y) & =d(y, x) \quad \forall x, y \in X \\
d(x, y) & \leq d(x, z)+d(z, y) \quad \forall x, y, z \in X \quad \text { (triangle inequality, } \triangle \text {-ineq.). }
\end{aligned}
$$

Then the metric d defines a (metric) topology \mathcal{T}_{d} on X :
$U \in \mathcal{T}_{d} \Longleftrightarrow \forall x \in U \exists r>0$ s.t. $B(x, r)=\{y \in X: d(x, y)<r\} \subset U$.
2. Special case: The Euclidean space \mathbb{R}^{n} equipped with the metric $d(x, y)=|x-y|$.
3. A topological space (X, \mathcal{T}) is metrizable if \exists a metric d s.t. $\mathcal{T}=\mathcal{T}_{d}$.

A set U is a neighborhood of a point $x \in X$ if $x \in U \in \mathcal{T}$ (i.e. U is open and contains x). Fact: A set $A \subset X$ is open $\Longleftrightarrow \forall x \in A \exists$ a neighborhood U of x s.t. $U \subset A$.

A topological space (X, \mathcal{T}) is Hausdorff if every pair of distinct points has disjoint neighborhoods. (That is, $\forall x, y \in X, x \neq y$, there exist $U \in \mathcal{T}, V \in \mathcal{T}$ s.t. $x \in U, y \in V$, and $U \cap V=\emptyset$.)

Example 0.3. 1. Every metrizable topological space is Hausdorff. (Exerc.)
2. Example. Identify points $(x, 0)$ and $(x, 1)$ of the set $\mathbb{R}^{n} \times\{0\} \cup \mathbb{R}^{n} \times\{1\}$ whenever $x \neq 0$. We
 open \Longleftrightarrow the preimage of U under the identification is open. Then the points $a=(0,0)$ and $b=(0,1)$ have no disjoint neighborhoods and hence X is not Hausdorff.

We say that a sequence $\left(x_{i}\right), i \in \mathbb{N}$, of points in X converges to a point $x \in X$ (denoted by $\left.x_{i} \rightarrow x\right)$ if for every neighborhood U of x there exists $i_{0} \in \mathbb{N}$ s.t. $x_{i} \in U \forall i \geq i_{0}$. Fact: if X is Hausdorff and $x_{i} \rightarrow x$ and $x_{i} \rightarrow y$ then $x=y$.

Let (X, \mathcal{T}) be a topological space. A family $\mathcal{B} \subset \mathcal{P}(X)$ is a basis for the topology \mathcal{T} (or a basis for X) if

1. $\mathcal{B} \subset \mathcal{T}$,
2. every $U \in \mathcal{T}, U \neq \emptyset$, can be written as a union of some elements of \mathcal{B}.

Example 0.4. Let (X, d) be a metric space. Then

$$
\mathcal{B}=\{B(x, r): x \in X, r>0\}
$$

is a basis for \mathcal{T}_{d}.
The following notion is important for this course: We say that (X, \mathcal{T}) is N_{2} ("second countable") if there exists a countable basis $\mathcal{B}=\left\{B_{i}: i \in \mathbb{N}\right\}$ for \mathcal{T}.

Example 0.5. The Euclidean space \mathbb{R}^{n} equipped with the usual topology is N_{2}. We can choose, for example, $\mathcal{B}=\left\{B(q, r): q \in \mathbb{Q}^{n}, r \in \mathbb{Q}_{+}\right\}$.

Let X and Y be topological spaces. We say that a mapping $f: X \rightarrow Y$ is continuous at a point $x \in X$ if for every neighborhood V of $f(x)$ there exists a neighborhood U of x s.t. $f U \subset V$. A mapping f is continuous in X if it is continuous at every point of X.
Fact: $f: X \rightarrow Y$ is continuous in $X \Longleftrightarrow$ the preimage $f^{-1} U=\{x \in X: f(x) \in U\}$ is open for every open $U \subset Y$.

A mapping $f: X \rightarrow Y$ is a homeomorphism if

1. f has an inverse,
2. f is continuous, and
3. the inverse f^{-1} is continuous.

Let X be a set, $\left(Y, \mathcal{T}^{\prime}\right)$ a topological space, and $f: X \rightarrow Y$ a mapping. Then the collection

$$
\mathcal{T}=\left\{f^{-1} U: U \in \mathcal{T}^{\prime}\right\}
$$

is a topology on X (induced by the mapping f). Note: The mapping f is then trivially continuous.
If (X, \mathcal{T}) is a topological space and $A \subset X$, then the topology induced by the inclusion $i: A \rightarrow$ $X, i(x)=x$, is called the relative topology of (X, \mathcal{T}) on A (denoted by $\mathcal{T} \mid A)$. Hence

$$
\mathcal{T} \mid A=\{U \cap A: U \in \mathcal{T}\}
$$

In other words, the set $V \subset A$ is open in A (i.e. $V \in \mathcal{T} \mid A) \Longleftrightarrow V=U \cap A$ for some open $U \subset X$ $(U \in \mathcal{T})$.

Both being Hausdorff and N_{2} are hereditary:
Let (X, \mathcal{T}) be a topological space and $A \subset X$. Then

1. (X, \mathcal{T}) is Hausdorff $\Rightarrow(A, \mathcal{T} \mid A)$ is Hausdorff,
2. (X, \mathcal{T}) is $N_{2} \Rightarrow(A, \mathcal{T} \mid A)$ is N_{2}.

Let $\left(X_{1}, \mathcal{T}_{1}\right), \ldots,\left(X_{k}, \mathcal{T}_{k}\right)$ be topological spaces. Denote

$$
X=X_{1} \times X_{2} \times \cdots \times X_{k}=\left\{\left(x_{1}, \ldots, x_{k}\right): x_{i} \in X_{i}\right\}
$$

The collection

$$
\mathcal{B}=\left\{U_{1} \times U_{2} \times \cdots \times U_{k}: U_{i} \subset X_{i} \text { open }\right\}
$$

is a basis of the product topology on X.
Remark 0.6. 1. Let $\left(X_{i}, \mathcal{T}_{i}\right), i=1, \ldots, k$, be Hausdorff. Then $X=X_{1} \times X_{2} \times \cdots \times X_{k}$ equipped with the product topology is Hausdorff.
2. Let $\left(X_{i}, \mathcal{T}_{i}\right), i=1, \ldots, k$, be topological spaces with countable bases (i.e. each $\left(X_{i}, \mathcal{T}_{i}\right)$ is $\left.N_{2}\right)$. Then $X=X_{1} \times X_{2} \times \cdots \times X_{k}$ with the product topology is N_{2}.

The next result is very useful in many existence results. First we recall:
Definition 0.7. Let (X, d) be a metric space. A sequence $\left(x_{i}\right), x_{i} \in X$, is a Cauchy sequence if $\forall \varepsilon>0 \exists i_{\varepsilon} \in \mathbb{N}$ s.t. $d\left(x_{i}, x_{j}\right)<\varepsilon$ whenever $i, j \geq i_{\varepsilon}$. The metric space X is complete if every Cauchy sequence on X converges.

Theorem 0.8 (Banach fixed point theorem). Let X be a complete metric space and $f: X \rightarrow X$ a mapping. Suppose that there exists a constant $L \in[0,1[$ s.t.

$$
d(f(x), f(y)) \leq L d(x, y) \quad \forall x, y \in X
$$

Then f has a unique fixed point $x_{0} \in X$, i.e. $f\left(x_{0}\right)=x_{0}$.
Proof. Let $y_{0} \in X$. Define recursively

$$
y_{i+1}=f\left(y_{i}\right), \quad i=0,1,2, \ldots
$$

We see by induction that

$$
d\left(y_{i+1}, y_{i}\right) \leq L^{i} d\left(y_{0}, y_{1}\right)
$$

By the triangle inequality,

$$
d\left(y_{i}, y_{j}\right) \leq\left(L^{i}+\cdots+L^{j-1}\right) d\left(y_{0}, y_{1}\right) \quad \text { if } i<j
$$

Since $0 \leq L<1$, the series

$$
1+L+L^{2}+\cdots
$$

converges, and therefore the remainder term $\rightarrow 0$. Hence

$$
L^{i}+L^{i+1}+\cdots+L^{j-1} \rightarrow 0 \quad \text { if } i, j \rightarrow \infty
$$

It follows that $\left(y_{i}\right)$ is a Cauchy sequence. Since X is complete, the sequence $\left(y_{i}\right)$ converges, i.e.

$$
y_{i} \rightarrow x_{0} \in X
$$

Now

$$
\begin{aligned}
d\left(y_{i}, f\left(y_{i}\right)\right) & =d\left(f\left(y_{i-1}\right), f\left(y_{i}\right)\right) \\
& \leq L \underbrace{d\left(y_{i-1}, y_{i}\right)}_{\leq L^{i-1} d\left(y_{0}, y_{1}\right)} \leq L^{i} d\left(y_{0}, y_{1}\right)
\end{aligned}
$$

We obtain

$$
\begin{aligned}
d\left(x_{0}, f\left(x_{0}\right)\right) & \leq d\left(x_{0}, y_{i}\right)+d\left(y_{i}, f\left(y_{i}\right)\right)+\underbrace{d\left(f\left(y_{i}\right), f\left(x_{0}\right)\right)}_{\leq L d\left(y_{i}, x_{0}\right)} \\
& \leq(1+L) d\left(x_{0}, y_{i}\right)+L^{i} d\left(y_{0}, y_{1}\right) \xrightarrow{i \rightarrow \infty} 0 .
\end{aligned}
$$

Hence $d\left(x_{0}, f\left(x_{0}\right)\right)=0$, i.e. $x_{0}=f\left(x_{0}\right)$. If x_{0}^{\prime} is another fixed point,

$$
d\left(x_{0}^{\prime}, x_{0}\right)=d\left(f\left(x_{0}^{\prime}\right), f\left(x_{0}\right)\right) \leq L d\left(x_{0}^{\prime}, x_{0}\right)
$$

and since $L<1$, we must have $x_{0}^{\prime}=x_{0}$.

0.9 Topological manifold

Definition 0.10. Let M be a topological space. We say that M is a topological n-manifold, $n \in \mathbb{N}$, if

1. M is Hausdorff,
2. M is second countable $\left(M\right.$ is $\left.N_{2}\right)$,
3. every point $x \in M$ has a neighborhood that is homeomorphic to an open subset of \mathbb{R}^{n}.

Remark 0.11. 1. The condition 3 means that M is "locally homeomorphic with $\mathbb{R}^{n "}$.
2. Condition $3 \Longleftrightarrow$ every $x \in M$ has a neighborhood U that is homeomorphic with the open unit ball $B^{n}(0,1)=\left\{y \in \mathbb{R}^{n}:|y|<1\right\}$ (or equivalently with the whole \mathbb{R}^{n}).
3. Fact: If M is both a topological n-manifold and a topological m-manifold, then necessarily $m=n$. (We do not prove this. The proof uses algebraic topology (invariance of domain).)
4. Properties 1 and 2 do not follow from the condition 3. For instance, an uncountable disjoint union of \mathbb{R}^{n} s satisfies the condition 3 but is not N_{2}. On the other hand, the topological manifold in Example 0.3 satisfies the condition 3 but is not Hausdorff.

Let M be a topological n-manifold. We say that a pair (U, φ) is a chart on M if
(a) $U \subset M$ is open
(b) $\varphi: U \rightarrow \varphi U \subset \mathbb{R}^{n}$ is a homeomorphism and $\varphi U \subset \mathbb{R}^{n}$ is open.

If, in addition, $p \in U$, then (U, φ) is a chart at p.
In what follows we usually denote $(U, x), x=\left(x^{1}, \ldots, x^{n}\right)$, where $x: U \rightarrow x U \subset \mathbb{R}^{n}$ is a homeomorphism and $x^{1}, x^{2}, \ldots, x^{n}$ are the coordinate functions of x (that is, real-valued functions $\left.x^{i}: U \rightarrow \mathbb{R}\right)$.

The standard example of topological n-manifolds is, of course, $M=\mathbb{R}^{n}$ equipped with the usual topology. Earlier we recalled that \mathbb{R}^{n} is Hausdorff and N_{2}.

The rough idea of a topological n-manifold: The conditions guarantee that M has many good properties of \mathbb{R}^{n}.
Hausdorff: for instance, the limit of a convergent sequence is unique.
N_{2} : an important property that is needed in partition of unity.
Example 0.12. 1. Every open set $U \subset \mathbb{R}^{n}, U \neq \emptyset$, is a topological n-manifold. (Hausdorff and N_{2} are hereditary).
2. Graphs of continuous functions: Let $U \subset \mathbb{R}^{n}$ be open and $f: U \rightarrow \mathbb{R}^{k}$ continuous. We say that the graph of f is the following subset of $\mathbb{R}^{n} \times \mathbb{R}^{k}$

$$
\Gamma(f)=\left\{(x, y) \in \mathbb{R}^{n} \times \mathbb{R}^{k}: x \in U, y=f(x)\right\}
$$

equipped with the relative topology. Then $\Gamma(f)$ is Hausdorff and N_{2}. Let $\pi_{1}: \mathbb{R}^{n} \times \mathbb{R}^{k} \rightarrow \mathbb{R}^{n}$ be the projection $(x, y) \mapsto x$ and $\varphi_{f}: \Gamma(f) \rightarrow U$ be the restriction

$$
\begin{aligned}
\varphi_{f} & =\pi_{1} \mid \Gamma(f) \\
\varphi_{f}(x, y) & =x, \quad(x, y) \in \Gamma(f)
\end{aligned}
$$

Since π_{1} is continuous, then φ_{f} is continuous (relative topology). In addition, φ_{f} is a homeomophism since it has a continuous inverse mapping

$$
\varphi_{f}^{-1}(x)=(x, f(x))
$$

Hence $\Gamma(f)$ is a topological n-manifold (homeomorphic with U).
3. The sphere $\mathbb{S}^{n}=\left\{x \in \mathbb{R}^{n+1}:|x|=1\right\}$ is a topological n-manifold (relative topology). Reason: \mathbb{S}^{n} can be covered by open sets that can be represented as graphs of continuous functions (hence reduces to the previous example). Example Let

$$
U_{n+1}^{+}=\left\{\left(x^{1}, \ldots, x^{n+1}\right) \in \mathbb{S}^{n}: x^{n+1}>0\right\}
$$

Now $U_{n+1}^{+}=\Gamma(f)=(x, f(x))$, where $f: B^{n} \rightarrow \mathbb{R}, f(x)=\sqrt{1-|x|^{2}}$. Similarly the other sets U_{i}^{+}and U_{i}^{-},

$$
\begin{aligned}
& U_{i}^{+}=\left\{\left(x^{1}, \ldots, x^{n+1}\right) \in \mathbb{S}^{n}: x^{i}>0\right\} \\
& U_{i}^{-}=\left\{\left(x^{1}, \ldots, x^{n+1}\right) \in \mathbb{S}^{n}: x^{i}<0\right\}
\end{aligned}
$$

4. Let M_{i} be topological n_{i}-manifolds, $i=1,2, \ldots, k$. Then

$$
M=M_{1} \times M_{2} \times \cdots \times M_{k}
$$

is a topological n-manifold, where $n=n_{1}+n_{2}+\cdots+n_{k}$. Reason: Earlier we noticed that M is Hausdorff and N_{2}. If $p=\left(p_{1}, \ldots, p_{k}\right) \in M_{1} \times M_{2} \times \cdots \times M_{k}$, choose charts $\left(U_{i}, \varphi_{i}\right)$ in M_{i} s.t. $p_{i} \in U_{i}, \forall i=1, \ldots, k$. The product mapping

$$
\varphi_{1} \times \cdots \times \varphi_{k}: U_{1} \times \cdots \times U_{k} \rightarrow R^{n}
$$

is a homeomorphism onto its image that is an open subset of \mathbb{R}^{n}. We do the same for all $p \in M$.
Example: n-torus

$$
T^{n}=\underbrace{\mathbb{S}^{1} \times \cdots \times \mathbb{S}^{1}}_{n \mathrm{kpl}}
$$

5. Projective space $\mathbb{R} P^{n}$ (n-dimensional real projective space) is the set of all 1-dimensional linear subspaces of \mathbb{R}^{n+1} (or the set of all lines in \mathbb{R}^{n+1} passing through the origin). $\mathbb{R} P^{n}$ can be obtained by identifying points $x \in \mathbb{S}^{n}$ and $-x \in \mathbb{S}^{n}$. More precisely: define an equivalence relation on \mathbb{S}^{n} :

$$
x \sim y \Longleftrightarrow x= \pm y, x, y \in \mathbb{S}^{n}
$$

Then $\mathbb{R} P^{n}=\mathbb{S}^{n} / \sim=\left\{[x]: x \in \mathbb{S}^{n}\right\}$. Equipping $\mathbb{R} P^{n}$ with so-called quotient topology, $\mathbb{R} P^{n}$ becomes a topological n-manifold.

Quotient topology:

Definition 0.13. Let (X, \mathcal{T}) be a topological space, \sim an equivalence relation on X and $\pi: X \rightarrow$ X / \sim the canonical projection, $x \mapsto[x]$. Then the collection

$$
\left\{U \subset X / \sim: \pi^{-1} U \in \mathcal{T}\right\}
$$

is called the quotient topology of X / \sim.
The set $\Gamma=\left\{\left(x, x^{\prime}\right) \in X \times X: x \sim x^{\prime}\right\}$ is the graph of the equivalence relation \sim. We say that \sim is open (closed) if the projection $\pi: X \rightarrow X / \sim$ is an open (closed) mapping.
[Note: Let X and Y be topological spaces. A mapping $f: X \rightarrow Y$ is open (closed) if the image $f A$ is open (closed) for every open (closed) $A \subset X$.]
Theorem 0.14. If X / \sim is Hausdorff, then the graph Γ of an equivalence relation \sim is a closed set in $X \times X$. If $\Gamma \subset X \times X$ is closed and \sim is open, then X / \sim is Hausdorff.

For the proof we need a lemma.
Lemma 0.15. X is Hausdorff \Longleftrightarrow (the diagonal) $\Delta_{X}=\{(x, x) \in X \times X: x \in X\}$ is closed in $X \times X$.

Proof. X Hausdorff $\Longleftrightarrow \forall p, q \in X, p \neq q, \exists$ (disjoint) neighborhoods $U_{p} \ni p, U_{q} \ni q$ s.t. $\left(U_{p} \times U_{q}\right) \cap \Delta_{X}=\emptyset \Longleftrightarrow(X \times X) \backslash \Delta_{X}$ open.

Proof of Theorem 0.14. X / \sim Hausdorff $\Rightarrow \Delta_{X / \sim}$ is closed, hence $\Gamma=(\pi \times \pi)^{-1}\left(\Delta_{X / \sim}\right)$ is closed. Suppose then that Γ is closed and \sim is open. If X / \sim is not Hausdorff, \exists distinct points $[x],[y] \in X / \sim$ such that $U_{[x]} \cap U_{[y]} \neq \emptyset$ for every neighborhoods $U_{[x]} \ni[x], U_{[y]} \ni[y]$. Let V_{x}, V_{y} be arbitrary neighborhoods of x and y. Since \sim is open, $\pi\left(V_{x}\right), \pi\left(V_{y}\right)$ are neighborhoods of $[x]$ and [y]. Since $\pi\left(V_{x}\right) \cap \pi\left(V_{y}\right) \neq \emptyset, \exists x^{\prime} \in V_{x}, y^{\prime} \in V_{y}$ s.t. $\left[x^{\prime}\right]=\left[y^{\prime}\right]$, i.e. $x^{\prime} \sim y^{\prime}$, so $\left(x^{\prime}, y^{\prime}\right) \in \Gamma$. Thus $(x, y) \in \bar{\Gamma}$ (every neighborhood of (x, y) intersects with Γ). Since Γ is closed, $(x, y) \in \Gamma$, so $[x]=[y]$. We obtained a contradiction, and therefore X / \sim is Hausdorff.

Theorem 0.16. If X is N_{2} and \sim is an open equivalence relation on X, then X / \sim is N_{2}.
Proof Let $\mathcal{B}=\left\{B_{i}: i \in \mathbb{N}\right\}$ be a countable basis of X. Claim: $[\mathcal{B}]=\left\{\left[B_{i}\right]: i \in \mathbb{N}\right\}$ is a countable basis of X / \sim. (Here $\left[B_{i}\right]=\pi B_{i}, \pi: X \rightarrow X / \sim$ is the canonical projection.) Countability is clear. Moreover every $\left[B_{i}\right]$ is open because \sim is open. Let $A \subset X / \sim$ be open. Then (by the definition of quotient topology) $\pi^{-1} A \subset X$ is open, and so $\pi^{-1} A=\bigcup_{j \in J} B_{j}, J \subset \mathbb{N}$. Thus $A=\bigcup_{j \in J} \pi\left(B_{j}\right)=\bigcup_{j \in J}\left[B_{j}\right]$ and X / \sim is N_{2}.

0.17 Basic properties of a topological manifold

Let us recall the following definitions:
An open cover of a topological space X is a collection

$$
\left\{V_{\alpha}: \alpha \in \mathcal{A}\right\}
$$

of open subsets V_{α} of X s.t. $X=\bigcup_{\alpha} V_{\alpha}$. Here \mathcal{A} is an arbitrary index set.
A topological space X is compact if every open cover of it has a finite subcover. That is, if $X=\bigcup_{\alpha} V_{\alpha}$, there exist $V_{\alpha_{1}}, \ldots, V_{\alpha_{k}}$ such that $X=\bigcup_{i=1}^{k} V_{\alpha_{i}}$.

A topological space X is locally compact if every $x \in X$ has a neighborhood U whose closure \bar{U} is compact. We say that a set $A \subset X$ is precompact or relatively compact $(A \Subset X)$ if \bar{A} is compact. [Recall: $\bar{U}=\{x \in X: U \cap V \neq \emptyset \forall$ neighborhoods V of $x\}$]

A topological space space X is connected if \nexists subsets A, B s.t.

1. $X=A \cup B$
2. $A \neq \emptyset \neq B$
3. $A \cap B=\emptyset$
4. $A \subset X$ is open, $B \subset X$ is open.

In other words, X is connected if it can not be expressed as a union of two disjoint open sets.
A topological space X is path connected if every pair $x, y \in X$ can be connected by a path, i.e. \exists a continuous mapping $\alpha:[0,1] \rightarrow X$ (a path) s.t. $\alpha(0)=x$ and $\alpha(1)=y$.

Note: path connected \Rightarrow connected, but not conversely.
A topological space X is locally (path) connected at a point $x \in X$ if every neighborhood of x contains a (path) connected neighborhood of x.

Theorem 0.18. A topological n-manifold M is locally compact and locally path connected.
Proof. The claim follows from the conditions 1 and 3 in the definition of a topological n manifold and from the corresponding properties of \mathbb{R}^{n} : Let $x \in M$ be arbitrary and (U, φ) a chart at x. Since $\varphi U \subset \mathbb{R}^{n}$ is open and $\varphi(x) \in \varphi U$, there exists a ball $B^{n}(\varphi(x), r) \subset \varphi U$. Since $\bar{B}^{n}(\varphi(x), r / 2)$ is compact, the set $\varphi^{-1} \bar{B}^{n}(\varphi(x), r / 2)$ is compact and hence closed, because M is Hausdorff. Thus $\varphi^{-1} B^{n}(\varphi(x), r / 2)$ is a neighborhood of x whose closure is compact. On the other hand, $B^{n}(\varphi(x), r)$ is path connected, and therefore $\varphi^{-1} B^{n}(\varphi(x), r)(\subset U)$ is a path connected neighborhood of x.

We need the following lemmata for the existence of a partition of unity:
Lemma 0.19 (Lindelöf). Let X be a topological space with a countable basis and let $A \subset X$. Then every open cover $\left\{V_{\alpha}: \alpha \in \mathcal{A}\right\}$ of $A\left(A \subset \bigcup_{\alpha} V_{\alpha}\right)$ contains a countable subcover.

Proof. Let $\mathcal{B}=\left\{B_{i}: i \in \mathbb{N}\right\}$ be a countable basis of X. For each $x \in A$ there exist indices $i \in \mathbb{N}$ and $\alpha \in \mathcal{A}$ s.t. $x \in B_{i} \subset V_{\alpha}$. Let

$$
\mathcal{B}^{\prime}=\left\{B_{i} \in \mathcal{B}: x \in B_{i} \subset V_{\alpha}, x \in A\right\}
$$

Then \mathcal{B}^{\prime} is a cover of A. For each $B_{i} \in \mathcal{B}^{\prime}$ choose one V_{α}, for which $B_{i} \subset V_{\alpha}$, and denote it by $V_{\alpha(i)}$. Since \mathcal{B}^{\prime} is a cover of A and $B_{i} \subset V_{\alpha(i)} \forall B_{i} \in \mathcal{B}^{\prime}$, the family $\left\{V_{\alpha(i)}\right\}$ is a countable cover of A.
Theorem 0.20. Every topological n-manifold M has a countable basis $\mathcal{B}=\left\{B_{i}: i \in \mathbb{N}\right\}$, where every B_{i} is precompact and homeomorphic with an open ball in \mathbb{R}^{n}. In particular, M is σ-compact (i.e. a countable union of compact sets).

Proof. (i) For every $x \in M$ there exists a chart (U, φ) at x, and therefore "chart neighborhoods" U form an open cover of M. By Lemma 0.19 there exists a countable cover $\left\{U_{i}: i \in \mathbb{N}\right\}$ of M s.t. $\left(U_{i}, \varphi_{i}\right)$ is a chart.
(ii) Denote $\tilde{U}_{i}=\varphi U_{i}\left(\subset \mathbb{R}^{n}\right.$ open $)$ and

$$
\tilde{\mathcal{B}}_{i}=\left\{B^{n}(x, r): x \in \mathbb{Q}^{n}, r \in \mathbb{Q}_{+}, \bar{B}^{n}(x, r) \subset \tilde{U}_{i}\right\}
$$

Then every such $\bar{B}^{n}(x, r) \subset \tilde{U}_{i}$ is compact and $\tilde{\mathcal{B}}_{i}$ is a countable basis of \tilde{U}_{i}. Since $\varphi_{i}: U_{i} \rightarrow \tilde{U}_{i}$ is a homeomorphism, the family

$$
\mathcal{B}_{i}=\left\{\varphi_{i}^{-1} B: B \in \tilde{\mathcal{B}}_{i}\right\}
$$

is a countable basis of U_{i} and every $\overline{\varphi_{i}^{-1} B}$ is a compact subset of U_{i}. Now $\mathcal{B}=\bigcup_{i} \mathcal{B}_{i}$ satisfies the requirements of the theorem. Since $M=\bigcup_{B \in \mathcal{B}} \bar{B}$ and each \bar{B} is compact, M is σ-compact.

1 Review on differential calculus in \mathbb{R}^{n}

1.1 Differentiability

Definition 1.2. Let $G \subset \mathbb{R}^{n}$ be open. A mapping $f: G \rightarrow \mathbb{R}^{m}$ is differentiable at $x \in G$ if there exists a linear map $A(x) \in L\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)$ s.t.

$$
f(x+h)=f(x)+A(x) h+|h| \varepsilon(x, h)
$$

where $\varepsilon(x, h) \xrightarrow{h \rightarrow 0} 0$. The (unique) linear map $A(x)$ is called the differential of f at x and denoted by $A(x)=f^{\prime}(x)=D f(x)$.

It can be shown that the matrix of $f^{\prime}(x)$ (w.r.t. standard bases) is

$$
\left(\begin{array}{ccc}
D_{1} f_{1}(x) & \cdots & D_{n} f_{1}(x) \\
\vdots & \ddots & \vdots \\
D_{1} f_{m}(x) & \cdots & D_{n} f_{m}(x)
\end{array}\right)
$$

where $f=\left(f_{1}, \ldots, f_{m}\right)$.
Definition 1.3. A mapping $f: G \rightarrow \mathbb{R}^{m}$ is continuously differentiable at $x_{0} \in G$ if there exists a neighborhood $U \subset G$ of x_{0} s.t.

1. f is differentiable at every $x \in U$ and
2. $f^{\prime}: U \rightarrow L\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)$ is continuous at x_{0}.

Note: Above the topology of $L\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)$ is determined by a norm. Since $L\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)$ is finite dimensional, all norms determine the same topology.
We use the operator norm $|L|=\sup \{|L h|:|h|=1\}$ for linear maps $L \in L\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)$.
Fact: A mapping f is continuously differentiable in $G \Longleftrightarrow \exists$ continuous partial derivatives $D_{j} f_{i}$ in G for all $i=1, \ldots, m, j=1, \ldots, n$.

In general: Let $k \in \mathbb{N} \cup\{0\}$. We say that f is k times continuously differentiable in G, denoted by $\overline{f \in C^{k}(G)}$, if all partial derivatives

$$
\frac{\partial^{|\alpha|} f_{i}}{\partial^{\alpha} x}, i=1, \ldots, m
$$

are continuous in G for all multi-indices $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$, with $|\alpha|=\alpha_{1}+\cdots+\alpha_{n} \leq k$. Here

$$
\frac{\partial^{|\alpha|} f_{i}}{\partial^{\alpha} x}=\frac{\partial^{|\alpha|} f_{i}}{\left(\partial x_{1}\right)^{\alpha_{1}} \cdots\left(\partial x_{n}\right)^{\alpha_{n}}}
$$

If $f \in C^{k}(G)$ for all $k \in \mathbb{N}$, we denote $f \in C^{\infty}(G)$.
Definition 1.4. Let $G \subset \mathbb{R}^{n}$ and $V \subset \mathbb{R}^{n}$ be open. A mapping $f: G \rightarrow V$ is a C^{∞}-diffeomorphism if $f \in C^{\infty}(G)$ and $\exists f^{-1} \in C^{\infty}(V)$.

Inverse mapping theorem.

Theorem 1.5 (Inverse mapping theorem). Let $G \subset \mathbb{R}^{n}$ be open and $f: G \rightarrow \mathbb{R}^{n}, f \in C^{1}(G)$. Suppose that at a point $a \in G$

$$
J_{f}(a)=\operatorname{det} f^{\prime}(a) \neq 0
$$

Then there exist neighborhoods $U \ni a, V \ni f(a)$, and the inverse mapping $g=f^{-1}: V \rightarrow U$. Moreover, $g \in C^{1}(V)$ and $g^{\prime}(f(x))=f^{\prime}(x)^{-1}, x \in U$.

Recall: $\operatorname{det} f^{\prime}(a) \neq 0 \Longleftrightarrow$ the linear map $f^{\prime}(a): \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is invertible, i.e. the inverse mapping $f^{\prime}(a)^{-1}$ exists.

We need the following two lemmata for the proof.
Let us denote by $G L(n, \mathbb{R})$ the space of all invertible linear maps $A \in L\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$ (equivalently, the space of all (real) $n \times n$-matrices A, $\operatorname{det} A \neq 0$).

Lemma 1.6. 1. If $A \in G L(n, \mathbb{R})$ and $B \in L\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$ s.t.

$$
|B-A|\left|A^{-1}\right|<1
$$

then $B \in G L(n, \mathbb{R})$.
2. $G L\left(n, \mathbb{R}^{n}\right)$ is an open subset of $L\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$ and the map $A \mapsto A^{-1}$ is continuous in $G L(n, \mathbb{R})$.

Proof. Exerc. [see e.g. Rudin [Ru].]
Lemma 1.7 (Mean value theorem). Let $G \subset \mathbb{R}^{m}$ be open and $J \subset G$ a closed line segment, whose end points are a and b. Let $f: G \rightarrow \mathbb{R}^{n}$ be a mapping that is differentiable at every point of J. Then for every $v \in \mathbb{R}^{n}$ there exists $x_{v} \in J$ s.t.

$$
v \cdot(f(b)-f(a))=v \cdot\left(f^{\prime}\left(x_{v}\right)(b-a)\right)
$$

In particular, if $\left|f^{\prime}(x)\right| \leq M$ for all $x \in J$, then

$$
|f(b)-f(a)| \leq M|b-a|
$$

Proof. Exerc.
Proof of Theorem 1.5. (i) Write $L=f^{\prime}(a)$ and choose $\lambda>0$ s.t. $2 \lambda\left|L^{-1}\right|=1$. Since f^{\prime} is continuous at a, there exists a ball $U=B^{n}(a, \varepsilon)$ s.t.

$$
\left|f^{\prime}(x)-L\right|<\lambda \quad \forall x \in U .
$$

We will prove that $f \mid U$ is injective. Define, for every $y \in \mathbb{R}^{n}$ a mapping $\varphi\left(=\varphi_{y}\right)$

$$
\begin{equation*}
\varphi(x)=x+L^{-1}(y-f(x))=x+L^{-1}(y)-L^{-1}(f(x)), \quad x \in G . \tag{1.8}
\end{equation*}
$$

We observe: $f(x)=y \Longleftrightarrow \varphi(x)=x$.
By the chain rule

$$
\begin{aligned}
\varphi^{\prime}(x) & =I-L^{-1} f^{\prime}(x) \quad(I=\text { identity }) \\
& =L^{-1}\left(L-f^{\prime}(x)\right),
\end{aligned}
$$

hence

$$
\left|\varphi^{\prime}(x)\right| \leq \underbrace{\left|L^{-1}\right|}_{=\frac{1}{2 \lambda}} \underbrace{\left|L-f^{\prime}(x)\right|}_{<\lambda}<\frac{1}{2}, x \in U .
$$

By the mean value theorem (Lemma 1.7)

$$
\left|\varphi\left(x_{2}\right)-\varphi\left(x_{1}\right)\right| \leq \frac{1}{2}\left|x_{2}-x_{1}\right|, \quad x_{1}, x_{2} \in U .
$$

Hence φ has at most one fixed point in U. [Indeed, if $\varphi\left(x_{1}\right)=x_{1} \in U$ and $\varphi\left(x_{2}\right)=x_{2} \in U$, then

$$
\left|x_{1}-x_{2}\right|=\left|\varphi\left(x_{1}\right)-\varphi\left(x_{2}\right)\right| \leq \frac{1}{2}\left|x_{1}-x_{2}\right|,
$$

and therefore $x_{1}=x_{2}$.] The same holds for every $y \in \mathbb{R}^{n}$, hence $f \mid U$ is injective.
(ii) Next we will prove that $V=f U$ is open. [Then we have shown that there are neighborhoods $U \ni a, V \ni f(a)$ s.t. $f \mid U: U \rightarrow V$ is bijective.]
Let $y_{0} \in V$. Then $y_{0}=f\left(x_{0}\right)$ for some $x_{0} \in U$. Let $r>0$ be so small that $\bar{B}=\bar{B}^{n}\left(x_{0}, r\right) \subset U$. We claim that $B^{n}\left(y_{0}, \lambda r\right) \subset V$ which then shows that V is open. Fix $y \in B^{n}\left(y_{0}, \lambda r\right)$, so $\left|y-y_{0}\right|<\lambda r$. Let $\varphi=\varphi_{y}$,

$$
\varphi(x)=x+L^{-1}(y-f(x)) .
$$

We have

$$
\left|\varphi\left(x_{0}\right)-x_{0}\right|=\left|L^{-1}\left(y-y_{0}\right)\right| \leq\left|L^{-1}\right|\left|y-y_{0}\right|<\frac{r}{2} .
$$

If $x \in \bar{B}(\subset U)$, then

$$
\begin{aligned}
\left|\varphi(x)-x_{0}\right| & \leq\left|\varphi(x)-\varphi\left(x_{0}\right)\right|+\left|\varphi\left(x_{0}\right)-x_{0}\right| \\
& \leq \frac{1}{2}\left|x-x_{0}\right|+\frac{r}{2}<r,
\end{aligned}
$$

and so $\varphi(x) \in B^{n}\left(x_{0}, r\right)$. Hence

$$
\begin{gathered}
\varphi \bar{B}^{n}\left(x_{0}, r\right) \subset \bar{B}^{n}\left(x_{0}, r\right), \\
\left|\varphi\left(x_{2}\right)-\varphi\left(x_{1}\right)\right| \leq \frac{1}{2}\left|x_{2}-x_{1}\right|, \forall x_{1}, x_{2} \in \bar{B}^{n}\left(x_{0}, r\right) .
\end{gathered}
$$

The closed ball $\bar{B}^{n}\left(x_{0}, r\right)$ is compact, hence it is complete.
By the Banach fixed point theorem the mapping φ has exactly one fixed point x in $\bar{B}^{n}\left(x_{0}, r\right)$. Hence $y=f(x) \in f \bar{B}^{n}\left(x_{0}, r\right) \subset f U=V$, and consequently V is open. We have shown: \exists neighborhoods $U \ni a, V \ni f(a)$ s.t. $f \mid U: U \rightarrow V$ is bijective.
(iii) Next we prove that the inverse mapping $g=(f \mid U)^{-1}: V \rightarrow U$ is continuously differentiable, $g \in C^{1}(V)$. Let $y \in V$ and $y+k \in V$. Write $x=f^{-1}(y)$ and $h=f^{-1}(y+k)-x$. Then $x \in U, x+h=f^{-1}(y+k) \in U$, and $f(x+h)=y+k$. If $\varphi=\varphi_{y}$ (see (1.8)), then

$$
\begin{aligned}
\varphi(x+h) & =x+h+L^{-1}(y-f(x+h)) \\
\varphi(x) & =x+L^{-1}(y-f(x))
\end{aligned}
$$

and hence

$$
\begin{aligned}
\varphi(x+h)-\varphi(x) & =h+L^{-1}(\underbrace{f(x)}_{=y}-\underbrace{f(x+h)}_{y+k}) \\
& =h-L^{-1} k .
\end{aligned}
$$

It follows that

$$
\left|h-L^{-1} k\right|=|\varphi(x+h)-\varphi(x)| \leq \frac{1}{2}|x+h-x|=\frac{1}{2}|h|,
$$

hence

$$
\left|L^{-1} k\right| \geq \frac{1}{2}|h|,
$$

and therefore

$$
\begin{equation*}
|h| \leq 2\left|L^{-1} k\right| \leq 2\left|L^{-1}\right||k|=\frac{|k|}{\lambda} \tag{1.9}
\end{equation*}
$$

Since

$$
\left|f^{\prime}(x)-L\right|\left|L^{-1}\right|<\frac{1}{2}
$$

Lemma 1.6 implies that $f^{\prime}(x)$ is invertible, i.e. $\exists T=f^{\prime}(x)^{-1}$. We want to show that $g^{\prime}(y)=T$ (recall that $\left.g=(f \mid U)^{-1}: V \rightarrow U\right)$. Now

$$
\begin{aligned}
\underbrace{g(y+k)}_{=h+x}-\underbrace{g(y)}_{=x}-T k & =h+x-x-T k=h-T k \\
& =T f^{\prime}(x) h-T k=-T\left(k-f^{\prime}(x) h\right) \\
& =-T(\underbrace{f(x+h)}_{=y+k}-\underbrace{f(x)}_{=y}-f^{\prime}(x) h) .
\end{aligned}
$$

This and the estimate (1.9) imply that

$$
\begin{equation*}
\frac{|g(y+k)-g(y)-T k|}{|k|} \leq \frac{|T|}{\lambda} \frac{\left|f(x+h)-f(x)-f^{\prime}(x) h\right|}{|h|} . \tag{1.10}
\end{equation*}
$$

If $k \rightarrow 0$, then $h \rightarrow 0$ by (1.9), and consequently the right-hand side of (1.10) tends to 0 . Hence also the left-hand side of (1.10) tends to 0 . We obtain

$$
\frac{|g(y+k)-g(y)-T k|}{|k|} \stackrel{k \rightarrow 0}{ } 0
$$

so g is differentiable at y and

$$
\begin{equation*}
g^{\prime}(y)=T=f^{\prime}(x)^{-1}=f^{\prime}(g(y))^{-1}, y \in V . \tag{1.11}
\end{equation*}
$$

Since g is differentiable at every $y \in V$, it is continuous in V. Moreover, $f \in C^{1}(U)$ by the assumption and $f^{\prime}(x)^{-1}$ exists for all $x \in U$, hence $f^{\prime}: U \rightarrow G L(n, \mathbb{R})$ is continuous. By Lemma 1.6 (b), $A \mapsto A^{-1}$ is continuous in $G L(n, \mathbb{R})$. Combining these and (1.11) we can conclude that

$$
g^{\prime}: V \rightarrow G L(n, \mathbb{R}), y \mapsto g^{\prime}(y)=f^{\prime}(g(y))^{-1}
$$

is continuous, that is $g \in C^{1}(V)$.
Remark 1.12. The assumption $f \in C^{1}(G)$ was only used at the very end of the proof. If we merely assume that f is differentiable in G, continuously differentiable at a, and $J_{f}(a) \neq 0$, the corresponding inverse mapping $g=(f \mid U)^{-1}: V \rightarrow U$ is differentiable in V and continuously differentiable at $f(a)$.

Corollary 1.13. If $G \subset \mathbb{R}^{n}$ is open, $f: G \rightarrow \mathbb{R}^{n}, f \in C^{1}(G)$ and $J_{f}(x) \neq 0$ for all $x \in G$, then f is an open mapping.

Implicit function theorem. Let us write $\mathbb{R}^{m+n}=\mathbb{R}^{m} \times \mathbb{R}^{n}$, so

$$
\begin{aligned}
t \in \mathbb{R}^{m+n} \Longleftrightarrow t & =\left(t_{1}, \ldots, t_{m+n}\right)=\left(x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n}\right) \\
& =(x, y) .
\end{aligned}
$$

Theorem 1.14 (Implicit function theorem). Let $G \subset \mathbb{R}^{m+n}$ be open, $f: G \rightarrow \mathbb{R}^{n}$, and ($\left.x_{0}, y_{0}\right) \in G$. Suppose that

1. $f\left(x_{0}, y_{0}\right)=0$,
2. $f \in C^{1}(G)$,
3. $J_{u}\left(y_{0}\right) \neq 0$, where $u(y)=f\left(x_{0}, y\right)$.

Then there are neighborhoods $X \subset \mathbb{R}^{m}$ of x_{0} and $Y \subset \mathbb{R}^{n}$ of y_{0} with the property that for every $x \in X$ the exists the unique $\varphi(x) \in Y$ s.t. $f(x, \varphi(x))=0$. The mapping $\varphi: X \rightarrow Y$ is continuously differentiable in X and $\varphi\left(x_{0}\right)=y_{0}$.

Proof. Define a mapping $g: G \rightarrow \mathbb{R}^{m+n}$,

$$
g(x, y)=(x, f(x, y)) .
$$

Then $g\left(x_{0}, y_{0}\right)=\left(x_{0}, 0\right)$ and

$$
\begin{align*}
& g_{1}(x, y)=x_{1}, \quad g_{2}(x, y)=x_{2}, \quad \ldots \quad g_{m}(x, y)=x_{m} \tag{1.15}\\
& g_{m+1}(x, y)=f_{1}(x, y), \quad g_{m+2}(x, y)=f_{2}(x, y), \quad \ldots \quad g_{m+n}(x, y)=f_{n}(x, y) .
\end{align*}
$$

We observe that

$$
\begin{aligned}
J_{g}\left(x_{0}, y_{0}\right) & =\left|\begin{array}{cccccc}
1 & \cdots & 0 & 0 & \cdots & 0 \\
0 & \cdots & 0 & 0 & \cdots & 0 \\
\vdots & & \vdots & \vdots & & \vdots \\
0 & \cdots & 1 & 0 & \cdots & 0 \\
D_{1} f_{1}\left(x_{0}, y_{0}\right) & \cdots & D_{m} f_{1}\left(x_{0}, y_{0}\right) & D_{m+1} f_{1}\left(x_{0}, y_{0}\right) & \cdots & D_{m+n} f_{1}\left(x_{0}, y_{0}\right) \\
\vdots & & \vdots & \vdots & & \vdots \\
D_{1} f_{n}\left(x_{0}, y_{0}\right) & \cdots & D_{m} f_{n}\left(x_{0}, y_{0}\right) & D_{m+1} f_{n}\left(x_{0}, y_{0}\right) & \cdots & D_{m+n} f_{n}\left(x_{0}, y_{0}\right)
\end{array}\right| \\
& =\left|\begin{array}{ccc}
D_{m+1} f_{1}\left(x_{0}, y_{0}\right) & \cdots & D_{m+n} f_{1}\left(x_{0}, y_{0}\right) \\
\vdots & & \vdots \\
D_{m+1} f_{n}\left(x_{0}, y_{0}\right) & \cdots & D_{m+n} f_{n}\left(x_{0}, y_{0}\right)
\end{array}\right| \\
& =J_{u}\left(y_{0}\right) \neq 0
\end{aligned}
$$

By the inverse mapping theorem there are neighborhoods $U \ni\left(x_{0}, y_{0}\right)$ and $V \ni\left(x_{0}, 0\right)$ s.t. $g \mid U: U \rightarrow V$ is a homeomorphism that has an inverse mapping $g^{*}=(g \mid U)^{-1}: V \rightarrow U$. We may assume that $V=B^{m+n}\left(\left(x_{0}, 0\right), r\right)$. By (1.15) we have

$$
\begin{gathered}
g_{1}^{*}(x, y)=x_{1} \\
\vdots \\
g_{m}^{*}(x, y)=x_{m} .
\end{gathered}
$$

Let us denote $h=\left(g_{m+1}^{*}, \ldots, g_{m+n}^{*}\right): V \rightarrow \mathbb{R}^{n}$ and define $\varphi: B^{m}\left(x_{0}, r\right) \rightarrow \mathbb{R}^{n}, \varphi(x)=h(x, 0)$. Claim: φ is the desired mapping, i.e. $f(x, \varphi(x))=0$.
Now

$$
\begin{aligned}
(x, \varphi(x)) & =\left(x_{1}, \ldots, x_{m}, h_{1}(x, 0), \ldots, h_{n}(x, 0)\right) \\
& =\left(g_{1}^{*}(x, 0), \ldots, g_{m}^{*}(x, 0), g_{m+1}^{*}(x, 0), \ldots, g_{m+n}^{*}(x, 0)\right)=g^{*}(x, 0),
\end{aligned}
$$

hence $g(x, \varphi(x))=g\left(g^{*}(x, 0)\right)=(x, 0)$. On the other hand, $(x, 0)=g(x, \varphi(x))=(x, f(x, \varphi(x)))$, that implies

$$
f(x, \varphi(x))=0 .
$$

Moreover, since f is continuously differentiable, also g is continuously differentiable. By the inverse mapping theorem, g^{*} is continuously differentiable, and hence φ is continuously differentiable. Since

$$
\left(x_{0}, y_{0}\right)=g^{*}\left(x_{0}, 0\right)=\left(x_{0}, \varphi\left(x_{0}\right)\right)
$$

we have

$$
\varphi\left(x_{0}\right)=y_{0} .
$$

Finally choose neighborhoods $X \ni x_{0}$ and $Y \ni y_{0}$ s.t.

1. $X \times Y \subset U$
2. $\varphi X \subset Y$.

Then, for all $x \in X$, there exists $y=\varphi(x) \in Y$ s.t. $f(x, y)=0$. It remains to prove the uniqueness. Suppose that $z \in Y$ satisfies the equation $f(x, z)=0,(x, z) \in U$. Then

$$
g(x, z)=(x, f(x, z))=(x, 0)=(x, f(x, y))=g(x, y)
$$

Since $g \mid U$ is injective, we have $(x, z)=(x, y)$, and therefore $z=y$
Remark 1.16. In the above setting we have

$$
\varphi^{\prime}\left(x_{0}\right)=-\left(u^{\prime}\left(y_{0}\right)\right)^{-1} v^{\prime}\left(x_{0}\right)
$$

where $v(x)=f\left(x, y_{0}\right)$.

2 Differentiable manifolds

2.1 Definitions and examples

Let M be a topological n-manifold. Recall that a chart of M is a pair (U, x), where

1. $U \subset M$ is open,
2. $x: U \rightarrow x U \subset \mathbb{R}^{n}$ is a homeomorphism, $x U \subset \mathbb{R}^{n}$ open.

We say that charts (U, x) and (V, y) are C^{∞}-compatible if $U \cap V=\emptyset$ or

$$
z=y \circ x^{-1} \mid x(U \cap V): x(U \cap V) \rightarrow y(U \cap V)
$$

is a C^{∞}-diffeomorphism.

A C^{∞}-atlas, \mathcal{A}, of M is a set of C^{∞}-compatible charts such that

$$
M=\bigcup_{(U, x) \in \mathcal{A}} U
$$

A C^{∞}-atlas \mathcal{A} is maximal if $\mathcal{A}=\mathcal{B}$ for all C^{∞}-atlases $\mathcal{B} \supset \mathcal{A}$. That is, $(U, x) \in \mathcal{A}$ if it is $C^{\infty_{-}}$ compatible with every chart in \mathcal{A}.

Lemma 2.2. Let M be a topological manifold. Then

1. every C^{∞}-atlas, \mathcal{A}, of M belongs to a unique maximal C^{∞}-atlas (denoted by $\overline{\mathcal{A}}$).
2. C^{∞}-atlases \mathcal{A} and \mathcal{B} belong to the same maximal $C^{\infty_{-}}$-atlas if and only if $\mathcal{A} \cup \mathcal{B}$ is a C^{∞}-atlas.

Proof. Exercise

Definition 2.3. A differentiable n-manifold (or a smooth n-manifold) is a pair (M, \mathcal{A}), where M is a topological n-manifold and \mathcal{A} is a maximal C^{∞}-atlas of M, also called a differentiable structure of M.

We abbreviate M or M^{n} and say that M is a C^{∞}-manifold, a differentiable manifold, or a smooth manifold.

Definition 2.4. Let $\left(M^{m}, \mathcal{A}\right)$ and $\left(N^{n}, \mathcal{B}\right)$ be C^{∞}-manifolds. We say that a mapping $f: M \rightarrow N$ is C^{∞} (or smooth) if each local representation of f (with respect to \mathcal{A} and \mathcal{B}) is C^{∞}. More precisely, if the composition $y \circ f \circ x^{-1}$ is a smooth mapping $x\left(U \cap f^{-1} V\right) \rightarrow y V$ for every charts $(U, x) \in \mathcal{A}$ and $(V, y) \in \mathcal{B}$. We say that $f: M \rightarrow N$ is a C^{∞}-diffeomorphism if f is C^{∞} and it has an inverse f^{-1} that is C^{∞}, too.

Remark 2.5. Equivalently, $f: M \rightarrow N$ is C^{∞} if, for every $p \in M$, there exist charts (U, x) in M and (V, y) in N such that $p \in U, f U \subset V$, and $y \circ f \circ x^{-1}$ is $C^{\infty}(x U)$.

Examples 2.6. 1. $M=\mathbb{R}^{n}, \mathcal{A}=\{i d\}, \overline{\mathcal{A}}=$ canonical structure.
2. $M=\mathbb{R}, \mathcal{A}=\{i d\}, \mathcal{B}=\left\{x \stackrel{h}{\mapsto} x^{3}\right\}$. Now $\overline{\mathcal{A}} \neq \overline{\mathcal{B}}$ since $i d \circ h^{-1}$ is not C^{∞} at the origin. However, $(\mathbb{R}, \overline{\mathcal{A}})$ and $(\mathbb{R}, \overline{\mathcal{B}})$ are diffeomorphic by the mapping $f:(\mathbb{R}, \overline{\mathcal{A}}) \rightarrow(\mathbb{R}, \overline{\mathcal{B}}), f(y)=y^{1 / 3}$. Note: f is diffeomorphic with respect to structures $\overline{\mathcal{A}}$ and $\overline{\mathcal{B}}$ since $i d$ is the local representation of f.

3. If M is a differentiable manifold and $U \subset M$ is open, then U is a differentiable manifold in a natural way.
4. Finite dimensional vector spaces. Let V be an n-dimensional (real) vector space. Every norm on V determines a topology on V. This topology is independent of the choice of the norm since any two norms on V are equivalent (V finite dimensional). Let E_{1}, \ldots, E_{n} be a basis of V and $E: \mathbb{R}^{n} \rightarrow V$ the isomorphism

$$
E(x)=\sum_{i=1}^{n} x^{1} E_{i}, \quad x=\left(x^{1}, \ldots, x^{n}\right)
$$

Then E is a homeomorphism (V equipped with the norm topology) and the (global) chart $\left(V, E^{-1}\right)$ determines a smooth structure on V. Furthermore, these smooth structures are independent of the choice of the basis E^{1}, \ldots, E_{n}.
5. Matrices. Let $M(n \times m, \mathbb{R})$ be the set of all (real) $n \times m$-matrices. It is a $n m$-dimensional vector space and thus it is a smooth $n m$-manifold. A matrix $A=\left(a_{i j}\right) \in M(n \times m, \mathbb{R}), i=$ $1, \ldots, n, j=1, \ldots, m$

$$
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 m} \\
a_{21} & a_{22} & \cdots & a_{2 m} \\
\vdots & \vdots & & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n m}
\end{array}\right)
$$

can be identified in a natural way with the point

$$
\left(a_{11}, a_{12}, \ldots, a_{1 m}, a_{21}, \ldots, a_{2 m}, \ldots, a_{n 1}, \ldots, a_{n m}\right) \in \mathbb{R}^{n m}
$$

giving a global chart. If $n=m$, we abbreviate $M(n, \mathbb{R})$.
6. $G L(n, \mathbb{R})=$ general linear group

$$
\begin{aligned}
& =\left\{L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} \text { linear isomorphism }\right\} \\
& =\left\{A=\left(a_{i j}\right): \text { invertible (non-singular) } n \times n \text {-matrix }\right\} \\
& =\left\{A=\left(a_{i j}\right): \operatorname{det} A \neq 0\right\}
\end{aligned}
$$

[Note: an $n \times n$-matrix A is invertible (or non-singular) if it has an inverse matrix A^{-1}.]
By the identification above, we may interprete $G L(n, \mathbb{R}) \subset M(n, \mathbb{R})=\mathbb{R}^{n^{2}}$. Equip $M(n, \mathbb{R})$ with the relative topology (induced by the inclusion $\left.G L(n, \mathbb{R}) \subset M(n, \mathbb{R})=\mathbb{R}^{n^{2}}\right)$. Now the mapping det: $M(n, \mathbb{R}) \rightarrow \mathbb{R}$ is continuous (a polynomial of $a_{i j}$ of degree n), and therefore $G(n, \mathbb{R}) \subset \mathbb{R}^{n^{2}}$ is open (as a preimage of an open set $\mathbb{R} \backslash\{0\}$ under a continuous mapping).
7. Sphere $\mathbb{S}^{n}=\left\{p \in \mathbb{R}^{n+1}:|p|=1\right\}$. Let e_{1}, \ldots, e_{n+1} be the standard basis of \mathbb{R}^{n+1}, let

$$
\begin{aligned}
& \varphi: \mathbb{S}^{n} \backslash\left\{e_{n+1}\right\} \rightarrow \mathbb{R}^{n} \\
& \psi: \mathbb{S}^{n} \backslash\left\{-e_{n+1}\right\} \rightarrow \mathbb{R}^{n}
\end{aligned}
$$

be the stereographic projections, and $\mathcal{A}=\{\varphi, \psi\}$. Details are left as an exercise.

8. Projective space $\mathbb{R} P^{n}$. The real n-dimensional projective space $\mathbb{R} P^{n}$ is the set of all 1dimensional linear subspaces of \mathbb{R}^{n+1}, i.e. the set of all lines in \mathbb{R}^{n+1} passing through the origin. It can also be obtained by identifying points $x \in \mathbb{S}^{n}$ and $-x \in \mathbb{S}^{n}$. More precisely, define an equivalence relation

$$
x \sim y \Longleftrightarrow x= \pm y, x, y \in \mathbb{S}^{n}
$$

Then $\mathbb{R} P^{n}=\mathbb{S}^{n} / \sim=\left\{[x]: x \in \mathbb{S}^{n}\right\}$. Equip $\mathbb{R} P^{n}$ with so called quotient topology to obtain $\mathbb{R} P^{n}$ as a topological n-manifold. Details are left as an exercise.
9. Product manifolds. Let (M, \mathcal{A}) and (N, \mathcal{B}) be differentiable manifolds and let $p_{1}: M \times N \rightarrow M$ and $p_{2}: M \times N \rightarrow N$ be the projections. Then

$$
\mathcal{C}=\left\{\left(U \times V,\left(x \circ p_{1}, y \circ p_{2}\right)\right):(U, x) \in \mathcal{A},(V, y) \in \mathcal{B}\right\}
$$

is a C^{∞}-atlas on $M \times N$. Example
(a) Cylinder $\mathbb{R}^{1} \times \mathbb{S}^{1}$
(b) Torus $\mathbb{S}^{1} \times \mathbb{S}^{1}=T^{2}$.
10. Lie groups. A Lie group is a group G which is also a differentiable manifold such that the group operations are C^{∞}, i.e.

$$
(g, h) \mapsto g h^{-1}
$$

is a C^{∞}-mapping $G \times G \rightarrow G$. For example, $G L(n, \mathbb{R})$ is a Lie group with composition as the group operation.

Remark 2.7. 1. Replacing C^{∞} by, for example, C^{k}, C^{ω} (= real analytic), or complex analytic (in which case, $n=2 m$) we may equip M with other structures.
2. There are topological n-manifolds that do not admit differentiable structures. (Kervaire, $n=10$, in the 60 's; Freedman, Donaldson, $n=4$, in the 80 's). The Euclidean space \mathbb{R}^{n} equipped with an arbitrary atlas is diffeomorphic to the canonical structure whenever $n \neq 4$ ("Exotic" structures of \mathbb{R}^{4} were found not until in the 80 's).

2.8 Tangent space

Let M be a differentiable manifold, $p \in M$, and $\gamma: I \rightarrow M$ a C^{∞}-path such that $\gamma(t)=p$ for some $t \in I$, where $I \subset \mathbb{R}$ is an open interval.

Write

$$
C^{\infty}(p)=\left\{f: U \rightarrow \mathbb{R} \mid f \in C^{\infty}(U), U \text { some neighborhood of } p\right\}
$$

Note: Here U may depend on f, therefore we write $C^{\infty}(p)$ instead of $C^{\infty}(U)$.
Now the path γ defines a mapping $\dot{\gamma}_{t}: C^{\infty}(p) \rightarrow \mathbb{R}$,

$$
\dot{\gamma}_{t} f=(f \circ \gamma)^{\prime}(t)
$$

Note: The real-valued function $f \circ \gamma$ is defined on some neighborhood of $t \in I$ and $(f \circ \gamma)^{\prime}(t)$ is its usual derivative at t.

Interpretation: We may interprete $\dot{\gamma}_{t} f$ as "a derivative of f in the direction of γ at the point $p^{"}$.

Example 2.9. $M=\mathbb{R}^{n}$
If $\gamma=\left(\gamma_{1}, \ldots, \gamma_{n}\right): I \rightarrow \mathbb{R}^{n}$ is a smooth path and $\gamma^{\prime}(t)=\left(\gamma_{1}^{\prime}(t), \ldots, \gamma_{n}^{\prime}(t)\right) \in \mathbb{R}^{n}$ is the derivative of γ at t, then

$$
\dot{\gamma}_{t} f=(f \circ \gamma)^{\prime}(t)=f^{\prime}(p) \gamma^{\prime}(t)=\gamma^{\prime}(t) \cdot \nabla f(p)
$$

In general: The mapping $\dot{\gamma}_{t}$ satisfies:
Suppose $f, g \in C^{\infty}(p)$ and $a, b \in \mathbb{R}$. Then
a) $\dot{\gamma}_{t}(a f+b g)=a \dot{\gamma}_{t} f+b \dot{\gamma}_{t} g$,
b) $\dot{\gamma}_{t}(f g)=g(p) \dot{\gamma}_{t} f+f(p) \dot{\gamma}_{t} g$.

We say that $\dot{\gamma}_{t}$ is a derivation.
Motivated by the discussion above we define:
Definition 2.10. A tangent vector of M at $p \in M$ is a mapping $v: C^{\infty}(p) \rightarrow \mathbb{R}$ that satisfies:
(1) $v(a f+b g)=a v(f)+b v(g), \quad f, g \in C^{\infty}(p), a, b \in \mathbb{R}$;
(2) $v(f g)=g(p) v(f)+f(p) v(g) \quad($ cf. the "Leibniz rule" $)$.

The tangent space at p is the $(\mathbb{R}-)$ linear vector space of tangent vector at p, denoted by $T_{p} M$ or M_{p}.

Remarks 2.11. 1. If $v, w \in T_{p} M$ and $c, d \in \mathbb{R}$, then $c v+d w$ is (of course) the mapping $(a v+b w): C^{\infty}(p) \rightarrow \mathbb{R}$,

$$
(c v+d w)(f)=c v(f)+d w(f)
$$

It is easy to see that $c v+d w$ is a tangent vector at p.
2. We abbreviate $v f=v(f)$.
3. Claim: If $v \in T_{p} M$ and $c \in C^{\infty}(p)$ is a constant function, then $v c=0$. (Exerc.)
4. Let U be a neighborhood of p interpreted as a differentiable manifold itself. Since we use functions in $C^{\infty}(p)$ in the definition of $T_{p} M$, the spaces $T_{p} M$ and $T_{p} U$ can be identified in a natural way.

Let $(U, x), x=\left(x^{1}, x^{2}, \ldots, x^{n}\right)$, be a chart at p. We define a tangent vector (so-called coordinate vector) $\left(\frac{\partial}{\partial x^{i}}\right)_{p}$ at p by setting

$$
\left(\frac{\partial}{\partial x^{i}}\right)_{p} f=D_{i}\left(f \circ x^{-1}\right)(x(p)), \quad f \in C^{\infty}(p)
$$

Here D_{i} is the partial derivative with respect to $i^{\text {th }}$ variable. We also denote

$$
\left(\partial_{i}\right)_{p}=D_{x_{i}}(p)=\left(\frac{\partial}{\partial x^{i}}\right)_{p}
$$

Remarks 2.12. 1. It is easy to see that $\left(\partial_{i}\right)_{p}$ is a tangent vector at p.
2. If $(U, x), x=\left(x^{1}, \ldots, x^{n}\right)$, is a chart at p, then $\left(\partial_{i}\right)_{p} x^{j}=\delta_{i j}$.

Next theorem shows (among others) that $T_{p} M$ is n-dimensional.

Lemma 2.13. If $f \in C^{k}(B), k \geq 1$, is a real-valued function in a ball $B=B^{n}(0, r) \subset \mathbb{R}^{n}$, then there exist functions $g_{i} \in C^{k-1}(B), i=1, \ldots, n$, such that $g_{i}(0)=D_{i} f(0)$ and

$$
f(y)-f(0)=\sum_{i=1}^{n} y_{i} g_{i}(y)
$$

for all $y=\left(y_{1}, \ldots, y_{n}\right) \in B$.

Proof. For $y \in B$ we have

$$
\begin{aligned}
f(y)-f(0)= & f(y)-f\left(y_{1}, \ldots, y_{n-1}, 0\right) \\
+ & f\left(y_{1}, \ldots, y_{n-1}, 0\right)-f\left(y_{1}, \ldots, y_{n-2}, 0,0\right) \\
+ & f\left(y_{1}, \ldots, y_{n-2}, 0,0\right)-f\left(y_{1}, \ldots, y_{n-3}, 0,0\right. \\
& \vdots \\
+ & f\left(y_{1}, 0, \ldots, 0\right)-f(0) \\
= & \sum_{i=1}^{n} \int_{0}^{1} f\left(y_{1}, \ldots, y_{i-1}, t y_{i}, 0, \ldots, 0\right) \\
= & \sum_{i=1}^{n} \int_{0}^{1} \frac{d}{d t}\left(f\left(y_{1}, \ldots, y_{i-1}, t y_{i}, 0, \ldots, 0\right)\right) d t \\
= & \sum_{i=1}^{n} \int_{0}^{1} D_{i} f\left(y_{1}, \ldots, y_{i-1}, t y_{i}, 0, \ldots, 0\right) y_{i} d t \\
= & \sum_{i=1}^{n} y_{i} \int_{0}^{1} D_{i} f\left(y_{1}, \ldots, y_{i-1}, t y_{i}, 0, \ldots, 0\right) d t .
\end{aligned}
$$

Define

$$
g_{i}(y)=\int_{0}^{1} D_{i} f\left(y_{1}, \ldots, y_{i-1}, t y_{i}, 0, \ldots, 0\right) d t
$$

Then $g_{i} \in C^{k-1}(B)$ (since $f \in C^{k}(B)$) and $g_{i}(0)=D_{i} f(0)$.
Theorem 2.14. If $(U, x), x=\left(x^{1}, \ldots, x^{n}\right)$, is a chart at p and $v \in T_{p} M$, then

$$
v=\sum_{i=1}^{n} v x^{i}\left(\partial_{i}\right)_{p}
$$

Furthermore, the vectors $\left(\partial_{i}\right)_{p}, i=1, \ldots, n$, form a basis of $T_{p} M$ and hence $\operatorname{dim} T_{p} M=n$.
Proof. For $u \in U$ we write $x(u)=y=\left(y^{1}, \ldots, y^{n}\right) \in \mathbb{R}^{n}$, so $x^{i}(u)=y^{i}$. We may assume that $x(p)=0 \in \mathbb{R}^{n}$. Let $f \in C^{\infty}(p)$. Since $f \circ x^{-1}$ is C^{∞}, there exist (by Lemma 2.13) a ball $B=$ $B^{n}(0, r) \subset x U$ and functions $g_{i} \in C^{\infty}(B)$ such that

$$
\left(f \circ x^{-1}\right)(y)=\left(f \circ x^{-1}\right)(0)+\sum_{i=1}^{n} y_{i} g_{i}(y) \quad \forall y \in B
$$

and $g_{i}(0)=D_{i}\left(f \circ x^{-1}\right)(0)=\left(\partial_{i}\right)_{p} f$. Thus

$$
f(u)=f(p)+\sum_{i=1}^{n} x^{i}(u) h_{i}(u)
$$

where $h_{i}=g_{i} \circ x$ and

$$
h_{i}(p)=g_{i}(0)=\left(\partial_{i}\right)_{p} f
$$

Hence

$$
\begin{aligned}
v f & =\underbrace{v(f(p))}_{=0}+\sum_{i=1}^{n} \underbrace{x^{i}(p)}_{=0} v h_{i}+\sum_{i=1}^{n}\left(v x^{i}\right) h_{i}(p) \\
& =\sum_{i=1}^{n} v x^{i}\left(\partial_{i}\right)_{p} f .
\end{aligned}
$$

This holds for every $f \in C^{\infty}(p)$, and therefore

$$
v=\sum_{i=1}^{n} v x^{i}\left(\partial_{i}\right)_{p}
$$

Hence the vectors $\left(\partial_{i}\right)_{p}, i=1, \ldots, n$, span $T_{p} M$. To prove the linear independence of these vectors, suppose that

$$
w=\sum_{i=1}^{n} b_{i}\left(\partial_{i}\right)_{p}=0
$$

Then

$$
0=w x^{j}=\sum_{i=1}^{n} b_{i} \underbrace{\left(\partial_{i}\right)_{p} x^{j}}_{=\delta_{i j}}=b_{j}
$$

for all $j=1, \ldots, n$, , and so vectors $\left(\partial_{i}\right)_{p}, i=1, \ldots, n$, are linearly independent.
Remark 2.15. Our definition for tangent vectors is useful only for C^{∞}-manifolds. Reason: If M is a C^{k}-manifold, then the functions h_{i} in the proof of Theorem 2.14 are not necessarily C^{k}-smooth (only C^{k-1}-smoothness is granted).

Another definition that works also for C^{k}-manifolds, $k \geq 1$, is the following: Let M be a C^{k} manifold and $p \in M$. Let $\gamma_{i}: I_{i} \rightarrow M$ be C^{1}-paths, $0 \in I_{i} \subset \mathbb{R}$ open intervals, and $\gamma_{i}(0)=p, i=1,2$. Define an equivalence relation $\gamma_{1} \sim \gamma_{2} \Longleftrightarrow$ for every chart (U, x) at p we have

$$
\left(x \circ \gamma_{1}\right)^{\prime}(0)=\left(x \circ \gamma_{2}\right)^{\prime}(0)
$$

Def.: Equivalence classes $=$ tangent vectors at p. In the case of a C^{∞}-manifold this definition coincides with the earlier one $\left([\gamma]=\dot{\gamma}_{0}\right)$.

2.16 Tangent map

Definition 2.17. Let M^{m} and N^{n} be differentiable manifolds and let $f: M \rightarrow N$ be a C^{∞} map. The tangent map of f at p is a linear map $f_{*}: T_{p} M \rightarrow T_{f(p)} N$ defined by

$$
\left(f_{*} v\right) g=v(g \circ f), \quad \forall g \in C^{\infty}(f(p)), v \in T_{p} M
$$

We also write $f_{* p}$ or $T_{p} f$.
Remarks 2.18. 1. It is easily seen that $f_{*} v$ is a tangent vector at $f(p)$ for all $v \in T_{p} M$ and that f_{*} is linear.
2. If $M=\mathbb{R}^{m}$ and $N=\mathbb{R}^{n}$, then $f_{* p}=f^{\prime}(p)$ (see the canonical identification $T_{p} \mathbb{R}^{n}=\mathbb{R}^{n}$ below).
3. "Chain rule": Let M, N, and L be differentiable manifolds and let $f: M \rightarrow N$ and $g: N \rightarrow L$ be C^{∞}-maps. Then

$$
(g \circ f)_{* p}=g_{* f(p)} \circ f_{* p}
$$

for all $p \in M$. (Exerc.)
4. An interpretation of a tangent map using paths:

Let $v \in T_{p} M$ and let $\gamma: I \rightarrow M$ be a C^{∞}-path such that $\gamma(0)=p$ and $\dot{\gamma}_{0}=v$. Let $f: M \rightarrow N$ be a C^{∞}-map and $\alpha=f \circ \gamma: I \rightarrow N$. Then $f_{*} v=\dot{\alpha}_{0}$. (Exerc.)

Let $x=\left(x^{1}, \ldots, x^{m}\right)$ be a chart at $p \in M^{m}$ and $y=\left(y^{1}, \ldots, y^{n}\right)$ a chart at $f(p) \in N^{n}$. What is the matrix of $f_{*}: T_{p} M \rightarrow T_{f(p)} N$ with respect to bases $\left(\frac{\partial}{\partial x^{2}}\right)_{p}, i=1, \ldots, m$, and $\left(\frac{\partial}{\partial y^{j}}\right)_{f(p)}, j=$ $1, \ldots, n, ?$ By Theorem 2.14,

$$
f_{*}\left(\frac{\partial}{\partial x^{j}}\right)_{p}=\sum_{i=1}^{n} f_{*}\left(\frac{\partial}{\partial x^{j}}\right)_{p} y^{i}\left(\frac{\partial}{\partial y^{i}}\right)_{f(p)}, \quad 1 \leq j \leq m
$$

Thus we obtain an $n \times m$ matrix $\left(a_{i j}\right)$,

$$
a_{i j}=f_{*}\left(\frac{\partial}{\partial x^{j}}\right)_{p} y^{i}=\frac{\partial}{\partial x^{j}}\left(y^{i} \circ f\right)
$$

This is called the Jacobian matrix of f at p (with respect to given bases). As a matrix it is the same as the matrix of the linear map $g^{\prime}(x(p)), g=y \circ f \circ x^{-1}$, with respect to standard bases of \mathbb{R}^{m} and \mathbb{R}^{n}.

Recall that $f: M^{m} \rightarrow N^{n}$ is a diffeomorphism if f and its inverse f^{-1} are C^{∞}. A mapping $f: M \rightarrow N$ is a local diffeomorphism at $p \in M$ if there are neighborhoods U of p and V of $f(p)$ such that $f: U \rightarrow V$ is a diffeomorphism.
Note: Then necessarily $m=n$. (Exerc.)
Theorem 2.19. Let $f: M \rightarrow N$ be C^{∞} and $p \in M$. Then f is a local diffeomorphism at p if and only if $f_{*}: T_{p} M \rightarrow T_{f(p)} N$ is an isomorphism.

Proof. Apply the inverse function theorem (of \mathbb{R}^{n}). Details are omitted,

Tangent space of an n-dimensional vector space. Let V be an n-dimensional (real) vector space. Recall that any (linear) isomorphism $x: V \rightarrow \mathbb{R}^{n}$ induces the same C^{∞}-structure on V. We
may identify V and $T_{p} V$ in a natural way for any $p \in V$: If $p \in V$, then there exists a canonical isomorphism $i: V \rightarrow T_{p} V$. Indeed, let $v \in V$ and $\gamma: \mathbb{R} \rightarrow V$ the path

$$
\gamma(t)=p+t v
$$

We set

$$
i(v)=\dot{\gamma}_{0}
$$

Example: $V=\mathbb{R}^{n}, \quad T_{p} \mathbb{R}^{n} \cong \mathbb{R}^{n}$ canonically.
If $f: M \rightarrow \mathbb{R}$ is C^{∞} and $p \in M$, we define the differential of $f, d f: T_{p} M \rightarrow \mathbb{R}$, by setting

$$
d f v=v f, \quad v \in T_{p} M
$$

(Also denoted by $d f_{p}$.)
By the isomorphism $i: \mathbb{R} \rightarrow T_{f(p)} \mathbb{R}$ as above, we obtain $d f=i^{-1} \circ f_{*}$. Usually we identify $d f=f_{*}$. Note: Since $d f: T_{p} M \rightarrow \mathbb{R}$ is linear, $d f \in T_{p} M^{*}\left(=\right.$ the dual of $\left.T_{p} M\right)$.

Tangent space of a product manifold. Let M and N be differentiable manifolds and let

$$
\begin{aligned}
& \pi_{1}: M \times N \rightarrow M \\
& \pi_{2}: M \times N \rightarrow N
\end{aligned}
$$

be the projections. Using these projections we may identify $T_{(p, q)}(M \times N)$ and $T_{p} M \oplus T_{q} N$ in a natural way: Define a canonical isomorphism

$$
\begin{gathered}
\tau: T_{(p, q)}(M \times N) \rightarrow T_{p} M \oplus T_{q} N, \\
\tau v=\underbrace{\pi_{1 *} v}_{\in T_{p} M}+\underbrace{\pi_{2 *} v}_{\in T_{p} N}, \quad v \in T_{(p, q)}(M \times N) .
\end{gathered}
$$

$\underline{\text { Example: }} M=\mathbb{R}, N=\mathbb{S}^{1}$

Let $f: M \times N \rightarrow L$ be a C^{∞}-mapping, where L is a differentiable manifold. For every $(p, q) \in$ $M \times N$ we define mappings

$$
\begin{gathered}
f_{p}: N \rightarrow L, \quad f^{q}: M \rightarrow L \\
f_{p}(q)=f^{q}(p)=f(p, q)
\end{gathered}
$$

Thus, for $v \in T_{p} M$ and $w \in T_{q} N$, we have

$$
f_{*}(v+w)=\left(f^{q}\right)_{*} v+\left(f_{p}\right)_{*} w . \quad \text { (Exerc.) }
$$

2.20 Tangent bundle

Let M be a differentiable manifold. We define the tangent bundle $T M$ over M as a disjoint union of all tangent spaces of M, i.e.

$$
T M=\bigsqcup_{p \in M} T_{p} M
$$

Points in $T M$ are thus pairs (p, v), where $p \in M$ and $v \in T_{p} M$. We usually abbreviate $v=(p, v)$, because the condition $v \in T_{p} M$ determines $p \in M$ uniquely.

Let $\pi: T M \rightarrow M$ be the projection

$$
\pi(v)=p, \quad \text { if } v \in T_{p} M .
$$

The tangent bundle $T M$ has a canonical structure of a differentiable manifold.
Theorem 2.21. Let M be a differentiable n-manifold. The tangent bundle TM over M can be equipped with a natural topology and a C^{∞}-structure of a smooth $2 n$-manifold such that the projection $\pi: T M \rightarrow M$ is smooth.
Proof. (Idea): Let $(U, x), x=\left(x^{1}, \ldots, x^{n}\right)$, be a chart on M. Define a one-to-one mapping

$$
\bar{x}: T U \rightarrow x U \times \mathbb{R}^{n} \subset \mathbb{R}^{n} \times \mathbb{R}^{n}=\mathbb{R}^{2 n}
$$

as follows. [Here $T U=\bigsqcup_{p \in U} T_{p} U=\bigsqcup_{p \in U} T_{p} M$.] If $p \in U$ and $v \in T_{p}$, we set

$$
\bar{x}(v)=(\underbrace{x^{1}(p), \ldots, x^{n}(p)}_{\in \mathbb{R}^{n}}, \underbrace{v x^{1}, \ldots, v x^{n}}_{\in \mathbb{R}^{n}})
$$

First we transport the topology of $\mathbb{R}^{n} \times \mathbb{R}^{n}$ into $T M$ by using maps \bar{x} and then we verify that pairs $(T U, \bar{x})$ form an atlas of $T M$. We obtain a C^{∞}-structure for $T M$. [Details are left as an exercise.]

In the sequel the tangent bundle over M means $T M$ equipped with this C^{∞}-structure. It is an example of a vector bundle over M.

Let $\pi: T M \rightarrow M$ be the projection $\left(\pi(v)=p\right.$ for $\left.v \in T_{p} M\right)$. Then $\pi^{-1}(p)=T_{p} M$ is a fibre over p. If $A \subset M$, then a map $s: A \rightarrow T M$, with $\pi \circ s=i d$, is a section of $T M$ in A (or a vector field).

Smooth vector bundles. Let M be a differentiable manifold. A smooth vector bundle of rank k over M is a pair (E, π), where E is a smooth manifold and $\pi: E \rightarrow M$ is a smooth surjective mapping (projection) such that:
(a) for every $p \in M$, the set $E_{p}=\pi^{-1}(p) \subset E$ is a k-dimensional real vector space ($=$ a fiber of E over p);
(b) for every $p \in M$ there exist a neighborhood $U \ni p$ and a diffeomorphism $\varphi: \pi^{-1} U \rightarrow U \times \mathbb{R}^{k}$ ($=$ local trivialization of E over U) such that the following diagram commutes

[above $\pi_{1}: U \times \mathbb{R}^{k} \rightarrow U$ is the projection] and that $\varphi \mid E_{q}: E_{q} \rightarrow\{q\} \times \mathbb{R}^{k}$ is a linear isomorphism for every $q \in U$.

The manifold E is called the total space and M is called the base of the bundle. If there exists a local trivialization of E over the whole manifold $M, \varphi: \pi^{-1} M \rightarrow M \times \mathbb{R}^{k}$, then E is a trivial bundle.

A section of E is any map $\sigma: M \rightarrow E$ such that $\pi \circ \sigma=i d: M \rightarrow M$. A smooth section is a section that is smooth as a map $\sigma: M \rightarrow E$ (note that M and E are smooth manifolds). Zero section is a map $\zeta: M \rightarrow E$ such that

$$
\zeta(p)=0 \in E_{p} \quad \forall p \in M
$$

A local frame of E over an open set $U \subset M$ is a k-tuple $\left(\sigma_{1}, \ldots, \sigma_{k}\right)$, where each σ_{i} is a smooth section of E (over U) such that $\left(\sigma_{1}(p), \sigma_{2}(p), \ldots, \sigma_{k}(p)\right)$ is a basis of E_{p} for all $p \in U$. If $U=M$, $\left(\sigma_{1}, \ldots, \sigma_{k}\right)$ is called a global frame.

2.22 Submanifolds

Definition 2.23. Let M and N be differentiable manifolds and $f: M \rightarrow N$ a C^{∞}-map. We say that :

1. f is a submersion if $f_{* p}: T_{p} M \rightarrow T_{f(p)} N$ is surjective $\forall p \in M$.
2. f is an immersion if $f_{* p}: T_{p} M \rightarrow T_{f(p)} N$ is injective $\forall p \in M$.
3. f is an embedding if f is an immersion and $f: M \rightarrow f M$ is a homeomorphism (note relative topology in $f M$).

If $M \subset N$ and the inclusion $i: M \hookrightarrow N, i(p)=p$, is an embedding, we say that M is a submanifold of N.

Remark 2.24. If $f: M^{m} \rightarrow N^{n}$ is an immersion, then $m \leq n$ and $n-m$ is the codimension of f.
Examples 2.25. (a) If M_{1}, \ldots, M_{k} are smooth manifolds, then all projections $\pi_{i}: M_{1} \times \cdots \times$ $M_{k} \rightarrow M_{i}$ are submersions.
(b) $\left(M=\mathbb{R}, N=\mathbb{R}^{2}\right) \alpha: \mathbb{R} \rightarrow \mathbb{R}^{2}, \alpha(t)=(t,|t|)$ is not differentiable at $t=0$.

(c) $\alpha: \mathbb{R} \rightarrow \mathbb{R}^{2}, \alpha(t)=\left(t^{3}, t^{2}\right)$ is C^{∞} but not an immersion since $\alpha^{\prime}(0)=0$.

(d) $\alpha: \mathbb{R} \rightarrow \mathbb{R}^{2}, \alpha(t)=\left(t^{3}-4 t, t^{2}-4\right)$ is C^{∞} and an immersion but not an embedding $(\alpha(\pm 2)=$ $(0,0))$.

(e) The map α (in the picture below) has an inverse but it is not an embedding since the inverse in not continuous (in the relative topology of the image).

(f) The following α is an embedding.

Remark 2.26. The notion of a submanifold has different meanings in the literature. For instance, Bishop-Crittenden $[\mathrm{BC}]$ allows the case (e) in the definition of a submanifold.

Theorem 2.27. Let $f: M^{m} \rightarrow N^{n}$ be an immersion. Then each point $p \in M^{m}$ has a neighborhood U such that $f \mid U: U \rightarrow N^{n}$ is an embedding.

Proof. Fix $p \in M$. We have to find a neighborhood $U \ni p$ such that $f \mid U: U \rightarrow f U$ is a homeomorphism when $f U$ is equipped with the relative topology. Let $\left(U_{1}, x\right)$ and $\left(V_{1}, y\right)$ be charts at points p and $f(p)$, respectively, such that $f U_{1} \subset V_{1}, x(p)=0\left(\in \mathbb{R}^{m}\right)$, and $y(f(p))=0\left(\in \mathbb{R}^{n}\right)$. Write $\tilde{f}=y \circ f \circ x^{-1}, \tilde{f}=\left(\tilde{f}_{1}, \ldots, \tilde{f}_{n}\right)$. Since f is an immersion, $\tilde{f}^{\prime}(0): \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ is injective. We may assume that $\tilde{f}^{\prime}(0) \mathbb{R}^{m}=\mathbb{R}^{m} \subset \mathbb{R}^{m} \times \mathbb{R}^{k}, k=n-m$ (otherwise, apply a rotation in \mathbb{R}^{n}). Then $\operatorname{det} \tilde{f}^{\prime}(0) \neq 0$, when $\tilde{f}^{\prime}(0)$ is interpreted as a linear map $\mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$. Define a mapping

$$
\begin{aligned}
& \varphi: x U_{1} \times \mathbb{R}^{k} \rightarrow \mathbb{R}^{n}, \\
& \left.\varphi(\tilde{x}, t)=\left(\tilde{f}_{1}(\tilde{x}), \tilde{f}_{2}(\tilde{x}), \ldots, \tilde{f}_{m}(\tilde{x}), \tilde{f}_{m+1}(\tilde{x})+t_{1}, \ldots, \tilde{f}_{m+k}(\tilde{x})+t_{k}\right)\right), \\
& \tilde{x} \in x U_{1}, \quad t=\left(t_{1}, \ldots, t_{k}\right) \in \mathbb{R}^{k} .
\end{aligned}
$$

The matrix of $\varphi^{\prime}(0,0): \mathbb{R}^{m+k} \rightarrow \mathbb{R}^{m+k}$ is

$$
\left(\begin{array}{cc}
\frac{\partial \tilde{f}_{\tilde{\prime}}(0)}{\partial \tilde{x}_{j}} & 0 \\
* & I_{k}
\end{array}\right)
$$

and therefore $\operatorname{det} \varphi^{\prime}(0,0)=\operatorname{det} \tilde{f}^{\prime}(0) \neq 0$. By the inverse mapping theorem, there are neighborhoods $0 \in W_{1} \subset x U_{1} \times \mathbb{R}^{k}$ and $0 \in W_{2} \subset \mathbb{R}^{n}$ such that $\varphi \mid W_{1}: W_{1} \rightarrow W_{2}$ is a diffeomorphism. Write $\tilde{U}=W_{1} \cap x U_{1}$ and $U=x^{-1} \tilde{U}\left(\subset U_{1}\right)$. Since $\varphi \mid x U_{1} \times\{0\}=\tilde{f}$, we have $\varphi \mid \tilde{U}=\tilde{f}$. In particular, $f \mid U: U \rightarrow f U$ is a homeomorphism, when $f U$ is equipped with the relative topology.

Example 2.28. Let $f: \mathbb{R}^{n+1} \rightarrow \mathbb{R}$ be a C^{∞}-function such that $\nabla f(p)=\left(D_{1} f(p), \ldots, D_{n+1} f(p)\right) \neq$ 0 for every $p \in M=\left\{x \in \mathbb{R}^{n+1}: f(x)=0\right\} \neq \emptyset$. Then M is an n dimensional submanifold of \mathbb{R}^{n+1}.

Proof of the claim above. (Idea): Let $p \in M$ be arbitrary. Applying a transformation and a rotation if necessary we may assume that $p=0$ and

$$
\nabla f(0)=\left(0, \ldots, 0, \frac{\partial f}{\partial x_{n+1}}(0)\right)
$$

Then $\frac{\partial f}{\partial x_{n+1}}(0) \neq 0$. Define a mapping $\varphi: \mathbb{R}^{n+1} \rightarrow \mathbb{R}^{n+1}$,

$$
\varphi(x)=\left(x_{1}, \ldots, x_{n}, f(x)\right), \quad x=\left(x_{1}, \ldots, x_{n}, x_{n+1}\right)
$$

Then

$$
\operatorname{det} \varphi^{\prime}(0)=\left|\begin{array}{cccccc}
1 & 0 & \cdots & \cdots & \cdots & 0 \\
0 & 1 & 0 & \cdots & \cdots & 0 \\
\vdots & & & & & \vdots \\
\vdots & & & & & \vdots \\
0 & \cdots & \cdots & 0 & 1 & 0 \\
0 & \cdots & \cdots & \cdots & 0 & \frac{\partial f}{\partial x_{n+1}}(0)
\end{array}\right|=\frac{\partial f}{\partial x_{n+1}}(0) \neq 0
$$

By the inverse mapping theorem, there exist neighborhoods $Q \ni p$ and $W \ni \varphi(0)=(0,0) \in \mathbb{R}^{n} \times \mathbb{R}$ such that $\varphi: Q \rightarrow W$ is a diffeomorphism.

Choose an open set $K \subset \mathbb{R}^{n}, 0 \in K$, and an open interval $I \subset \mathbb{R}, 0 \in I$, such that $K \times I \subset W$. Let $V=\varphi^{-1}(K \times I) \cap Q$ and $U=V \cap M$. Then $\varphi: V \rightarrow K \times I$ is a diffeomorphism. Let $y=\varphi \mid U$. Repeat the above for all $p \in M$ and conclude that pairs (U, y) form a C^{∞}-atlas of M. Since the inclusion $i: M \hookrightarrow \mathbb{R}^{n+1}$ satisfies

$$
i\left|U=y^{-1} \circ \varphi\right| U
$$

i is an embedding.

2.29 Orientation

Definition 2.30. A smooth manifold M is orientable if it admits a smooth atlas $\left\{\left(U_{\alpha}, x_{\alpha}\right)\right\}$ such that for every α and β, with $U_{\alpha} \cap U_{\beta}=W \neq \emptyset$, the Jacobian determinant of $x_{\beta} \circ x_{\alpha}^{-1}$ is positive at each point $q \in x_{\alpha} W$, i.e.

$$
\begin{equation*}
\operatorname{det}\left(x_{\beta} \circ x_{\alpha}^{-1}\right)^{\prime}(q)>0, \quad \forall q \in x_{\alpha} W \tag{2.31}
\end{equation*}
$$

In the opposite case M is nonorientable. If M is orientable, then an atlas satisfying (2.31) is called an orientation of M. Furthermore, M (equipped with such atlas) is said to be oriented. We say that two atlases satisfying (2.31) determine the same orientation if their union satisfies (2.31), too.

Remarks 2.32. 1. Warning: The notion of a smooth structure has different meanings in the literature (e.g. do Carmo [Ca2]). What goes wrong if we define orientability by saying: " M is orientable if it admits a C^{∞}-structure such that (2.31) holds?" (Exerc.)
2. An is orientable and connected smooth manifold has exactly two distinct orientations. (Exerc.)
3. If M and N are smooth manifolds and $f: M \rightarrow N$ is a diffeomorphism, then

$$
M \text { is orientable } \Longleftrightarrow N \text { is orientable. }
$$

4. Let M and N be connected oriented smooth manifolds and $f: M \rightarrow N$ a diffeomorphism. Then f induces an orientation on N. If the induced orientation of N is the same as the initial one, we say that f is sense-preserving (or f preserves the orientation). Otherwise, f is called sense-reversing (or f reverses the orientation).

Examples 2.33. 1. Suppose that there exists an atlas $\{(U, x),(V, y)\}$ of M such that $U \cap V$ is connected. Then M is orientable.
Proof. The mapping $y \circ x^{-1}: x(U \cap V) \rightarrow y(U \cap V)$ is diffeomorphic, so

$$
\operatorname{det}\left(y \circ x^{-1}\right)^{\prime}(q) \neq 0 \quad \forall q \in x(U \cap V) .
$$

Since $q \mapsto \operatorname{det}\left(y \circ x^{-1}\right)^{\prime}(q)$ is continuous and $x(U \cap V)$ is connected, the determinant can not change its sign. If the sign is positive, we are done. If the sign is negative, replace the chart $(V, y), y=\left(y_{1}, \ldots, y_{n}\right)$, by a chart $(V, \tilde{y}), \tilde{y}=\left(-y_{1}, y_{2}, \ldots, y_{n}\right)$. Then the atlas $\{(U, x),(V, \tilde{y})\}$ satisfies (2.31).
2. In particular, the sphere S^{n} is orientable.

3 Vector fields and their flows

3.1 Vector fields

Let M be a differentiable manifold and $A \subset M$. Recall that a mapping $X: A \rightarrow T M$ such that $X(p) \in T_{p} M$ for all $p \in M$ is called a vector field in A. We usually write $X_{p}=X(p)$. If $A \subset M$ is open and $X: A \rightarrow T M$ is a C^{∞}-vector field, we write $X \in \mathcal{T}(A)$. Clearly $\mathcal{T}(A)$ is a real vector space, where addition and multiplication by a scalar are defined pointwise: If $X, Y \in \mathcal{T}(A)$ and
$a, b \in \mathbb{R}$, then $a X+b Y, p \mapsto a X_{p}+b Y_{p}$, is a smooth vector field. Furthermore, a vector field $V \in \mathcal{T}(A)$ can be multiplied by a smooth (real-valued) function $f \in C^{\infty}(A)$ producing a smooth vector field $f V, p \mapsto f(p) V_{p}$.

Let M be a differentiable n-manifold and $A \subset M$ open. We say that vector fields V^{1}, \ldots, V^{n} in A form a local frame (or a frame in A) if the vectors $V_{p}^{1}, \ldots, V_{p}^{n}$ form a basis of $T_{p} M$ for every $p \in A$. In the case $A=M$ we say that vector fields V^{1}, \ldots, V^{n} form a global frame. Furthermore, M is called parallelizable if it admits a smooth global frame. This is equivalent to $T M$ being a trivial bundle. ${ }^{1}$

Definition 3.2. (Einstein summation convention) If in a term the same index appears twice, both as upper and a lower index, that term is assumed to be summed over all possible values of that index (usually from 1 to the dimension).

Example:

$$
\begin{aligned}
v^{i} \partial_{i} & =\sum_{i=1}^{n} v^{i} \partial_{i} \\
g_{i j} d x^{i} d x^{j} & =\sum_{i, j=1}^{n} g_{i j} d x^{i} d x^{j}
\end{aligned}
$$

Let $(U, x), x=\left(x^{1}, \ldots, x^{n}\right)$, be a chart and $\left(\partial_{i}\right)_{p}=\left(\frac{\partial}{\partial x^{i}}\right)_{p}, i=1, \ldots, n$, the corresponding coordinate vectors at $p \in U$. Then the mappings

$$
\partial_{i}: U \rightarrow T M, p \mapsto\left(\partial_{i}\right)_{p}=\left(\frac{\partial}{\partial x^{i}}\right)_{p}
$$

are vector fields in U, so-called coordinate vector fields. Since the vector fields ∂_{i} form a frame, so-called coordinate frame, in U, we can write any vector field V in U as

$$
V_{p}=v^{i}(p)\left(\partial_{i}\right)_{p}, \quad p \in U
$$

where $v^{i}: U \rightarrow \mathbb{R}$. Functions v^{i} are called the component functions of V with respect to (U, x).
Lemma 3.3. Let V be a vector field on M.Then the following are equivalent:
(a) $V \in \mathcal{T}(M)$;
(b) the component functions of V with respect to any chart are smooth;
(c) If $U \subset M$ is open and $f: U \rightarrow \mathbb{R}$ is smooth, then the function $V f: U \rightarrow \mathbb{R},(V f)(p)=V_{p} f$, is smooth.

Proof. Exercise.
Remark 3.4. In particular, coordinate vector fields are smooth by (b).
Suppose that $A \subset M$ is open and $V, W \in \mathcal{T}(A)$. If $f \in C^{\infty}(p)$, where $p \in A$, then $V f \in C^{\infty}(p)$ and thus $W_{p}(V f) \in \mathbb{R}\left(=\right.$ "the derivative of $V f$ in the direction of W_{p} "). The function $A \rightarrow \mathbb{R}, p \mapsto$ $W_{p}(V f)$, is denoted by $W V f$. Thus $(W V f)(p)=W_{p}(V f)$. We also denote $(W V)_{p} f=W_{p}(V f)$.

[^0]Remark 3.5. $(W V)_{p}$ is not a derivation, so $(W V)_{p} \notin T_{p}(M)$, in general. Reason: Leibniz's rule (2) does not hold (choose $f=g$).

Definition 3.6. Suppose that $A \subset M$ is open and $V, W \in \mathcal{T}(A)$. We define the Lie bracket of V and W by setting

$$
[V, W]_{p} f=V_{p}(W f)-W_{p}(V f), \quad p \in A, f \in C^{\infty}(p)
$$

Theorem 3.7. Let $A \subset M$ be open and $V, W \in \mathcal{T}(A)$. Then
(a) $[V, W]_{p} \in T_{p} M$;
(b) $[V, W] \in \mathcal{T}(A)$ and it satisfies

$$
\begin{equation*}
[V, W] f=V(W f)-W(V f), f \in C^{\infty}(A) ; \tag{3.8}
\end{equation*}
$$

(c) if v^{i} and w^{i} are the component functions of vector fields V and W, respectively, with respect to a chart $x=\left(x^{1}, \ldots, x^{n}\right)$, then

$$
\begin{equation*}
[V, W]=\left(v^{i} \partial_{i} w^{j}-w^{i} \partial_{i} v^{j}\right) \partial_{j} . \tag{3.9}
\end{equation*}
$$

Note: The formula (3.9) can be written as

$$
[V, W]=\left(V w^{j}-W v^{j}\right) \partial_{j} .
$$

Proof. (a) We have to prove that $[V, W]_{p}$ satisfies conditions (1) and (2) in the definition of a tangent vector.
Condition (1) is clear.
Condition (2): Let $f, g \in C^{\infty}(p)$. Then

$$
\begin{aligned}
{[V, W]_{p}(f g)=} & V_{p}(W(f g))-W_{p}(V(f g)) \\
= & V_{p}(f W g+g W f)-W_{p}(f V g+g V f) \\
= & f(p) V_{p}(W g)+\left(W_{p} g\right)\left(V_{p} f\right)+g(p) V_{p}(W f)+\left(W_{p} f\right)\left(V_{p} g\right) \\
& -f(p) W_{p}(V g)-\left(V_{p} g\right)\left(W_{p} f\right)-g(p) W_{p}(V f)-\left(V_{p} f\right)\left(W_{p} g\right) \\
= & f(p)\left(V_{p}(W g)-W_{p}(V g)\right)+g(p)\left(V_{p}(W f)-W_{p}(V f)\right) \\
= & f(p)[V, W]_{p} g+g(p)[V, W]_{p} f .
\end{aligned}
$$

(b) Formula (3.8) follows immediately from the definition of a Lie bracket. Let $f \in C^{\infty}(A)$. Now functions $W f, V f, V(W f)$, and $W(V f)$ are smooth by Lemma 3.3 (c) since $V, W \in \mathcal{T}(A)$. Hence also $[V, W] f=V(W f)-W(V f)$ is a smooth function and therefore $[V, W] \in \mathcal{T}(A)$.
(c) If $V=v^{i} \partial_{i}, W=w^{j} \partial_{j}$, and f is smooth, we obtain by a direct computation that

$$
\begin{aligned}
{[V, W] f } & =V(W f)-W(V f)=v^{i} \partial_{i}\left(w^{j} \partial_{j} f\right)-w^{j} \partial_{j}\left(v^{i} \partial_{i} f\right) \\
& =v^{i}\left(\partial_{i} w^{j}\right)\left(\partial_{j} f\right)+v^{i} w^{j} \partial_{i}\left(\partial_{j} f\right)-w^{j}\left(\partial_{j} v^{i}\right)\left(\partial_{i} f\right)-w^{j} v^{i} \partial_{j}\left(\partial_{i} f\right) \\
& =v^{i}\left(\partial_{i} w^{j}\right)\left(\partial_{j} f\right)-w^{j}\left(\partial_{j} v^{i}\right)\left(\partial_{i} f\right)
\end{aligned}
$$

In the last step we used the fact that $\partial_{j}\left(\partial_{i} f\right)=\partial_{i}\left(\partial_{j} f\right)$ for a smooth function f. Changing the roles of indices i and j in the last sum we obtain (3.9).

Lemma 3.10. The Lie bracket satisfies:
(a) Bilinearity:

$$
\begin{aligned}
{\left[a_{1} X_{1}+a_{2} X_{2}, Y\right] } & =a_{1}\left[X_{1}, Y\right]+a_{2}\left[X_{2}, Y\right] \quad j a \\
{\left[X, a_{1} Y_{1}+a_{2} Y_{2}\right] } & =a_{1}\left[X, Y_{1}\right]+a_{2}\left[X, Y_{2}\right]
\end{aligned}
$$

for $a_{1}, a_{2} \in \mathbb{R}$;
(b) Antisymmetry: $[X, Y]=-[Y, X]$.
(c) Jacobi identity:

$$
[X,[Y, Z]]+[Y,[Z, X]]+[Z,[X, Y]]=0
$$

(d)

$$
[f X, g Y]=f g[X, Y]+f(X g) Y-g(Y f) X
$$

Proof. (a) Follows directly from the definition.
(b) Follows directly from the definition.
(c)

$$
\begin{aligned}
{[X,[Y, Z]] f } & =X([Y, Z] f)-[Y, Z](X f) \\
& =X(Y(Z f)-Z(Y f))-Y(Z(X f))+Z(Y(X f)) \\
& =X(Y(Z f))-X(Z(Y f))-Y(Z(X f))+Z(Y(X f)) \\
{[Y,[Z, X]] f } & =Y(Z(X f))-Y(X(Z f))-Z(X(Y f))+X(Z(Y f)) \\
{[Z,[X, Y]] f } & =Z(X(Y f))-Z(Y(X f))-X(Y(Z f))+Y(X(Z f)) .
\end{aligned}
$$

Adding up both sides yields

$$
[X,[Y, Z]] f+[Y,[Z, X]] f+[Z,[X, Y]] f=0
$$

(d)

$$
\begin{aligned}
{[f X, g Y] h } & =f X(g Y h)-g Y(f X h) \\
& =f g X(Y h)+f(X g)(Y h)-g f Y(X h)-g(Y f)(X h) \\
& =f g[X, Y] h+f(X g) Y h-g(Y f) X h
\end{aligned}
$$

Lemma 3.11. Let $(U, x), x=\left(x^{1}, \ldots, x^{n}\right)$, be a chart and $\partial_{i}, i=1, \ldots, n$, the corresponding coordinate vector fields. Then

$$
\left[\partial_{i}, \partial_{j}\right]=0 \quad \forall i, j
$$

Proof. Let $p \in U$ and $f \in C^{\infty}(p)$. Then

$$
\begin{aligned}
\left(\partial_{i}\right)_{p}\left(\partial_{j} f\right) & =\left(\partial_{i}\right)_{p}\left[\left(D_{j}\left(f \circ x^{-1}\right)\right) \circ x\right] \\
& =D_{i}\left[\left(D_{j}\left(f \circ x^{-1}\right) \circ x\right) \circ x^{-1}\right](x(p))=D_{i} D_{j}\left(f \circ x^{-1}\right)(x(p))
\end{aligned}
$$

Since $D_{i} D_{j} g=D_{j} D_{i} g$ for a smooth function g, we obtain the claim.

Example 3.12. Let us denote the points of \mathbb{R}^{3} by (x, y, t) and the standard coordinate vectors of \mathbb{R}^{3} by

$$
\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial t}
$$

Let $X, Y, T \in \mathcal{T}\left(\mathbb{R}^{3}\right)$ be the vector fields

$$
\begin{aligned}
X & =\frac{\partial}{\partial x} \\
Y & =\frac{\partial}{\partial y}+x \frac{\partial}{\partial t} \\
T & =\frac{\partial}{\partial t}
\end{aligned}
$$

Then $[X, Y]=T$ since

$$
\begin{aligned}
{[X, Y] f } & =X(Y f)-Y(X f) \\
& =\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}+x \frac{\partial f}{\partial t}\right)-\left(\frac{\partial}{\partial y}+x \frac{\partial}{\partial t}\right)\left(\frac{\partial f}{\partial x}\right) \\
& =\frac{\partial^{2} f}{\partial x \partial y}+x \frac{\partial^{2} f}{\partial x \partial t}+\frac{\partial x}{\partial x} \frac{\partial f}{\partial t}-\frac{\partial^{2} f}{\partial y \partial x}-x \frac{\partial^{2} f}{\partial t \partial x} \\
& =\frac{\partial f}{\partial t}=T f
\end{aligned}
$$

Similarly we can compute that $[X, T]=0,[Y, T]=0$.
Let M and N be differentiable manifolds and $f: M \rightarrow N$ a smooth mapping. If V is a vector field on M, then $f_{* p} V_{p}$ is a tangent vector in $T_{f(p)} N$. This need not define a vector field on N. For instance, if f is not onto (a surjection), we can not attach such a vector to a point $q \in N \backslash f M$. On the other hand, if f is not an injection, there are points $p_{1} \neq p_{2}$ s.t. $f\left(p_{1}\right)=f\left(p_{2}\right)$. Then it is possible that $f_{* p_{1}} V_{p_{1}} \neq f_{* p_{2}} V_{p_{2}}$, and consequently $f_{*} V$ is not a vector field on N.
If there exist vector fields $V \in \mathcal{T}(M)$ and $W \in \mathcal{T}(N)$ such that $f_{* p} V_{p}=W_{f(p)}$ for all $p \in M$, we call vector fields V and W-related and denote $W=f_{*} V$.

Lemma 3.13. Suppose that $f: M \rightarrow N$ is a smooth mapping, $V \in \mathcal{T}(M)$ and $W \in \mathcal{T}(N)$. Then V and W are f-related if and only if for every smooth function h that is defined in some open subset of N we have

$$
\begin{equation*}
V(h \circ f)=(W h) \circ f \tag{3.14}
\end{equation*}
$$

Proof. For every $p \in M$,

$$
V(h \circ f)(p)=V_{p}(h \circ f)=\left(f_{* p} V_{p}\right) h
$$

and

$$
((W h) \circ f)(p)=(W h)(f(p))=W_{f(p)} h
$$

Thus (3.14) holds if and only if

$$
f_{* p} V_{p}=W_{f(p)}
$$

for every $p \in M$, in other words, if and only if V and W re f-related.

Remark 3.15. If $f: M \rightarrow N$ is smooth and $V \in \mathcal{T}(M)$, there need not exist a vector field $W \in \mathcal{T}(N)$ such that V and W would be f-related.

Lemma 3.16. If $f: M \rightarrow N$ is a diffeomorphism and $V \in \mathcal{T}(M)$, there exists a unique vector field $W \in \mathcal{T}(N)$ such that V and W are f-related.

Proof. If $V \in \mathcal{T}(M)$ and $f: M \rightarrow N$ is a diffeomorphism, define a vector field $f_{*} V \in \mathcal{T}(N)$ by setting

$$
\begin{equation*}
\left(f_{*} V\right)_{p}=f_{*} V_{f^{-1}(p)}, \quad p \in N . \tag{3.17}
\end{equation*}
$$

Then clearly $f_{*} V$ is the only smooth vector field on N that is f-related with V.

Lemma 3.18. Let $f: M \rightarrow N$ be a smooth mapping and $V^{i} \in \mathcal{T}(M), W^{i} \in \mathcal{T}(N), i=1,2$, vector fields s.t. V^{i} and W^{i} are f-related. Then $\left[V^{1}, V^{2}\right]$ and $\left[W^{1}, W^{2}\right]$ are f-related. If f is a diffeomorphism,

$$
\left[f_{*} V^{1}, f_{*} V^{2}\right]=f_{*}\left[V^{1}, V^{2}\right] .
$$

Proof. Exerc.
Definition 3.19. Let $f: M \rightarrow M$ be a diffeomorphism and $X \in \mathcal{T}(M)$ a vector field such that $f_{*} X=X$, i.e. X is f-related with itself. Then we say that X is invariant with respect to f, or that X is f-invariant.

Note: The condition $f_{*} X=X$ means that $f_{* p} X_{p}=X_{f(p)}$ for all $p \in M$.
Left invariants vector fields on a Lie group. Let G be a Lie group. Then every point $g \in G$ defines diffeomorphism $L_{g}: G \rightarrow G$ and $R_{g}: G \rightarrow G$ (left translation and right translation),

$$
L_{g}(h)=g h, \quad R_{g}(h)=h g .
$$

A vector field X is called left invariant if it is invariant under every left translations, in other words, if $L_{g *} X=X$ for every $g \in G$ (more precisely, $L_{g * h} X_{h}=X_{g h}$ for all $g, h \in G$). A right invariant vector field is defined similarly.

Theorem 3.20. Let G be a Lie group and $T_{e} G$ its tangent space at the neutral element $e \in G$. Then every vector $X_{e} \in T_{e} G$ defines a unique left invariant vector field X. In particular, G is parallelizable.

Proof. For every $g \in G$ there is a unique left translation that maps the neutral element e to g, namely L_{g}. Hence if such a vector field X exists, it is defined uniquely by the formula

$$
X_{g}=L_{g *} X_{e} .
$$

On the other hand, this formula defines a left invarian vector field since, for every $h \in G$,

$$
L_{g * h} X_{h}=L_{g * h}\left(L_{h *} X_{e}\right)=L_{g *} \circ L_{h *} X_{e}=L_{g h *} X_{e}=X_{g h} .
$$

Let us prove next that the mapping $g \mapsto X_{g}$ is smooth. Let $f: U \rightarrow \mathbb{R}$ be a smooth function defined on some open set $U \subset G$. Choose a C^{∞}-path $\left.\gamma:\right]-\varepsilon, \varepsilon\left[\rightarrow G\right.$ such that $\dot{\gamma}_{0}=X_{e}$. Then we have, for every $g \in U$

$$
\begin{aligned}
(X f)(g) & =X_{g} f=\left(L_{g *} X_{e}\right) f=\dot{\gamma}_{0}\left(f \circ L_{g}\right) \\
& =\left(f \circ L_{g} \circ \gamma\right)^{\prime}(0)=\frac{d}{d t} f(g \gamma(t))_{\mid t=0} .
\end{aligned}
$$

The mapping $\varphi,(g, t) \mapsto \varphi(g, t)=f(g \gamma(t))$, is smooth in $G \times]-\varepsilon, \varepsilon[$ since it is a composition of the group operation, the function f, and the path γ. Therefore

$$
\frac{d}{d t} f(g \gamma(t))_{\mid t=0}
$$

is a smooth function of g, so $g \mapsto(X f)(g)$ is smooth. By Lemma 3.3 (c), $X \in \mathcal{T}(G)$. Finally, let $X_{e}^{1}, \ldots, X_{e}^{n}$ be a basis of $T_{e} G$. Then the corresponding left invariant vector fields X^{1}, \ldots, X^{n} form a global frame. Indeed, if there exists $g \in G$ s.t. $X_{g}^{1}, \ldots, X_{g}^{n}$ are not linearly independent, we can write some vector X_{g}^{i} as a linear combination of the others, i.e.

$$
X_{g}^{i}=\sum_{j \neq i} a_{j} X_{g}^{j}, \quad \text { where } a_{j} \in \mathbb{R}
$$

Then, by the left invariance,

$$
X_{e}^{i}=\sum_{j \neq i} a_{j} X_{e}^{j}
$$

yielding a contradiction since $X_{e}^{1}, \ldots, X_{e}^{n}$ is a basis of $T_{e} G$. Thus G has a global frame, so it is parallelizable.

Submanifolds and the Lie bracket. Let us recall that M is a submanifold of N if the inclusion $i: M \hookrightarrow N$ is an embedding. For each $p \in M$ we identify $T_{p} M$ and $i_{*} T_{p} M$, so $T_{p} M$ can be interpreted as a vector subspace of $T_{p} N$. Then a vector $T_{p} M \ni v=i_{*} v \in T_{p} N$ operates on $C^{\infty}(p)$ by

$$
v f=\left(i_{*} v\right) f=v(f \circ i)=v(f \mid M) .
$$

[Here $C^{\infty}(p)=\left\{f \in C^{\infty}(U): U \subset N\right.$ a neighborhood of $\left.p\right\}$ and $f \mid M$ means $f \mid U \cap M$.]
Theorem 3.21. Let $M \subset N$ be a submanifold. If $X, Y \in \mathcal{T}(N)$ are such that $X_{p}, Y_{p} \in T_{p} M \forall p \in$ M, then also $[X, Y]_{p} \in T_{p} M \forall p \in M$.

We apply the following lemma.
Lemma 3.22. Let $M^{m} \subset N^{n}$ be a submanifold and $p \in M$. Then

$$
T_{p} M=\left\{v \in T_{p} N: v f=0 \forall f \in C^{\infty}(p), f \mid M=0\right\} .
$$

Proof. Suppose first that $v \in T_{p} M \subset T_{p} N$ (more precisely $v=i_{*} w$ for some $w \in T_{p} M$). Let $f \in C^{\infty}(U), f \mid U \cap M=0$, for some neighborhood $U \subset N$ of p. Then $f \circ i=0$, so

$$
v f=\left(i_{*} w\right) f=w(f \circ i)=0 .
$$

Suppose then that $v \in T_{p} N$ satisfies the condition $v f=0$ for all $f \in C^{\infty}(p)$, with $f \mid M=0$. We will prove that $v \in T_{p} M$. From the proof of Theorem 2.27 we see that there exists a chart $(U, x), x=\left(x^{1}, \ldots, x^{n}\right)$, of N such that $x^{m+1}=\cdots=x^{n}=0$ in $U \cap M$ and $\left(x^{1}, \ldots, x^{m}\right)$ is a chart of $U \cap M$ at p.

Write

$$
v=\sum_{i=1}^{n} v^{i}\left(\partial_{i}\right)_{p}
$$

Now $T_{p} M$ is a subspace of $T_{p} N$ spanned by coordinate vectors $(\partial i)_{p}, i=1, \ldots, m$. Hence $v \in T_{p} M$ if and only if $v^{j}=0$ for all $j=m+1, \ldots, n$. Choose, for every $j=m+1, \ldots, n$ a function $f: U \rightarrow \mathbb{R}, f(x)=x^{j}$. Then $f \in C^{\infty}(p)$ and $f \mid M \cap U=0$. We obtain

$$
0=v f=\sum_{i=1}^{n} v^{i} \frac{\partial x^{j}}{\partial x^{i}}(p)=v^{j}
$$

so $v \in T_{p} M$.
Proof of Theorem 3.21. Let $p \in M$ and let $f \in C^{\infty}(U), f \mid U \cap M=0$, for some neighborhood $U \subset N$ of p. Since $X_{q} \in T_{q} M$ and $Y_{q} \in T_{q} M$ for all $q \in M$, we have

$$
X_{q} f=0 \text { and } Y_{q} f=0 \forall q \in U \cap M
$$

by Lemma 3.22. Hence

$$
(X f) \mid U \cap M=0 \text { and }(Y f) \mid U \cap M=0
$$

Applying Lemma 3.22 to functions $X f$ and $Y f$ we obtain

$$
Y_{p}(X f)=0 \text { and } X_{p}(Y f)=0
$$

so

$$
[X, Y]_{p} f=X_{p}(Y f)-Y_{p}(X f)=0
$$

Thus $[X, Y]_{p} \in T_{p} M$ (again by Lemma 3.22).
For the converse direction we so-called Frobenius theorem:
Let M be a smooth n-manifold and $k \in\{1, \ldots, n-1\}$. Suppose that for every $p \in M$ a k-dimensional subspace $\Delta_{p} \subset T_{p} M$ is given. Assume furthermore that every $p \in M$ has a neighborhood U and smooth vector fields $X^{1}, \ldots, X^{k} \in \mathcal{T}(U)$ such that the vectors $X_{q}^{1}, \ldots, X_{q}^{k}$ form a basis of Δ_{q} for every $q \in U$. Then we say that

$$
\Delta=\bigsqcup_{p \in M} \Delta_{p} \quad(\subset T M)
$$

is a smooth k-dimensional (tangent) distribution on M (or a smooth field of k-planes or a smooth subbundle of $T M$).

Let $\Delta \subset T M$ be a smooth tangent distribution. A submanifold $N \subset M$ is called an integral manifold of Δ if $T_{p} N=\Delta_{p}$ for every $p \in N$. Furthermore, we say that Δ is integrable if, for every $p \in M$, there exists an integral manifold N of Δ such that $p \in N$.

We say that a smooth distribution Δ is involutive if, for every vector fields $X, Y \in \mathcal{T}(M)$, with $X_{p}, Y_{p} \in \Delta_{p} \forall p \in M$, also $[X, Y]_{p} \in \Delta_{p} \forall p \in M$.

The existence of an integral manifold is characterized by the Frobenius theorem:

Theorem 3.23 (Frobenius). Let M be a differentiable n-manifold and Δ a smooth k-dimensional tangent distributionon $M, 1 \leq k \leq n-1$. Then
Δ is integrable $\Longleftrightarrow \Delta$ is involutive.

Furthermore, if Δ is integrable, there exists a chart (U, x) at every point $p \in M$ such that every

$$
x^{-1}\left\{y \in \mathbb{R}^{n}: y \in \mathbb{R}^{k} \times\{c\}\right\}, c \in \mathbb{R}^{n-k}
$$

is an integral manifold of Δ (or \emptyset).
Proof. Omitted (see e.g. Lee [L2, §19]).

3.24 Integral curves

Definition 3.25. Let M be a differentiable manifold and $X \in \mathcal{T}(M)$. We say that a C^{∞}-polku $\gamma: I \rightarrow M$ is an integral curve of X if

$$
\dot{\gamma}_{t}=X_{\gamma(t)} \forall t \in I
$$

If, in addition, $I \subset \mathbb{R}$ is an open interval, $0 \in I$, and $\gamma(0)=p$, we say that γ is an integral curve of X starting at $p \in M$.

Example 3.26. Let us denote the points of \mathbb{R}^{2} by (x, y) and let $\frac{\partial}{\partial x}, \frac{\partial}{\partial y}$ be the corresponding coordinate vector fields.
(a) Let $X \in \mathcal{T}\left(\mathbb{R}^{2}\right), X=\frac{\partial}{\partial x}$. Clearly every path $\gamma(t)=(t+a, b)$, where $a, b \in \mathbb{R}$ are constants, is an integral curve of X starting at (a, b). Thus through every point of the plane goes an integral curve of X.

(b) Let $V \in \mathcal{T}\left(\mathbb{R}^{2}\right)$,

$$
V=x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}
$$

If $\gamma: \mathbb{R} \rightarrow \mathbb{R}^{2}, \gamma(t)=(x(t), y(t))$, is a C^{∞}-path, then

$$
\begin{aligned}
& \quad \dot{\gamma}_{t}=V_{\gamma(t)} \\
& \Longleftrightarrow \quad x^{\prime}(t)\left(\frac{\partial}{\partial x}\right)_{\gamma(t)}+y^{\prime}(t)\left(\frac{\partial}{\partial y}\right)_{\gamma(t)}=x(t)\left(\frac{\partial}{\partial x}\right)_{\gamma(t)}+y(t)\left(\frac{\partial}{\partial y}\right)_{\gamma(t)} \\
& \Longleftrightarrow\left\{\begin{array}{l}
x^{\prime}(t)=x(t) \\
y^{\prime}(t)=y(t)
\end{array}\right. \\
& \Longleftrightarrow\left\{\begin{array}{l}
x(t)=a e^{t} \\
y(t)=b e^{t}
\end{array}\right.
\end{aligned}
$$

where $a, b \in \mathbb{R}$. We observe that the path $\gamma(t)=\left(a e^{t}, b e^{t}\right)$, where $a, b, \in \mathbb{R}$, is an integral curve of V starting that $\gamma(0)=(a, b)$. Thus through every point of the plane goes an integral curve of V.

As can be seen in (b), we must solve a system of ordinary differential equations (in local coordinates) in order to find integral curves of a given vector field.

In general:
Lemma 3.27. Let $(U, x), x=\left(x^{1}, \ldots, x^{n}\right)$, be a chart on M and let $V \in \mathcal{T}(U)$,

$$
V_{p}=v^{i}(p)\left(\partial_{i}\right)_{p}, \quad p \in U
$$

Suppose that $\gamma: I \rightarrow U$ is a C^{∞}-path, where $I \subset \mathbb{R}$ is an open interval and $0 \in I$. Then γ is an integral curve of V starting at $p \in U$ if and only if. for every $i=1, \ldots, n$

$$
\left\{\begin{array}{l}
\left(x^{i} \circ \gamma\right)^{\prime}(t)=v^{i}(\gamma(t)) \quad \text { for every } t \in I \tag{3.28}\\
\left(x^{i} \circ \gamma\right)(0)=x^{i}(p) .
\end{array}\right.
$$

Proof. (Exerc.)
Remark 3.29. Defining

$$
\begin{aligned}
\beta & =\left(\beta^{1}, \ldots, \beta^{n}\right): I \rightarrow x U \subset \mathbb{R}^{n}, \quad \beta=x \circ \gamma \\
w^{i} & =v^{i} \circ x^{-1}: x U \rightarrow \mathbb{R}, i=1, \ldots, n
\end{aligned}
$$

the system (3.28) can be written in the form

$$
\begin{cases}\frac{d}{d t} \beta^{i}(t) & =w^{i}\left(\beta^{1}(t), \ldots, \beta^{n}(t)\right) \quad \forall t \in I, i=1, \ldots, n \tag{3.30}\\ \beta^{i}(0) & =x^{i}(p)\end{cases}
$$

Let $V \in \mathcal{T}(M)$. It follows from the theory of systems of ordinary differential equations that, for every $p \in M$, there exists a unique maximal integral curve $\gamma^{p}: I_{p} \rightarrow M$ of V starting at p, i.e. if $\gamma: I \rightarrow M$ is an integral curve of V staring at p, then $I \subset I_{p}$ and $\gamma=\gamma^{p} \mid I$. We return to the proof of this later.

Lemma 3.31. Let $V \in \mathcal{T}(M)$ and $\gamma: I \rightarrow M$ be an integral curve of V. Define, for every $a \in \mathbb{R}$,

$$
I+a=\{t+a: t \in I\}
$$

and $\tilde{\gamma}: I+a \rightarrow M, \tilde{\gamma}(t)=\gamma(t-a)$. Then also $\tilde{\gamma}$ is an integral curve of V.
Proof. Let $t_{0} \in I+a$ and $f \in C^{\infty}\left(\tilde{\gamma}\left(t_{0}\right)\right)$. Then

$$
\begin{aligned}
\tilde{\gamma}^{\prime}\left(t_{0}\right) f & =\frac{d}{d t}(f \circ \tilde{\gamma})(t)_{\mid t=t_{0}}=\frac{d}{d t}(f \circ \gamma)(t-a)_{\mid t=t_{0}} \\
& =(f \circ \gamma)^{\prime}\left(t_{0}-a\right)=\dot{\gamma}_{t_{0}-a} f=V_{\gamma\left(t_{0}-a\right)} f \\
& =V_{\tilde{\gamma}\left(t_{0}\right)} f . \quad \square
\end{aligned}
$$

3.32 Flows

Let M be a smooth manifold. We say that an open set $\mathcal{D} \subset \mathbb{R} \times M$ is a flow domain if for all $p \in M$

$$
\mathcal{D} \cap(\mathbb{R} \times\{p\})=I_{p} \times\{p\}
$$

where $I_{p} \subset \mathbb{R}$ is an open interval, $0 \in I_{p}$. A smooth mapping $\theta: \mathcal{D} \rightarrow M$ is a (local) flow on M if it satisfies the following group laws

$$
\begin{gathered}
\theta(0, p)=p \quad \forall p \in M \\
I_{\theta(s, p)}=I_{p}-s \quad \forall s \in I_{p} \\
\theta(t, \theta(s, p))=\theta(t+s, p) \quad \forall s \in I_{p}, t+s \in I_{p}
\end{gathered}
$$

We also denote

$$
\theta_{t}^{p}=\theta_{t}(p)=\theta^{p}(t)=\theta(t, p)
$$

The mapping $\theta^{p}: I_{p} \rightarrow M, t \mapsto \theta_{t}^{p}$, is a C^{∞}-path. The vector field V,

$$
V_{p}=\dot{\theta}_{0}^{p}
$$

is called the infinitesimal generator of θ.

Theorem 3.33 (Properties of a flow). Let $\theta: \mathcal{D} \rightarrow M$ be a flow. Then:
(a) $\forall t \in \mathbb{R}$, the set $\mathcal{D}_{t}=\{p \in M:(t, p) \in \mathcal{D}\} \subset M$ is open, $\theta_{t}: \mathcal{D}_{t} \rightarrow \mathcal{D}_{-t}$ is a diffeomorphism and $\theta_{t}^{-1}=\theta_{-t}$.
(b) $\theta_{t} \circ \theta_{s}=\theta_{t+s}$ (whenever the left-hand side is defined).
(c) the infinitesimal generator V of θ is a smooth vector field.
(d) $\forall p \in M, \theta^{p}: I_{p} \rightarrow M$ is an integral curve of V starting at p.
(e) $\theta_{t *} V_{p}=V_{\theta_{t}(p)}, \quad \forall p \in M, \forall t \in I_{p}$.

Proof.

(a) Let $p \in \mathcal{D}_{t}$, hence $(t, p) \in \mathcal{D}$. Since \mathcal{D} is open, there exist $\delta>0$ and a neighborhood U of p s.t. $] t-\delta, t+\delta\left[\times U \subset \mathcal{D}\right.$. In particular, $\{t\} \times U \subset \mathcal{D}$, so $U \subset \mathcal{D}_{t}$ and \mathcal{D}_{t} is open.

If $p \in \mathcal{D}_{t}$, then $t \in I_{p}$ and $t+(-t)=0 \in I_{p}$. Hence $\theta_{t}(p) \in \mathcal{D}_{-t}$ and

$$
\left(\theta_{-t} \circ \theta_{t}\right)(p)=\theta(-t, \theta(t, p))=\theta(-t+t, p)=p
$$

Similarly, $\theta_{-t}\left(\mathcal{D}_{-t}\right) \subset \mathcal{D}_{t}$ and $\left(\theta_{t} \circ \theta_{-t}\right)(q)=q$ for all $q \in \mathcal{D}_{-t}$. Hence $\theta_{t}^{-1}=\theta_{-t}$. Furthermore, θ_{t} and θ_{-t} are smooth in every open subset of M where they are defined.
(b) Follows directly from the definition of a flow.
(c) Let $U \subset M$ be open and $f \in C^{\infty}(U)$. Then for every $p \in U$

$$
V f(p)=V_{p} f=\dot{\theta}_{0}^{p} f=\frac{d}{d t} f(\theta(t, p))_{\mid t=0} .
$$

Since f and θ are smooth, also $p \mapsto V f(p)$ is smooth. Thus $V \in \mathcal{T}(M)$.
(d) Let $p \in M$ and $s \in I_{p}$. We have to prove that

$$
\dot{\theta}_{s}^{p}=V_{\theta(s, p)}
$$

Denote $q=\theta(s, p)$ and let $f \in C^{\infty}(q)$. Then

$$
V_{q} f=\dot{\theta}_{0}^{q} f=\frac{d}{d t} f(\theta(t, q))_{\mid t=0}=\frac{d}{d t} f(\theta(t+s, p))_{\mid t=0}=\dot{\theta}_{s}^{p} f
$$

(e) Let $p \in M$ and $t \in I_{p}$. We write $q=\theta_{t}^{p}$ and prove that

$$
\theta_{t *} V_{p}=V_{q}
$$

Let $f \in C^{\infty}(q)$. Then

$$
\begin{aligned}
\left(\theta_{t *} V_{p}\right) f & =V_{p}\left(f \circ \theta_{t}\right)=\frac{d}{d s}\left(f \circ \theta_{t} \circ \theta_{s}^{p}\right)(s)_{\mid s=0} \\
& =\frac{d}{d s} f\left(\theta_{t}\left(\theta_{s}^{p}\right)\right)_{\mid s=0}=\frac{d}{d s} f(\theta(t+s, p))_{\mid s=0} \\
& =\dot{\theta}_{t}^{p} f=V_{q} f
\end{aligned}
$$

Lemma 3.34. Let $\theta: \mathcal{D} \rightarrow M$ be a flow, V its infinitesimal generator, and $p \in M$. If $V_{p}=0$, then θ^{p} is the constant path $\theta_{t}^{p} \equiv p$. If $V_{p} \neq 0$, then $\theta^{p}: I_{p} \rightarrow M$ is an immersion.

Proof. Denote $\gamma=\theta^{p}$. Let $t \in I_{p}$ and write $q=\gamma(t)$. Now $\gamma_{* t}: T_{t} \mathbb{R} \rightarrow T_{q} M$ is the zero map (i.e. $\left.\gamma_{* t} v=0 \forall v \in T_{t} \mathbb{R}\right) \Longleftrightarrow \dot{\theta}_{t}^{p}=\gamma_{* t}\left(\frac{\partial}{\partial t}\right)=0$. By Theorem 3.33 (a) and (e), we have $V_{q}=\theta_{t *}^{p} V_{p}$ and $V_{p}=\theta_{-t *}^{q} V_{q}$. Hence $\gamma^{\prime}(t)=V_{q}=0 \Longleftrightarrow \gamma^{\prime}(0)=V_{p}=0$. In other words, if $\gamma^{\prime}(t)=0$ for some $t \in I_{p}$, then $\gamma^{\prime}(t)=0 \forall t \in I_{p}$. Hence, if $V_{p}=0$, then $\gamma: I_{p} \rightarrow M$ is a smooth mapping such that $\gamma_{*} \equiv 0$, and consequently γ is a constant path (I_{p} connected). On the other hand, if $V_{p} \neq 0$, then $\gamma_{* t} \neq 0 \forall t$, so γ is an immersion.
Example 3.35. Let $\mathcal{D}=\mathbb{R} \times \mathbb{R}^{2}$ and $\theta: \mathcal{D} \rightarrow \mathbb{R}^{2}$,

$$
\theta(t,(x, y))=(x \cos t+y \sin t,-x \sin t+y \cos t) .
$$

Then θ is a flow since θ is clearly smooth and
(a) $\theta(0,(x, y))=(x \cos 0+y \sin 0,-x \sin 0+y \cos 0)=(x, y)$,
(b)

$$
\begin{aligned}
& \theta(t, \theta(s,(x, y))) \\
&=((x \cos s+y \sin s) \cos t+(-x \sin s+y \cos s) \sin t \\
&-(x \cos s+y \sin s) \sin t+(-x \sin s+y \cos s) \cos t) \\
&=(x(\cos s \cos t-\sin s \sin t)+y(\sin s \cos t+\cos s \sin t) \\
&-x(\cos s \sin t+\sin s \cos t)+y(\cos s \cos t-\sin s \sin t)) \\
&=(x \cos (s+t)+y \sin (s+t),-x \sin (s+t)+y \cos (s+t)) \\
&=\theta(s+t,(x, y)) .
\end{aligned}
$$

Its infinitesimal generator is

$$
\begin{aligned}
V_{(x, y)} & =\frac{d}{d t} \theta(t,(x, y))_{\mid t=0}=(-x \sin 0+y \cos 0,-x \cos 0-y \sin 0) \\
& =(y,-x),
\end{aligned}
$$

so using coordinate vector fields

$$
V_{(x, y)}=y \frac{\partial}{\partial x}-x \frac{\partial}{\partial y} .
$$

[Below are some values of V (vectors) and some integral curves.]

3.36 Flows of vector fields

We say that a flow $\theta: \mathcal{D} \rightarrow M$ is maximal if the flow domain \mathcal{D} is the largest possible. In other words, if $\tilde{\theta}: \tilde{\mathcal{D}} \rightarrow M$ is a flow such that $\mathcal{D} \subset \tilde{\mathcal{D}}$ and $\theta=\tilde{\theta} \mid \mathcal{D}$, then $\tilde{\mathcal{D}}=\mathcal{D}$.

Theorem 3.37. Let M be a smooth manifold and $V \in \mathcal{T}(M)$. Then there exists a unique maximal flow $\theta: \mathcal{D} \rightarrow M$ whose infinitesimal generator is V. Moreover, θ has the following properties:
(a) For every $p \in M$, the path $\theta^{p}: I_{p} \rightarrow M$ is the unique maximal integral curve of V starting at p.
(b) If $s \in I_{p}$, then $I_{\theta(s, p)}$ is the interval $I_{p}-s=\left\{t-s: t \in I_{p}\right\}$.

The proof of Theorem 3.37 is based on the following theorem on the existence, uniqueness, and smoothness of solutions to systems of ordinary differential equations. Later we will prove part of it.

Theorem 3.38 (Existence, uniqueness, and smoothness). Let $U \subset \mathbb{R}^{n}$ be open and $V=\left(V^{1}, \ldots, V^{n}\right): U \rightarrow \mathbb{R}^{n}$ smooth. Let $t_{0} \in \mathbb{R}$ and $x \in U$. Consider the following initial value problem

$$
\begin{cases}\left(\gamma^{i}\right)^{\prime}(t) & =V^{i}(\gamma(t)), \tag{3.39}\\ \gamma^{i}\left(t_{0}\right) & =x^{i},\end{cases}
$$

where $\gamma=\left(\gamma^{1}, \ldots, \gamma^{n}\right): J \rightarrow U, t_{0} \in J$, is a smooth path.
(a) Existence: For every $\left(t_{0}, x_{0}\right) \in \mathbb{R} \times U$ there exist an open interval $J_{0} \ni t_{0}$ and a neighborhood $U_{0} \subset U$ of x_{0} such that for every $x \in U_{0}$ there exists a C^{∞}-path $\gamma: J_{0} \rightarrow U$ that is a solution to (3.39).
(b) Uniqueness: If $\gamma: J_{0} \rightarrow U$ and $\tilde{\gamma}: \tilde{J}_{0} \rightarrow U$ are solutions to (3.39), then $\gamma=\tilde{\gamma}$ on the interval $J_{0} \cap \tilde{J}_{0}$.
(c) Smoothness: Let t_{0}, x_{0}, J_{0} and U_{0} be as in (a) and define the mapping $\theta: J_{0} \times U_{0} \rightarrow U$,

$$
\theta(t, x)=\gamma(t)
$$

where $\gamma: J_{0} \rightarrow U$ is the unique solution to (3.39) with initial value $\gamma\left(t_{0}\right)=x$. Then θ is smooth.
We split the proof of Theorem 3.37 into several parts.
Theorem 3.40. Let $V \in \mathcal{T}(M)$. Then for every $p \in M$ there exists a unique maximal integral curve of V starting at p.

Proof. By Theorem 3.38, for every $p \in M$ there exists an integral curve of V starting at p (cf. (3.30)). Let $\gamma: I \rightarrow M$ and $\tilde{\gamma}: I \rightarrow M$ be integral curves of V s.t. $\gamma\left(t_{0}\right)=\tilde{\gamma}\left(t_{0}\right)$ for some $t_{0} \in I$. Denote

$$
J=\{t \in I: \gamma(t)=\tilde{\gamma}(t)\} .
$$

We claim that $J \neq \emptyset$ is both open and closed in I, and so $J=I$ (since I is connected). Clearly $J \neq \emptyset$ since $t_{0} \in J$.
Let $t_{i} \in J, t_{i} \rightarrow t \in I$. Since γ and $\tilde{\gamma}$ are continuous, we have

$$
\tilde{\gamma}(t)=\lim _{i \rightarrow \infty} \tilde{\gamma}\left(t_{i}\right)=\lim _{i \rightarrow \infty} \gamma\left(t_{i}\right)=\gamma(t),
$$

so $t \in J$. Thus $J \subset I$ is closed.
Let $t_{1} \in J$. Now γ and $\tilde{\gamma}$ are solutions to the same system of differential equations with the same initial value $\gamma\left(t_{1}\right)=\tilde{\gamma}\left(t_{1}\right)$, therefore $\gamma \equiv \tilde{\gamma}$ on an interval $] t_{1}-\varepsilon, t_{1}+\varepsilon$ [by Theorem 3.38. Hence $] t_{1}-\varepsilon, t_{1}+\varepsilon[\subset J$, and therefore $J \subset I$ is open. We have proven that $J=I$.
Denote

$$
\begin{aligned}
\Gamma & =\left\{\gamma_{\alpha} \mid \gamma_{\alpha}: J_{\alpha} \rightarrow M \text { is an integral curve of } V \text { starting at } p\right\}, \\
I_{p} & =\bigcup_{\gamma_{\alpha} \in \Gamma} J_{\alpha}
\end{aligned}
$$

($\alpha \in \mathcal{A}, \mathcal{A}$ some set of indices) and define

$$
\gamma: I_{p} \rightarrow M, \gamma(t)=\gamma_{\alpha}(t)
$$

for some $\gamma_{\alpha} \in \Gamma$ such that $t \in J_{\alpha}$. In other words, $\gamma \mid J_{\alpha}=\gamma_{\alpha}$. By the beginning of the proof γ is well-defined and thus it is the maximal integral curve of V starting at p.

In what follows we denote by θ^{p} the maximal integral curve of V starting at p.
Let $V \in \mathcal{T}(M), p \in M$ and $\theta^{p}: I_{p} \rightarrow M$ the maximal integral curve of V starting at p. Define

$$
\begin{align*}
& \mathcal{D}(V)=\left\{(t, p) \in \mathbb{R} \times M: t \in I_{p}\right\} \tag{3.41}\\
& \mathcal{D}_{t}(V)=\{p \in M:(t, p) \in \mathcal{D}(V)\} \tag{3.42}\\
& \theta: \mathcal{D}(V) \rightarrow M, \theta(t, p)=\theta^{p}(t) \tag{3.43}
\end{align*}
$$

We also denote

$$
\theta^{p}(t)=\theta_{t}(p)=\theta_{t}^{p} .
$$

Lemma 3.44. Let $\theta: \mathcal{D}(V) \rightarrow M$ be as above. Then
(a) $\theta(0, p)=p \quad \forall p \in M$,
(b) $\theta(t, \theta(s, p))=\theta(t+s, p) \quad \forall s \in I_{p}, t+s \in I_{p}$.

Proof. (a) is clear.
Fix $p \in M, s \in I_{p}$ and let $q=\theta_{s}^{p}$. If $\gamma: I_{p}-s \rightarrow M$ is the path

$$
\gamma(t)=\theta^{p}(t+s)
$$

then $\gamma(0)=q$ and γ is an integral curve of V starting at q (Lemma 3.31). By Theorem 3.38 (b) ("Uniqueness"), $\gamma=\theta^{q}$ in the set where both are defined. Since θ^{q} is maximal, it is defined at least on the interval $I_{p}-s$ (so $I_{p}-s \subset I_{q}$). Thus for every $t \in I_{p}-s$

$$
\theta(t+s, p)=\gamma(t)=\theta^{q}(t)=\theta(t, q)=\theta(t, \theta(s, p))
$$

Remark 3.45. Above we observed that $I_{p}-s \subset I_{\theta(s, p)}$ for all $s \in I_{p}$. Since $0 \in I_{p}$, it follows that $-s \in I_{\theta(s, p)}$, and therefore $\theta(-s, \theta(s, p))=p$. The path $\gamma: I_{\theta(s, p)}+s \rightarrow M$,

$$
\gamma(t)=\theta(t-s, \theta(s, p))
$$

is an integral curve of V starting at $\gamma(0)=\theta(-s, \theta(s, p))=p$. We conclude that $\gamma=\theta^{p}$ in $I_{\theta(s, p)}+s$ since θ^{p} is maximal. Hence $I_{\theta(s, p)}+s \subset I_{p}$, or equivalently $I_{\theta(s, p)} \subset I_{p}-s$. We obtain $I_{p}-s=I_{\theta(s, p)}$ for every $s \in I_{p}$. (cf. Theorem 3.37 (b).)

Lemma 3.46. Let $\theta: \mathcal{D}(V) \rightarrow M$ be as in (3.41)-(3.43). Then $\mathcal{D}(V) \subset \mathbb{R} \times M$ is open and θ is smooth.

Proof. Let $W \subset \mathcal{D}(V)$ be the set of points $(t, p) \in \mathcal{D}(V)$ that have a neighborhood $J \times U \subset$ $\mathcal{D}(V)$ where θ is defined and smooth and, moreover, that $U \subset M$ is a neighborhood of p and $J \subset \mathbb{R}$ is an open interval containing 0 and t. Clearly W is open in $\mathbb{R} \times M$ and $\theta \mid W$ is smooth. It remains to prove that $W=\mathcal{D}(V)$. Assume on the contrary that there exists $\left(t_{0}, p_{0}\right) \in \mathcal{D}(V) \backslash W$. We may suppose that $t_{0} \geq 0$ (the case $t_{0}<0$ is similar). It follows from Theorem 3.38 (by using a chart at $\left.p_{0}\right)$ that θ is defined and smooth in some product neighborhood of $\left(0, p_{0}\right)$. Let

$$
\tau=\sup \left\{t \in \mathbb{R}:\left(t, p_{0}\right) \in W\right\}
$$

so $\tau>0$. Since $\tau \leq t_{0}$ and $I_{p_{0}}$ is an open interval containing 0 and t_{0}, we have $\tau \in I_{p_{0}}$. Let $q_{0}=\theta^{p_{0}}(\tau)$. By Theorem 3.38 there exists a product neighborhood $]-\varepsilon, \varepsilon\left[\times U_{0}\right.$ of $\left(0, q_{0}\right)$ where θ is defined and smooth. We apply Lemma 3.44 to prove that θ is smooth in some product neighborhood of $\left(\tau, p_{0}\right)$. Let $t_{1}<\tau$ s.t. $t_{1}+\varepsilon>\tau$ and $\theta^{p_{0}}\left(t_{1}\right) \in U_{0}$. Since $t_{1}<\tau$, we have $\left(t_{1}, p_{0}\right) \in W$, so there exists a product neighborhood $]-\delta, t_{1}+\delta\left[\times U_{1}\right.$ of $\left(t_{1}, p_{0}\right)$ where θ is defined and smooth. Since $\theta\left(t_{1}, p_{0}\right) \in U_{0}$, we may choose small enough U_{1} so that $\theta\left(t_{1}, p\right) \in U_{0} \forall p \in U_{1}$. By Lemma 3.44

$$
\theta_{t}(p)=\theta_{t-t_{1}} \circ \theta_{t_{1}}(p)
$$

if $t_{1} \in I_{p}$ and $t-t_{1} \in I_{\theta\left(t_{1}, p\right)}$. It follows from the choice of t_{1} that $\theta\left(t_{1}, p\right)$ is defined $\forall p \in U_{1}$ and is smooth with respect to p. Furthermore, $]-\varepsilon, \varepsilon\left[\subset I_{\theta\left(t_{1}, p\right)} \forall p \in U_{1}\right.$ since $\theta\left(t_{1}, p\right) \in U_{0} \forall p \in U_{1}$ and θ is defined and smooth in $]-\varepsilon, \varepsilon\left[\times U_{0}\right.$. It follows that $\theta_{t}(p)=\theta_{t-t_{1}} \circ \theta_{t_{1}}(p)$ is defined and smooth with respect to (t, p) if $p \in U_{1}$ and $\left|t-t_{1}\right|<\varepsilon$. Hence we may extend θ smoothly to the set $]-\delta, t_{1}+\varepsilon\left[\times U_{1}\right.$ that leads to a contradiction with the definition of τ since $t_{1}+\varepsilon>\tau$. This proves that $W=\mathcal{D}(V)$.

Let us underline the main steps of the proof:

1. Antithesis and the definition of τ.
2. $q_{0}=\theta\left(\tau, p_{0}\right)$.
3. Theorem $3.38 \Rightarrow \exists$ a product neighborhood $]-\varepsilon, \varepsilon\left[\times U_{0}\right.$ of $\left(0, q_{0}\right)$ where θ is smooth.
4. Choice of $\left.t_{1} \in\right] \tau-\varepsilon, \tau[$.
5. Behavior of θ in a neighborhood of $\left(0, q_{0}\right)$ is "transported" to a product neighborhood $] t_{1}-$ $\varepsilon, t_{1}+\varepsilon\left[\times U_{1}\right.$ of $\left(t_{1}, p_{0}\right)$ by using the group laws.
6. Extended θ smoothly to a neighborhood of $\left(\tau, p_{0}\right)$ and obtained a contradiction.

Proof of Theorem 3.37. Let $\theta: \mathcal{D}(V) \rightarrow M$ be as in (3.41)-(3.43). Then:

1. Lemma 3.44 and $3.46 \Rightarrow \theta$ is a flow.
2. Theorem 3.40 and general properties of flows (Theorem 3.33) \Rightarrow uniqueness.
3. The claim (a) follows directly from the construction.
4. The claim (b) is proven in Remark 3.45 after Lemma 3.44.

Definition 3.47. Let $V \in \mathcal{T}(M)$ and let $\theta: \mathcal{D}(V) \rightarrow M$ be the maximal flow whose infinitesimal generator is V. Then we say that θ is the flow of V.

We say that a vector field $V \in \mathcal{T}(M)$ is complete if it generates a global flow, i.e. $\mathcal{D}(V)=\mathbb{R} \times M$. Then every maximal integral curve is defined on whole \mathbb{R}.

Lemma 3.48 (Escape lemma). Let $V \in \mathcal{T}(M)$. If γ is an integral curve of V such that its maximal interval of definition, I, is not the whole \mathbb{R}, then $\gamma(I)$ can not be contained in any compact subset of M.

Proof. Let $I=] a, b\left[,-\infty \leq a<0<b \leq+\infty\right.$, and let θ be the flow of V. Then $\gamma=\theta^{p}$ (and $I=I_{p}$), where $p=\gamma(0)$. Assume on the contrary that $b<\infty$ and $\gamma(I) \subset K$ for some compact $K \subset M$. (The case $a>-\infty$ similarly.) Choose a sequence $t_{i} \rightarrow b, t_{i} \in I$. Since $\gamma\left(t_{i}\right) \in K$ and K is compact, there exist $q \in K$ and a subsequence, still denoted by $\left(t_{i}\right)$, s.t. $\gamma\left(t_{i}\right) \rightarrow q$. Choose a product neighborhood $]-\varepsilon, \varepsilon[\times U]-,\varepsilon, \varepsilon[\subset I$ of $(0, q)$ where θ is defined. Fix a sufficiently large i such that $\gamma\left(t_{i}\right)=\theta\left(t_{i}, p\right) \in U$ and $t_{i}>b-\varepsilon$. Then $t \mapsto \theta\left(t-t_{i}, \theta\left(t_{i}, p\right)\right)$ is defined $\left.\forall t \in\right] t_{i}-\varepsilon, t_{i}+\varepsilon[$ and it is an integral curve of V (starting at $\theta\left(t_{i}, p\right)$). Furthermore, $\theta\left(t-t_{i}, \theta\left(t_{i}, p\right)\right)=\theta(t, p)=\gamma(t)$ for $t_{i}-\varepsilon<t<b$. Define $\left.\sigma:\right] a, t_{i}+\varepsilon[\rightarrow M$ by setting

$$
\sigma(t)= \begin{cases}\gamma(t), & a<t<b, \\ \theta\left(t-t_{i}, \theta\left(t_{i}, p\right)\right), & t_{i}-\varepsilon<t<t_{i}+\varepsilon .\end{cases}
$$

Then σ is an integral curve of V starting at p, hence γ is not maximal. This is contradiction and the lemma is proven.

The escape lemma implies the following.
Theorem 3.49. If M is compact, every $V \in \mathcal{T}(M)$ is complete.

3.50 Proof of the existence and uniqueness theorem

Let $U \subset \mathbb{R}^{n}$ be open. We say that a mapping $V: U \rightarrow \mathbb{R}^{n}$ is Lipschitz if there exists a constant $L>0$ s.t.

$$
\begin{equation*}
|V(x)-V(y)| \leq L|x-y| \quad \forall x, y \in U . \tag{3.51}
\end{equation*}
$$

Theorem 3.52 (Existence). Let $U \subset \mathbb{R}^{n}$ be open and $V: U \rightarrow \mathbb{R}^{n}$ Lipschitz. Then for every $\left(t_{0}, x_{0}\right) \in \mathbb{R} \times U$ there exist a neighborhood $U_{0} \subset U$ of x_{0} and an open interval $J_{0} \subset \mathbb{R}, t_{0} \in J_{0}$ such that for every $x=\left(x^{1}, \ldots, x^{n}\right) \in U_{0}$ there exists a C^{1}-path $\gamma: J_{0} \rightarrow U$ solving the initial value problem

$$
\begin{cases}\left(\gamma^{i}\right)^{\prime}(t) & =V^{i}(\gamma(t)), \quad \forall t \in J_{0}, \tag{3.53}\\ \gamma^{i}\left(t_{0}\right) & =x^{i} .\end{cases}
$$

Proof. Suppose that $\gamma: J_{0} \rightarrow U$ is a solution to (3.53). From the left-hand side of the equation we see that every $\gamma^{i}, i=1, \ldots, n$, is differentiable, hence γ is continuous. Since both V^{i} and γ are continuous, also the right-hand side is continuous. Hence γ is continuously differentiable, so $\gamma \in C^{1}$. Integrating (3.53) with respect to t we obtain

$$
\begin{equation*}
\gamma^{i}(t)=x^{i}+\int_{t_{0}}^{t} V^{i}(\gamma(s)) d s, \quad i=1, \ldots, n \tag{3.54}
\end{equation*}
$$

Conversely, if $\gamma: J_{0} \rightarrow U$ is a path that satisfies (3.54), then

$$
\left(\gamma^{i}\right)^{\prime}(t)=\frac{d}{d t} \int_{t_{0}}^{t} V^{i}(\gamma(s)) d s=V^{i}(\gamma(t)) \quad \text { ja } \gamma^{i}\left(t_{0}\right)=x^{i}
$$

We define, for each path $\gamma: J_{0} \rightarrow U$, a mapping $S_{x} \gamma: J_{0} \rightarrow \mathbb{R}^{n}$,

$$
\begin{equation*}
S_{x} \gamma(t)=x+\int_{t_{0}}^{t} V(\gamma(s)) d s \tag{3.55}
\end{equation*}
$$

and we look for fixed points of S_{x} (i.e. paths γ s.t. $\gamma=S_{x} \gamma$) in some suitable metric space. Clearly $S_{x} \gamma$ is continuous (hence a path) and $S_{x} \gamma\left(t_{0}\right)=x$. For every $x_{0} \in U$ choose $r>0$ s.t. $\bar{B}\left(x_{0}, r\right) \subset U$. Denote $M=\max \left\{|V(x)|: x \in \bar{B}\left(x_{0}, r\right)\right\}$. Let $t_{0} \in \mathbb{R}, \delta \leq r / 2$ and $\left.J_{0}=\right] t_{0}-\varepsilon, t_{0}+\varepsilon[$, where

$$
\varepsilon<\min \left\{\frac{r}{2 M}, \frac{1}{L}\right\}
$$

and L is a Lipschitz constant of V in (3.51). For every $x \in U_{0}:=B\left(x_{0}, \delta\right)$ denote

$$
\mathcal{M}_{x}=\left\{\gamma \mid \gamma: J_{0} \rightarrow \bar{B}\left(x_{0}, r\right) \text { path, } \gamma\left(t_{0}\right)=x\right\}
$$

and define a metric in \mathcal{M}_{x} by setting

$$
d(\gamma, \tilde{\gamma})=\sup \left\{|\gamma(t)-\tilde{\gamma}(t)|: t \in J_{0}\right\}
$$

If $\left(\gamma_{i}\right)$ is a Cauchy sequence in \mathcal{M}_{x}, it is uniformly convergent (by the Cauchy criterion), so the limit $\gamma=\lim _{i} \gamma_{i}$ is a continuous mapping $J_{0} \rightarrow \bar{B}\left(x_{0}, r\right)$, so γ is a path. Clearly $\gamma\left(t_{0}\right)=x$, so $\gamma \in \mathcal{M}_{x}$. Hence $\left(\mathcal{M}_{x}, d\right)$ is complete. Next we prove that the formula (3.55) defines a contraction $S_{x}: \mathcal{M}_{x} \rightarrow \mathcal{M}_{x}$. If $\gamma \in \mathcal{M}_{x}$ and $t \in J_{0}$, then

$$
\left|S_{x} \gamma(t)-x_{0}\right|=\left|\int_{t_{0}}^{t} V(\gamma(s)) d s+x-x_{0}\right| \leq M\left|t-t_{0}\right|+\left|x-x_{0}\right|<M \varepsilon+\delta \leq r
$$

so $S_{x} \gamma$ is a path $J_{0} \rightarrow \bar{B}\left(x_{0}, r\right)$ and therefore $S_{x} \gamma \in \mathcal{M}_{x}$. Furthermore, S_{x} is a contraction since, for all $\gamma, \tilde{\gamma} \in \mathcal{M}_{x}$,

$$
\begin{aligned}
d\left(S_{x} \gamma, S_{x} \tilde{\gamma}\right) & =\sup _{t \in J_{0}}\left|\int_{t_{0}}^{t} V(\gamma(s)) d s-\int_{t_{0}}^{t} V(\tilde{\gamma}(s)) d s\right| \leq \sup _{t \in J_{0}} \int_{t_{0}}^{t}|V(\gamma(s))-V(\tilde{\gamma}(s))| d s \\
& \leq \sup _{t \in J_{0}} \int_{t_{0}}^{t} L \underbrace{|\gamma(s)-\tilde{\gamma}(s)|}_{\leq d(\gamma, \tilde{\gamma})} \leq L \sup _{t \in J_{0}}\left|t-t_{0}\right| d(\gamma, \tilde{\gamma}) \leq L \varepsilon d(\gamma, \tilde{\gamma})
\end{aligned}
$$

Since $L \varepsilon<1$, the Banach fixed point theorem 0.8 implies that S_{x} has a fixed point $\gamma \in \mathcal{M}_{x}$. Hence

$$
\gamma(t)=S_{x} \gamma(t)=x+\int_{t_{0}}^{t} V(\gamma(s)) d s
$$

so γ satisfies (3.54) and therefore also (3.53). \square Note that the Banach fixed point theorem gives uniqueness among paths $J_{0} \rightarrow \bar{B}\left(x_{0}, r\right)$.

Theorem 3.56 (Uniqueness). If $\gamma: J_{0} \rightarrow U$ and $\tilde{\gamma}: J_{0} \rightarrow U$ are solutions to the initial value problem (3.53) such that $\tilde{\gamma}\left(t_{0}\right)=\gamma\left(t_{0}\right)$), then $\gamma=\tilde{\gamma}$.

Proof. Suppose that γ and $\tilde{\gamma}$ are solutions to (3.53) with initial values $\gamma\left(t_{0}\right)=x$ and $\tilde{\gamma}\left(t_{0}\right)=y$. Then

$$
\begin{aligned}
\frac{d}{d t}|\tilde{\gamma}(t)-\gamma(t)|^{2} & =\frac{d}{d t}((\tilde{\gamma}(t)-\gamma(t)) \cdot(\tilde{\gamma}(t)-\gamma(t))) \\
& =2(\tilde{\gamma}(t)-\gamma(t)) \cdot \frac{d}{d t}(\tilde{\gamma}(t)-\gamma(t)) \\
& =2(\tilde{\gamma}(t)-\gamma(t)) \cdot(V(\tilde{\gamma}(t))-V(\gamma(t))) \\
& \leq 2|\tilde{\gamma}(t)-\gamma(t)| \underbrace{|V(\tilde{\gamma}(t))-V(\gamma(t))|}_{\leq L|\tilde{\gamma}(t)-\gamma(t)|} \\
& \leq 2 L|\tilde{\gamma}(t)-\gamma(t)|^{2} .
\end{aligned}
$$

We obtain

$$
\begin{aligned}
\frac{d}{d t}\left(e^{-2 L t}|\tilde{\gamma}(t)-\gamma(t)|^{2}\right) & =e^{-2 L t} \frac{d}{d t}|\tilde{\gamma}(t)-\gamma(t)|^{2}-2 L e^{-2 L t}|\tilde{\gamma}(t)-\gamma(t)|^{2} \\
& \leq e^{-2 L t}\left(2 L|\tilde{\gamma}(t)-\gamma(t)|^{2}-2 L|\tilde{\gamma}(t)-\gamma(t)|^{2}\right)=0
\end{aligned}
$$

Hence

$$
e^{-2 L t}|\tilde{\gamma}(t)-\gamma(t)|^{2} \leq e^{-2 L t_{0}}\left|\tilde{\gamma}\left(t_{0}\right)-\gamma\left(t_{0}\right)\right|^{2}, \quad \forall t \geq t_{0}
$$

On the other hand,

$$
\begin{aligned}
\frac{d}{d t}|\tilde{\gamma}(t)-\gamma(t)|^{2} & \geq-2|\tilde{\gamma}(t)-\gamma(t)||V(\tilde{\gamma}(t))-V(\gamma(t))| \\
& \geq-2 L|\tilde{\gamma}(t)-\gamma(t)|^{2}
\end{aligned}
$$

which implies that

$$
\frac{d}{d t}\left(e^{2 L t}|\tilde{\gamma}(t)-\gamma(t)|^{2}\right) \geq 0
$$

so

$$
e^{2 L t}|\tilde{\gamma}(t)-\gamma(t)|^{2} \leq e^{2 L t_{0}}\left|\tilde{\gamma}\left(t_{0}\right)-\gamma\left(t_{0}\right)\right|^{2}, \quad \forall t \leq t_{0}
$$

Hence, for all $t \in J_{0}$, we have

$$
\begin{equation*}
|\tilde{\gamma}(t)-\gamma(t)| \leq e^{L\left|t-t_{0}\right|}\left|\tilde{\gamma}\left(t_{0}\right)-\gamma\left(t_{0}\right)\right| \tag{3.57}
\end{equation*}
$$

It follows that $\tilde{\gamma} \equiv \gamma$ if $\tilde{\gamma}\left(t_{0}\right)=\gamma\left(t_{0}\right)$.
Lemma 3.58 (Continuity). Let J_{0} be an open interval, $t_{0} \in J_{0}, U_{0} \subset U$ open and $\theta: J_{0} \times U_{0} \rightarrow U$ any mapping s.t. for every $x \in U_{0}, \gamma: J_{0} \rightarrow U, \gamma(t)=\theta(t, x)$, is the solution to (3.53) with initial value $\gamma\left(t_{0}\right)=x$. Then θ is continuous.

Fix $(t, x) \in J_{0} \times U_{0}$ and prove that θ is continuous at (t, x). Since continuity is a local property, we may assume that $\bar{J}_{0}=[a, b] \subset \mathbb{R}$. It follows from the proof of (3.57) that

$$
|\theta(t, \tilde{x})-\theta(t, x)| \leq e^{L T}|\tilde{x}-x|
$$

where $T=b-a$. Hence θ is Lipschitz with respect to x with a constant $e^{L T}$. Let $(\tilde{t}, \tilde{x}) \in J_{0} \times U_{0}$. Since every solution to 3.53) satisfies the (integral) equation (3.54), we obtain

$$
\theta(\tilde{t}, \tilde{x})=\tilde{x}+\int_{t_{0}}^{\tilde{t}} V(\theta(s, \tilde{x})) d s
$$

and similarly for the point (t, x). Hence

$$
\begin{aligned}
|\theta(\tilde{t}, \tilde{x})-\theta(t, x)| & \leq|\tilde{x}-x|+\left|\int_{t_{0}}^{\tilde{t}} V(\theta(s, \tilde{x})) d s-\int_{t_{0}}^{t} V(\theta(s, x)) d s\right| \\
& \leq|\tilde{x}-x|+\left|\int_{t_{0}}^{\tilde{t}}\right| V(\theta(s, \tilde{x}))-V(\theta(s, x))|d s|+\left|\int_{\tilde{t}}^{t}\right| V(\theta(s, x))|d s|
\end{aligned}
$$

Since $s \mapsto \theta(s, x)$ is continuous, there exists $\delta_{x}>0$ such that

$$
M_{x}=\max \left\{|V(\theta(s, x))|: s \in\left[t-\delta_{x}, t+\delta_{x}\right]\right\}<\infty
$$

For $\tilde{t} \in\left[t-\delta_{x}, t+\delta_{x}\right]$, we get

$$
\begin{aligned}
|\theta(\tilde{t}, \tilde{x})-\theta(t, x)| & \leq|\tilde{x}-x|+\left|L \int_{t_{0}}^{\tilde{t}}\right| \theta(s, \tilde{x})-\theta(s, x)|d s|+\left|\int_{\tilde{t}}^{t} M_{x} d s\right| \\
& \leq|\tilde{x}-x|+L T e^{L T}|\tilde{x}-x|+M_{x}|\tilde{t}-t| .
\end{aligned}
$$

Thus θ is continuous at (t, x).
Theorem 3.59 (Smoothness). Let $U \subset \mathbb{R}^{n}$ be open and $V: U \rightarrow \mathbb{R}^{n}$ Lipschitz. Suppose that $U_{0} \subset U$ is open, $J_{0} \subset \mathbb{R}$ is an open interval, $t_{0} \in J_{0}$, and $\theta: J_{0} \times U_{0} \rightarrow U$ is any mapping s.t. for every $x \in U_{0}, \gamma: J_{0} \rightarrow U, \gamma(t)=\theta(t, x)$, is a solution to (3.53). If $V \in C^{k}(U)$ for some $k \geq 1$, also $\theta \in C^{k}\left(J_{0} \times U_{0}\right)$.

Proof. Omitted. [See e.g. Lee [L2].]

3.60 Lie derivative of a vector field

Let $X \in \mathcal{T}(M), Y \in \mathcal{T}(M), p \in M$ and let θ be the flow of X. Then $\theta_{-t}\left(\theta_{t}^{p}\right)=p$ for $\left.t \in I=\right]-\delta, \delta[$, where $\delta>0$ is sufficiently small.

We can define a $\hat{a} \hat{Y} z \check{z} C^{\infty}$-path $I \rightarrow T_{p} M$,

$$
t \mapsto\left(\theta_{-t}\right)_{*} Y_{\theta(t, p)} .
$$

The tangent (vector) to this path at $t=0$,

$$
\begin{equation*}
\lim _{t \rightarrow 0} \frac{\left(\theta_{-t}\right)_{*} Y_{\theta(t, p)}-Y_{p}}{t}=\frac{d}{d t}\left(\left(\theta_{-t}\right)_{*} Y_{\theta(t, p)}\right)_{\mid t=0} \tag{3.61}
\end{equation*}
$$

is called the Lie derivative of Y with respect to X and it is denoted by $\left(L_{X} Y\right)_{p}$.

Another way to write (3.61): For every t, with $|t|$ small enough, let $\theta_{t *} Y$ be the vector field that is defined by

Then

$$
\begin{aligned}
\frac{\left(\theta_{-t}\right)_{*} Y_{\theta(t, p)}-Y_{p}}{t} & =\frac{Y_{p}-\left(\theta_{-t}\right)_{*} Y_{\theta(t, p)}}{-t} \\
& =\frac{Y_{p}-\left(\theta_{-t *} Y\right)_{\theta(-t, \theta(t, p))}}{-t} \\
& =\frac{Y_{p}-\left(\theta_{-t *} Y\right)_{p}}{-t} \\
& =\frac{Y_{p}-\left(\theta_{s *} Y\right)_{p}}{s}, \quad s=-t
\end{aligned}
$$

Theorem 3.62. Let $X, Y \in \mathcal{T}(M)$ and $p \in M$. Then

$$
\left(L_{X} Y\right)_{p}=[X, Y]_{p}
$$

For the proof we need the following:
Lemma 3.63. Let $h:]-\delta, \delta\left[\times U \rightarrow \mathbb{R}\right.$ be a C^{∞}-function such that $h(0, q)=0$ for all $q \in U, U \subset M$ open. Then there exists a $\left.C^{\infty}{ }_{-f u n c t i o n ~} g:\right]-\delta, \delta[\times U \rightarrow \mathbb{R}$ s.t. $h(t, q)=t g(t, q)$. In particular,

$$
g(0, q)=D_{1} h(0, q) . \quad\left(D_{1}=\frac{\partial}{\partial t}\right)
$$

Proof. Define $g(t, q)=\int_{0}^{1} D_{1} h(t s, q) d s$.
Proof of Theorem 3.62. Let θ be the flow of X and let $f \in C^{\infty}(p)$. Define

$$
h(t, q)=f(\theta(t, q))-f(q)=\left(f \circ \theta_{t}\right)(q)-f(q)
$$

From Lemma 3.63 we get $g_{t}(q)=g(t, q)$ s.t.

$$
\begin{equation*}
\left(f \circ \theta_{t}\right)(q)=f(q)+h(t, q)=f(q)+t g_{t}(q) \tag{3.64}
\end{equation*}
$$

and

$$
\begin{aligned}
g_{0}(q) & =\frac{\partial h}{\partial t}(0, q)=\lim _{t \rightarrow 0} \frac{h(t, q)-\overbrace{h(0, q)}^{=0}}{t}=\lim _{t \rightarrow 0} \frac{f(\theta(t, q))-f(q)}{t} \\
& =\lim _{t \rightarrow 0} \frac{\left(f \circ \theta^{q}\right)(t)-\left(f \circ \theta^{q}\right)(0)}{t}=\left(f \circ \theta^{q}\right)^{\prime}(0) \\
& =X_{q} f
\end{aligned}
$$

Let us find the limit $\lim _{t \rightarrow 0} \frac{1}{t}\left(Y-\left(\theta_{t *} Y\right)\right)_{p} f$.

First we obtain

$$
\left(\theta_{t *} Y\right)_{p} f=\left(\theta_{t *} Y_{\theta(-t, p)}\right) f=Y_{\theta(-t, p)}\left(f \circ \theta_{t}\right) \stackrel{(3.64)}{=} Y_{\theta(-t, p)} f+t Y_{\theta(-t, p)} g_{t}
$$

Hence

$$
\begin{aligned}
\lim _{t \rightarrow 0} \frac{1}{t}\left(Y-\left(\theta_{t *} Y\right)\right)_{p} f & =\lim _{t \rightarrow 0} \frac{1}{t}\left(Y_{p} f-Y_{\theta(-t, p)} f-t Y_{\theta(-t, p)} g_{t}\right) \\
& =\lim _{t \rightarrow 0} \frac{1}{t}\left(Y_{p} f-Y_{\theta(-t, p)} f\right)-\lim _{t \rightarrow 0} Y_{\theta(-t, p)} g_{t}
\end{aligned}
$$

Now

$$
\lim _{t \rightarrow 0} Y_{\theta(-t, p)} g_{t}=Y_{p} g_{0}=Y_{p}(X f)
$$

and

$$
\begin{aligned}
\lim _{t \rightarrow 0} \frac{1}{t}\left(Y_{p} f-Y_{\theta(-t, p)} f\right) & =\lim _{-s \rightarrow 0} \frac{1}{-s}\left(Y_{p} f-Y_{\theta(s, p)} f\right) \\
& =\lim _{s \rightarrow 0} \frac{1}{s}((Y f)(\theta(s, p))-(Y f)(p)) \\
& =X_{p}(Y f)
\end{aligned}
$$

We get

$$
\lim _{t \rightarrow 0} \frac{1}{t}\left(Y-\left(\theta_{t *} Y\right)\right)_{p} f=X_{p}(Y f)-Y_{p}(X f)=[X, Y]_{p} f
$$

4 Tensors and tensor fields

4.1 Tensors

Let V_{1}, \ldots, V_{k} and W be (real) vector spaces. A mapping $F: V_{1} \times \cdots \times V_{k} \rightarrow W$ is called multi linear (more precisely k-linear) is it is linear with respect to every variable, i.e.

$$
F\left(v_{1}, \ldots, a v_{i}+b v_{i}^{\prime}, \ldots, v_{k}\right)=a F\left(v_{1}, \ldots, v_{i}, \ldots, v_{k}\right)+b F\left(v_{1}, \ldots, v_{i}^{\prime}, \ldots, v_{k}\right)
$$

for all $i=1, \ldots, k$ and $a, b \in \mathbb{R}$.
Example 4.2. 1. If V is an inner product space, the inner product $\langle\cdot, \cdot\rangle: V \times V \rightarrow \mathbb{R}$ is 2-linear (or bilinear). Example. The usual dot product in \mathbb{R}^{n}. Use: We can define the norm of a vector or the angle between two vectors.
2. Cross product in \mathbb{R}^{3} is a bilinear mapping $\cdot \times \cdot: \mathbb{R}^{3} \times \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$. Use: We can compute the area of a parallelogram or find a vector that is orthogonal to given vectors.
3. The determinant is an n-linear mapping det: $\mathbb{R}^{n} \times \cdots \times \mathbb{R}^{n} \rightarrow \mathbb{R}$. Interpretation: If $v_{1}, \ldots, v_{n} \in$ $\mathbb{R}^{n}, v_{i}=\left(v_{i}^{1}, \ldots, v_{i}^{n}\right)$, then

$$
\operatorname{det}\left(v_{1}, \ldots, v_{n}\right)=\operatorname{det}\left(\begin{array}{ccc}
v_{1}^{1} & \cdots & v_{n}^{1} \\
\vdots & \ddots & \vdots \\
v_{1}^{n} & \cdots & v_{n}^{n}
\end{array}\right) .
$$

Use: We may study linear independence of vectors v_{1}, \ldots, v_{n} and compute the volume of parallelepiped spanned by the vectors.

Let V be a finite dimensional (real) vector space. A linear map $\omega: V \rightarrow \mathbb{R}$ is called a covector on V and the vector space of all covectors is called the $d u a l$ of V and it is denoted by V^{*}.

Let us denote

$$
\langle\omega, v\rangle=\langle v, \omega\rangle=\omega(v) \in \mathbb{R}, \quad \omega \in V^{*}, v \in V
$$

Lemma 4.3. Let V be an n-dimensional vector space and $\left(v_{1}, \ldots, v_{n}\right)$ a basis of V. Then the covectors $\omega^{1}, \ldots, \omega^{n}$, defined by

$$
\omega^{j}\left(v_{i}\right)=\delta_{i}^{j}
$$

form a basis of V^{*}. In particular, $\operatorname{dim} V^{*}=\operatorname{dim} V$.
Proof. (Exerc.)
[Note.: Above δ_{i}^{j} is the Kronecker delta, i.e. $\delta_{i}^{j}=1$ if $i=j$, and $\delta_{i}^{j}=0$ if $i \neq j$.]
Definition 4.4. 1. a k-covariant tensor on V is a k-linear map

$$
V^{k} \rightarrow \mathbb{R}, \quad V^{k}=\underbrace{V \times \cdots \times V}_{k \text { copies }}
$$

2. an l-contravariant tensor on V is an l-linear map

$$
V^{* l} \rightarrow \mathbb{R}, \quad V^{* l}=\underbrace{V^{*} \times \cdots \times V^{*}}_{l \text { copies }} .
$$

3. a k-covariant, l-contravariant tensor on V (or a (k, l)-tensor for short) is a $(k+l)$-linear map

$$
V^{k} \times V^{* l} \rightarrow \mathbb{R}
$$

We denote

$$
\begin{aligned}
T^{k}(V) & =\text { the space of } k \text {-covariant tensors } \\
T_{l}(V) & =\text { the space of } l \text {-contravariant tensors } \\
T_{l}^{k}(V) & =\text { the space of } k \text {-covariant, } l \text {-contravariant tensors. }
\end{aligned}
$$

Remark 4.5. 1. $T^{k}(V), T_{l}(V)$ and $T_{l}^{k}(V)$ are vector spaces in a natural way.
2. We make a convention that 0-covariant tensors and 0-contravariant tensors are real numbers, so $T^{0}(V)=T_{0}(V)=\mathbb{R}$.

Example 4.6. 1. Every linear mapping $\omega: V \rightarrow \mathbb{R}$ is a 1-covariant tensor. Hence $T^{1}(V)=V^{*}$. Similarly, $T_{1}(V)=V^{* *}=V$.
2. If V is an inner product space, then any inner product on V is a 2-covariant tensor (bilinear real-valued mapping, i.e. a bilinear form).

3 . The determinant is an n-covariant tensor on \mathbb{R}^{n}.
Definition 4.7. The tensor product of tensors $F \in T_{l}^{k}(V)$ and $G \in T_{q}^{p}(V)$ is the tensor $F \otimes G \in$ $T_{l+q}^{k+p}(V)$,

$$
F \otimes G\left(v_{1}, \ldots, v_{k+p}, \omega^{1}, \ldots, \omega^{l+q}\right)=F\left(v_{1}, \ldots, v_{k}, \omega^{1}, \ldots, \omega^{l}\right) G\left(v_{k+1}, \ldots, v_{k+p}, \omega^{l+1}, \ldots, \omega^{l+q}\right)
$$

Lemma 4.8. If $\left(v_{1}, \ldots, v_{n}\right)$ is a basis for V and $\left(\omega^{1}, \ldots, \omega^{n}\right)$ the corresponding dual basis for V^{*} $\left(\omega^{i}\left(v_{j}\right)=\delta_{j}^{i}\right)$, then tensors

$$
\omega^{i_{1}} \otimes \cdots \omega^{i_{k}} \otimes v_{j_{1}} \otimes \cdots \otimes v_{j_{l}}, \quad 1 \leq j_{p}, i_{q} \leq n
$$

form a basis for $T_{l}^{k}(V)$. In particular, $\operatorname{dim} T_{l}^{k}(V)=n^{k+l}$.
Proof. (Exerc.)
Remark 4.9. We noticed earlier that $T_{1}(V)=V^{* *}=V$ (i.e. every vector $v \in V$ is a 1-contravariant tensor) and $T^{1}(V)=V^{*}$ (i.e. every covector is a 1-covariant tensor). Thus

$$
\omega^{i_{1}} \otimes \cdots \omega^{i_{k}} \otimes v_{j_{1}} \otimes \cdots \otimes v_{j_{l}} \in T_{l}^{k}(V)
$$

i.e. it is a (k, l)-tensor.

4.10 Cotangent bundle

Earlier we defined the differential of a function $f \in C^{\infty}(p)$ at p as the linear map $d f_{p}: T_{p} M \rightarrow \mathbb{R}$,

$$
d f_{p} v=v f, \quad v \in T_{p} M
$$

Hence $d f_{p} \in T_{p} M^{*}\left(=\right.$ the dual of $\left.T_{p} M\right)$. We call $T_{p} M^{*}$ the cotangent space of M at p. If $(U, x), x=\left(x^{1}, \ldots, x^{n}\right)$, is a chart at p and $\left(\left(\partial_{1}\right)_{p}, \ldots,\left(\partial_{n}\right)_{p}\right)$ is the basis for $T_{p} M$ formed by the
coordinate vectors, then the differentials $d x_{p}^{i}, i=1, \ldots, n$, at p of functions x^{i} form the dual basis for $T_{p} M^{*}$. Thus the differential of a function $f \in C^{\infty}(p)$ at p is

$$
d f_{p}=\left(\partial_{i}\right)_{p} f d x_{p}^{i} . \quad \text { (Exerc.) [Note: Einstein summation }
$$

We define the cotangent bundle $T M^{*}$ over M as the disjoint union of all cotangent spaces

$$
T M^{*}=\bigsqcup_{p \in M} T_{p} M^{*}
$$

It has a natural projection $\pi: T M^{*} \rightarrow M, T_{p} M^{*} \ni \omega \mapsto p \in M$. Sections of $T M^{*}$ are called covector fields on M or (differential) 1-forms on M. In other words, they are mappings $\omega: M \rightarrow T M^{*}$ such tha $\pi \circ \omega=i d$. The differential of a function $f \in C^{\infty}(M)$ is the covector field

$$
d f: M \rightarrow T M^{*}, \quad d f(p)=d f_{p}: T_{p} M \rightarrow \mathbb{R}
$$

The geometric visualization of vector and covector fields. A vector field attach a vector to each point liittää jokaiseen pisteeseen vektorin whereas a covector field ω attach to each point p, where $\omega_{p} \neq 0$, a codimension 1 subspace of $T_{p} M$ (a hyperplane)

$$
\operatorname{Ker} \omega_{p}=\left\{v \in T_{p} M: \omega_{p}(v)=0\right\}
$$

and an affine (codimension 1) hyperplane

$$
\omega_{p}^{-1}(1)=\left\{v \in T_{p} M: \omega_{p}(v)=1\right\}
$$

$$
\omega_{p}^{-1}(1)
$$

Similarly to the case of the tangent bundle, we may prove that the cotangent bundle has a canonical smooth structure. The set of all smooth covector fields is denoted by $\mathcal{T}^{1}(M)\left(\right.$ or $\mathcal{T}_{0}^{1}(M)$, $\left.\mathcal{T}^{*}(M), \mathcal{T}^{0,1}(M)\right)$.

If $(U, x), x=\left(x^{1}, \ldots, x^{n}\right)$, is a chart and ω is a covector field on U, there exist functions $\omega_{i}: U \rightarrow \mathbb{R}, i=1, \ldots, n$, s.t.

$$
\omega=\omega_{i} d x^{i}
$$

The functions ω_{i} are called the component functions of ω with respect to (U, x). As in the case of vector fields we have:

Lemma 4.11. Let ω be a covector field on M. Then the following are equivalent:
(a) $\omega \in \mathcal{T}^{1}(M)$.
(b) the component functions of ω are smooth with respect all charts.
(c) If $U \subset M$ is open and $V \in \mathcal{T}(U)$ is a smooth vector field in U, the function $p \mapsto \omega_{p}\left(V_{p}\right)$ is smooth.

Proof. Exerc. [Cf. Lemma 3.3]

4.12 Tensor bundles over M

Let M be a smooth manifold.
Definition 4.13. We define tensor bundles over M as disjoint unions:

1. k-covariant tensor bundle

$$
T^{k} M=\bigsqcup_{p \in M} T^{k}\left(T_{p} M\right)
$$

2. l-contravariant tensor bundle

$$
T_{l} M=\bigsqcup_{p \in M} T_{l}\left(T_{p} M\right), \quad \mathrm{ja}
$$

3. (k, l)-tensor bundle

$$
T_{l}^{k} M=\bigsqcup_{p \in M} T_{l}^{k}\left(T_{p} M\right)
$$

We identify:

$$
\begin{aligned}
T^{0} M & =T_{0} M=M \times \mathbb{R} \\
T^{1} M & =T M^{*} \\
T_{1} M & =T M \\
T_{0}^{k} M & =T^{k} M \\
T_{l}^{0} M & =T_{l} M
\end{aligned}
$$

All tensor bundles have natural C^{∞} structures, so we can consider smooth sections. We say that a section $s: M \rightarrow T_{l}^{k} M$ is a (k, l)-tensor field (i.e. $\pi \circ s=i d_{M}$, so $s(p) \in T_{l}^{k}\left(T_{p} M\right)$). Similarly a smooth (k, l)-tensor field is a smooth section $M \rightarrow T_{l}^{k} M$. Similarly, we define (smooth) k-covariant tensor fields and l-contravariant tensor fields. By our convention both 0 -covariant and 0 -contravariant tensors are real numbers, hence (smooth) 0-covariant tensor fields and (smooth) 0 -contravariant tensor fields are (smooth) real-valued functions. We denote

$$
\begin{aligned}
\mathcal{T}^{k}(M) & =\left\{\text { smooth sections of } T^{k} M\right\} \\
& =\{\text { smooth } k \text {-covariant tensor fields }\} \\
\mathcal{T}_{l}(M) & =\left\{\text { smooth sections of } T_{l} M\right\} \\
& =\{\text { smooth } l \text {-contravariant tensor fields }\} \\
\mathcal{T}_{l}^{k}(M) & =\left\{\text { smooth sections of } T_{l}^{k} M\right\} \\
& =\{\text { smooth }(k, l) \text {-tensor fields }\}
\end{aligned}
$$

If $(U, x), x=\left(x^{1}, \ldots, x^{n}\right)$, is a chart and σ is a tensor field over U, we may write
$\sigma=\sigma_{i_{1} \cdots i_{k}} d x^{i_{1}} \otimes \cdots \otimes d x^{i_{k}}, \quad$ if σ is a k-covariant tensor field,
$\sigma=\sigma^{j_{1} \cdots j_{l}} \partial_{j_{1}} \otimes \cdots \otimes \partial_{j_{l}}, \quad$ if σ is an l-contravariant tensor field, and $\sigma=\sigma_{i_{1} \cdots i_{k}}^{j_{1} \cdots j_{l}} d x^{i_{1}} \otimes \cdots \otimes d x^{i_{k}} \otimes \partial_{j_{1}} \otimes \cdots \otimes \partial_{j_{l}}, \quad$ if σ is a (k, l)-tensor field.

The functions $\sigma_{i_{1} \cdots i_{k}}, \sigma^{j_{1} \cdots j_{l}}$ and $\sigma_{i_{1} \cdots i_{k}}^{j_{1} \cdots j_{l}}$ are called the component functions of σ with respect to the chart (U, x). We have again:

Lemma 4.14. Let σ be a (k, l)-tensor field over M. Then the following are equivalent.
(a) $\sigma \in \mathcal{T}_{l}^{k}(M)$.
(b) the component functions of σ are smooth with respect to every chart.
(c) If $U \subset M$ is open and $X_{1}, \ldots, X_{k} \in \mathcal{T}(U)$ are smooth vector fields on U and $\omega^{1}, \ldots, \omega^{l} \in$ $\mathcal{T}^{1}(M)$ are smooth covector fields on U, then the function

$$
p \mapsto \sigma\left(X_{1}, \ldots, X_{k}, \omega^{1}, \ldots, \omega^{l}\right)_{p} \in \mathbb{R}
$$

is smooth.
Proof. Exerc. [Cf. Lemma 3.3]
"Pullback". Let $f: M \rightarrow N$ be a smooth mapping and $k \in\{0,1,2, \ldots\}$. For every $p \in M$ we define a mapping (pullback)

$$
f^{*}: T^{k}\left(T_{f(p)} N\right) \rightarrow T^{k}\left(T_{p} M\right)
$$

by setting

$$
f^{*} S\left(v_{1}, \ldots, v_{k}\right)=S\left(f_{*} v_{1}, \ldots, f_{*} v_{k}\right), \quad S \in T^{k}\left(T_{f(p)} N\right), v_{1}, \ldots, v_{k} \in T_{p} M
$$

Furthermore, we define the "pullback" operation for (smooth) k-covariant tehsor fields: Let $f: M \rightarrow$ N be smooth and let σ be a k-covariant tensor field on N. We define a k-covariant tensor field $f^{*} \sigma$ on M by setting

$$
\left(f^{*} \sigma\right)_{p}=f^{*}\left(\sigma_{f(p)}\right), \quad p \in M
$$

In other words, if $p \in M$ and $v_{1}, \ldots, v_{k} \in T_{p} M$, then

$$
\left(f^{*} \sigma\right)_{p}\left(v_{1}, \ldots, v_{k}\right)=\sigma_{f(p)}\left(f_{*} v_{1}, \ldots, f_{*} v_{k}\right)
$$

Theorem 4.15. Let M, N, P be smooth manifolds, $f: M \rightarrow N$ and $g: N \rightarrow P$ smooth mappings, $\sigma \in \mathcal{T}^{k}(N), \tau \in \mathcal{T}^{l}(N)$ and $h \in C^{\infty}(N)$. Then
(a) $f^{*} d h=d(h \circ f)$.
(b) $f^{*}(h \sigma)=(h \circ f) f^{*} \sigma$.
(c) $f^{*}(\sigma \otimes \tau)=f^{*} \sigma \otimes f^{*} \tau$.
(d) $f^{*} \sigma \in \mathcal{T}^{k}(M)$.
(e) $f^{*}: \mathcal{T}^{k}(N) \rightarrow \mathcal{T}^{k}(M)$ is linear.
(f) $(g \circ f)^{*}=f^{*} \circ g^{*}$.
(g) $\left(i d_{N}\right)^{*} \sigma=\sigma$.

Proof. Let us prove some claims.
(b) Let $p \in M$ and $v_{1}, \ldots, v_{k} \in T_{p} M$. Then

$$
\begin{aligned}
\left(f^{*}(h \sigma)\right)_{p}\left(v_{1}, \ldots, v_{k}\right) & =(h \sigma)_{f(p)}\left(f_{*} v_{1}, \ldots, f_{*} v_{k}\right) \\
& =h(f(p)) \sigma_{f(p)}\left(f_{*} v_{1}, \ldots, f_{*} v_{k}\right) \\
& =(h \circ f)(p) \sigma_{f(p)}\left(f_{*} v_{1}, \ldots, f_{*} v_{k}\right) \\
& =\left((h \circ f) f^{*} \sigma\right)_{p}\left(v_{1}, \ldots, v_{k}\right) .
\end{aligned}
$$

(f) Let $\beta \in \mathcal{T}^{k}(P)$. Then $(g \circ f)^{*} \beta \in \mathcal{T}^{k}(M)$. Similarly,

$$
\left(f^{*} \circ g^{*}\right) \beta=f^{*}(\underbrace{g^{*} \beta}_{\in \mathcal{T}^{k}(N)}) \in \mathcal{T}^{k}(M)
$$

Let $p \in M$ and $v_{1}, \ldots, v_{k} \in T_{p} M$. Then

$$
\begin{aligned}
\left((g \circ f)^{*} \beta\right)_{p}\left(v_{1}, \ldots, v_{k}\right) & =\beta_{g(f(p))}\left((g \circ f)_{*} v_{1}, \ldots,(g \circ f)_{*} v_{k}\right) \\
& =\beta_{g(f(p))}\left(g_{*}\left(f_{*} v_{1}\right), \ldots, g_{*}\left(f_{*} v_{k}\right)\right) \\
& \left.=\left(g^{*} \beta\right)_{f(p)}\left(f_{*} v_{1}\right), \ldots, f_{*} v_{k}\right) \\
& =\left(f^{*}\left(g^{*} \beta\right)\right)_{p}\left(v_{1}, \ldots, v_{k}\right) \\
& =\left(\left(f^{*} \circ g^{*}\right) \beta\right)_{p}\left(v_{1}, \ldots, v_{k}\right) .
\end{aligned}
$$

We leave the others as exercise.
Note: If f is not a diffeomorphism, we can not, in general, define a pullback operation for l-contravariant tensor fields or (k, l)-tensor fields.

4.16 Symmetric tensors and tensor fields

Let T be a k-covariant tensor on V. We say that T is symmetric if

$$
T\left(v_{1}, \ldots, \stackrel{i}{v}_{i}, \ldots, \stackrel{j}{v}_{j}, \ldots, v_{k}\right)=T\left(v_{1}, \ldots, \stackrel{i}{v}_{j}, \ldots, \stackrel{j}{v}_{i}, \ldots, v_{k}\right)
$$

for all $1 \leq i<j \leq k$. [Here the indices i and j over vectors indicate, of course, the positions of the vectors.] We denote

$$
\Sigma^{k}(V)=\left\{T \in T^{k}(V): T \text { symmetric }\right\}
$$

Clearly $\Sigma^{k}(V)$ is a subspace of $T^{k}(V)$. We define a mapping, symmetrization, $\operatorname{Sym}: T^{k}(V) \rightarrow$ $T^{k}(V)$,

$$
\operatorname{Sym} T=\frac{1}{k!} \sum_{\sigma \in S_{k}}{ }^{\sigma} T
$$

where S_{k} is the permutation group of $\{1, \ldots, k\}$ and ${ }^{\sigma} T$ is the k-covariant tensor

$$
{ }^{\sigma} T\left(v_{1}, \ldots, v_{k}\right)=T\left(v_{\sigma(1)}, \ldots, v_{\sigma(k)}\right)
$$

Hence

$$
\operatorname{Sym} T\left(v_{1}, \ldots, v_{k}\right)=\frac{1}{k!} \sum_{\sigma \in S_{k}} T\left(v_{\sigma(1)}, \ldots, v_{\sigma(k)}\right)
$$

The number of elements in S_{k} is k !, so $\operatorname{Sym} T$ is the "mean" of tensors ${ }^{\sigma} T$ over all permutations $\sigma \in S_{k}$. Furthermore, we make a convention that ${ }^{\tau}\left({ }^{\sigma} T\right)={ }^{\tau \sigma} T$, where $\tau \sigma(i)=\tau(\sigma(i))$.

Lemma 4.17. 1. Sym is a linear map $T^{k}(V) \rightarrow \Sigma^{k}(V)$.
2. $(\mathrm{Sym}) \circ(\mathrm{Sym})=\mathrm{Sym}$.
3. $T \in \Sigma^{k}(V) \Longleftrightarrow T=\operatorname{Sym} T$.

Proof. Clearly Sym is linear. Let $T \in T^{k}(V)$. If $\tau \in S_{k}$ is an arbitrary permutation, then $\operatorname{Sym} T\left(v_{\tau(1)}, \ldots, v_{\tau(k)}\right)={ }^{\tau}(\operatorname{Sym} T)\left(v_{1}, \ldots, v_{k}\right)$ and

$$
\begin{aligned}
{ }^{\tau}(\operatorname{Sym} T) & ={ }^{\tau}\left(\frac{1}{k!} \sum_{\sigma \in S_{k}}{ }^{\sigma} T\right)=\frac{1}{k!} \sum_{\sigma \in S_{k}}{ }^{\tau}\left({ }^{\sigma} T\right) \\
& =\frac{1}{k!} \sum_{\sigma \in S_{k}}{ }^{\tau \sigma} T=\frac{1}{k!} \sum_{\eta \in S_{k}}{ }^{\eta} T \\
& =\operatorname{Sym} T
\end{aligned}
$$

where $\eta=\tau \sigma$ runs through all the elements in S_{k} along with σ. Since $\tau \in S_{k}$ was arbitrary, Sym T is symmetric. On the other hand, if $T \in \Sigma^{k}(V)$, then

$$
\begin{aligned}
T\left(v_{1}, \ldots, v_{k}\right) & =T\left(v_{\sigma(1)}, \ldots, v_{\sigma(k)}\right) \quad \forall \sigma \in S_{k} \\
\Rightarrow \quad k!T\left(v_{1}, \ldots, v_{k}\right) & =\sum_{\sigma \in S_{k}} T\left(v_{\sigma(1)}, \ldots, v_{\sigma(k)}\right) \\
\Rightarrow T\left(v_{1}, \ldots, v_{k}\right) & =\frac{1}{k!} \sum_{\sigma \in S_{k}} T\left(v_{\sigma(1)}, \ldots, v_{\sigma(k)}\right)=\operatorname{Sym} T\left(v_{1}, \ldots, v_{k}\right) .
\end{aligned}
$$

Hence

$$
T \in \Sigma^{k}(V) \Rightarrow T=\operatorname{Sym} T
$$

In particular,

$$
\operatorname{Sym}(\underbrace{\operatorname{Sym} T}_{\in \Sigma^{k}(V)})=\operatorname{Sym} T
$$

On the other hand, if $T=\operatorname{Sym} T$, then $T \in \Sigma^{k}(V)$ since $\operatorname{Sym} T$ is symmetric.
If $S \in \Sigma^{k}(V)$ and $T \in \Sigma^{l}(V)$, their tensor product need not be symmetric, $S \otimes T \notin \Sigma^{k+l}(V)$ in general. We define the symmetric product of tensors $S \in \Sigma^{k}(V)$ and $T \in \Sigma^{l}(V)$ as $S T=$ $\operatorname{Sym}(S \otimes T) \in \Sigma^{k+l}(V)$,

$$
S T\left(v_{1}, \ldots, v_{k+l}\right)=\frac{1}{(k+l)!} \sum_{\sigma \in S_{k+l}} S\left(v_{\sigma(1)}, \ldots, v_{\sigma(k)}\right) T\left(v_{\sigma(k+1)}, \ldots, v_{\sigma(k+l)}\right)
$$

A symmetric k-covariant tensor field over M is a k-covariant tensor field whose value at every point $p \in M$ is a symmetric tensor. Similarly, we define symmetric l-contravariant tensors and tensor fields.

Example 4.18. The most important symmetric tensor field on M is so-called Riemannian metric. It is a smooth symmetric 2-covariant tensor field $g \in \mathcal{T}^{2}(M)$ that is positive definite at every point $p \in M$. Then the pair (M, g) is called a Riemannian manifold. Then for each $p \in M$

$$
g_{p}: T_{p} M \times T_{p} M \rightarrow \mathbb{R}
$$

is an inner product. Hence we can define the norm $|v|=g_{p}(v, v)^{1 / 2}$ of a vector $v \in T_{p} M$ and a length of a C^{∞}-path $\gamma:[a, b] \rightarrow M$

$$
\ell(\gamma)=\int_{a}^{b}\left|\dot{\gamma}_{t}\right| d t
$$

The length of a piecewise C^{∞}-path is the sum of the lengths of the pieces. Suppose that M is connected and $p, q \in M$. Define

$$
d(p, q)=\inf _{\gamma} \ell(\gamma)
$$

where the infimum is taken over all piecewise C^{∞}-paths joining p and q. Then $d: M \times M \rightarrow \mathbb{R}$ satisfies the axioms of a metric and the topology determined by d is the same as the original topology of M. By using a smooth partition of unity one can prove that there are Riemannian metrics on every smooth manifold.

5 Differential forms

In this section we consider alternating covariant tensors and tensor fields. The sign of an alternating tensor changes if two vectors are switched. Differential forms are alternating k-covariant tensor fields. They are very important since, for example:

1. they can be integrated over manifolds and submanifolds independently of local representations;
2. they form a link between "analysis" and topology on a manifold (de Rham cohomology).

Furthermore, the classical differential operators like grad (gradient), div (divergence) and curl (curl) as well as Green's, Gauss's and Stokes's theorems can be presented using differential forms.

5.1 Exterior algebra, alternating tensors

We say that a k-covariant tensor $T \in T^{k}(V)$ is alternating (antisymmetric or skew-symmetric) if

$$
T\left(v_{1}, \ldots, \stackrel{i}{v}_{i}, \ldots, \stackrel{j}{v}_{j}, \ldots, v_{k}\right)=-T\left(v_{1}, \ldots, \stackrel{i}{v}_{j}, \ldots, \stackrel{j}{v}_{i}, \ldots, v_{k}\right)
$$

for all $1 \leq i<j \leq k$. We denote

$$
\Lambda^{k}(V)=\left\{T \in T^{k}(V): T \text { alternating }\right\}
$$

and call the elements of $\Lambda^{k}(V) k$-covectors. Clearly $\Lambda^{k}(V)$ is a vector subspace of $T^{k}(V)$. [Note: In some books the notation $\Lambda^{k}\left(V^{*}\right)$ is used.]

We denote $(\sigma(1), \sigma(2), \ldots, \sigma(k))=\sigma(1, \ldots, k)$ if $\sigma \in S_{k}$. A permuation $\sigma \in S_{k}$ is called transposition if it interchanges two elements and leaves all the others fixed. In other words,

$$
\sigma(1, \ldots, \stackrel{i}{i}, \ldots, \stackrel{j}{j}, \ldots, k)=(1, \ldots, \stackrel{i}{j}, \ldots, \stackrel{j}{i}, \ldots, k)
$$

for some $1 \leq i<j \leq k$. A permutation σ is even (odd), denoted by $\operatorname{sgn}=+1(\operatorname{sgn}=-1)$, if it can be expressed as a composition of even (odd) number of transpositions. Define a mapping, called the alternating projection, Alt: $T^{k}(V) \rightarrow T^{k}(V)$,

$$
\begin{aligned}
\text { Alt } T & =\frac{1}{k!} \sum_{\sigma \in S_{k}}(\operatorname{sgn} \sigma)\left({ }^{\sigma} T\right), \quad \text { ts. } \\
\text { Alt } T\left(v_{1}, \ldots, v_{k}\right) & =\frac{1}{k!} \sum_{\sigma \in S_{k}}(\operatorname{sgn} \sigma) T\left(v_{\sigma(1)}, \ldots, v_{\sigma(k)}\right)
\end{aligned}
$$

Lemma 5.2. 1. Alt is a linear mapping $T^{k}(V) \rightarrow \Lambda^{k}(V)$.
2. $($ Alt $) \circ($ Alt $)=$ Alt .
3. $T \in \Lambda^{k}(V) \Longleftrightarrow T=\operatorname{Alt} T$.

Proof. Linearity is clear. Fix indices $1 \leq i<j \leq k$. Let $\tau \in S_{k}$,

$$
\tau(1, \ldots, \stackrel{i}{i}, \ldots, \stackrel{j}{j}, \ldots, k)=(1, \ldots, \stackrel{i}{j}, \ldots, \stackrel{j}{i}, \ldots, k)
$$

so $\operatorname{sgn} \tau=-1$. Let $T \in T^{k}(V)$. Then

$$
\operatorname{Alt} T\left(v_{1}, \ldots, \stackrel{i}{v}_{j}, \ldots, \stackrel{j}{v}_{i}, \ldots, v_{k}\right)={ }^{\tau}(\operatorname{Alt} T)\left(v_{1}, \ldots, \stackrel{i}{v}_{i}, \ldots, \stackrel{j}{v}_{j}, \ldots, v_{k}\right)
$$

and so

$$
\begin{aligned}
\tau(\operatorname{Alt} T) & ={ }^{\tau}\left(\frac{1}{k!} \sum_{\sigma \in S_{k}}(\operatorname{sgn} \sigma)^{\sigma} T\right) \\
& =-{ }^{\tau}\left(\frac{1}{k!} \sum_{\sigma \in S_{k}}(\operatorname{sgn} \tau)(\operatorname{sgn} \sigma)^{\sigma} T\right) \\
& =-\frac{1}{k!} \sum_{\sigma \in S_{k}}(\operatorname{sgn} \tau \sigma)^{\tau \hat{A} t \sigma} T \\
& =-\frac{1}{k!} \sum_{\eta \in S_{k}}(\operatorname{sgn} \eta)^{\eta} T \\
& =-\operatorname{Alt} T
\end{aligned}
$$

where $\eta=\tau \sigma$ and $\operatorname{sgn} \eta=(\operatorname{sgn} \tau)(\operatorname{sgn} \sigma)$. Hence Alt $T \in \Lambda^{k}(V) \forall T \in T^{k}(V)$.
If $T \in \Lambda^{k}(V)$, then

$$
T\left(v_{1}, \ldots, v_{k}\right)=(\operatorname{sgn} \sigma) T\left(v_{\sigma(1)}, \ldots, v_{\sigma(k)}\right) \quad \forall \sigma \in S_{k}
$$

so

$$
\begin{aligned}
\operatorname{Alt} T\left(v_{1}, \ldots, v_{k}\right) & =\frac{1}{k!} \sum_{\sigma \in S_{k}} \underbrace{(\operatorname{sgn} \sigma) T\left(v_{\sigma(1)}, \ldots, v_{\sigma(k)}\right)}_{=T\left(v_{1}, \ldots, v_{k}\right)} \\
& =T\left(v_{1}, \ldots, v_{k}\right) .
\end{aligned}
$$

Hence

$$
T \in \Lambda^{k}(V) \Rightarrow \operatorname{Alt} T=T
$$

In particular, (Alt) $\circ($ Alt $)=$ Alt. Finally, if Alt $T=T$, then $T \in \Lambda^{k}(V)$.
Example 5.3. 1. $T \in T^{0}(V) \Rightarrow \operatorname{Alt} T=T$.
2. $T \in T^{1}(V) \Rightarrow \operatorname{Alt} T=T$.
3. $T \in T^{2}(V) \Rightarrow$

$$
\operatorname{Alt} T(v, w)=\frac{1}{2}(T(v, w)-T(w, v))
$$

4. $T \in T^{3}(V) \Rightarrow$

$$
\operatorname{Alt} T(x, y, z)=\frac{1}{6}(T(x, y, z)+T(y, z, x)+T(z, x, y)-T(y, x, z)-T(z, y, x)-T(x, z, y))
$$

Definition 5.4. If $\alpha \in T^{k}(V)$ and $\beta \in T^{l}(V)$, their wedge product (or exterior product) is $\alpha \wedge \beta \in$ $\Lambda^{k+l}(V)$,

$$
\alpha \wedge \beta=\frac{(k+l)!}{k!l!} \operatorname{Alt}(\alpha \otimes \beta)
$$

Thus

$$
\alpha \wedge \beta\left(v_{1}, \ldots, v_{k+l}\right)=\frac{1}{k!l!} \sum_{\sigma \in S_{k+l}}(\operatorname{sgn} \sigma) \alpha\left(v_{\sigma(1)}, \ldots, v_{\sigma(k)}\right) \beta\left(v_{\sigma(k+1)}, \ldots, v_{\sigma(k+l)}\right)
$$

A permutation $\sigma \in S_{k+l}$, with

$$
\sigma(1)<\sigma(2)<\cdots<\sigma(k) \quad \text { ja } \quad \sigma(k+1)<\sigma(k+2)<\cdots<\sigma(k+l)
$$

is called s (k, l) shuffle. Denote the set of all (k, l)-shuffles by $S h(k, l)$.

Lemma 5.5. If $\alpha \in \Lambda^{k}(V)$ and $\beta \in \Lambda^{l}(V)$, then

$$
\alpha \wedge \beta\left(v_{1}, \ldots, v_{k+l}\right)=\sum_{\sigma \in S h(k, l)}(\operatorname{sgn} \sigma) \alpha\left(v_{\sigma(1)}, \ldots, v_{\sigma(k)}\right) \beta\left(v_{\sigma(k+1)}, \ldots, v_{\sigma(k+l)}\right)
$$

Proof. Exerc.
Theorem 5.6 (Properties of the wedge product). (a) Bilinearity:

$$
\begin{aligned}
& (a \alpha+b \beta) \wedge \eta=a(\alpha \wedge \eta)+b(\beta \wedge \eta) \\
& \quad \forall \alpha, \beta \in T^{k}(V), \eta \in T^{l}(V), a, b \in \mathbb{R}
\end{aligned}
$$

(b)

$$
\alpha \wedge \beta=(\operatorname{Alt} \alpha) \wedge \beta=\alpha \wedge(\operatorname{Alt} \beta) \quad \forall \alpha \in T^{k}(V), \beta \in T^{l}(V)
$$

(c) Anticommutativity:

$$
\alpha \wedge \beta=(-1)^{k l} \beta \wedge \alpha \quad \forall \alpha \in T^{k}(V), \beta \in T^{l}(V)
$$

(d) Associativity:

$$
\begin{gathered}
\alpha \wedge(\beta \wedge \eta)=(\alpha \wedge \beta) \wedge \eta=\frac{(k+l+p)!}{k!l!p!} \operatorname{Alt}(\alpha \otimes \beta \otimes \eta) \\
\forall \alpha \in T^{k}(V), \beta \in T^{l}(V), \eta \in T^{p}(V)
\end{gathered}
$$

(e) For all covector $\omega^{1}, \ldots, \omega^{k}$ and for all vectors v_{1}, \ldots, v_{k}

$$
\omega^{1} \wedge \cdots \wedge \omega^{k}\left(v_{1}, \ldots, v_{k}\right)=\operatorname{det}\left[\omega^{j}\left(v_{i}\right)\right] .
$$

Proof. (a): Bilinearity is clear.
(b): If $\tau \in S_{k}$, then

$$
\begin{aligned}
\operatorname{Alt}^{\tau} T\left(v_{1}, \ldots, v_{k}\right) & =\frac{1}{k!} \sum_{\sigma \in S_{k}}(\operatorname{sgn} \sigma) T\left(v_{\sigma \tau(1)}, \ldots, v_{\sigma \tau(k)}\right) \\
& =\frac{1}{k!} \sum_{\sigma \in S_{k}}(\operatorname{sgn} \tau)(\operatorname{sgn}(\sigma \tau)) T\left(v_{\sigma \tau(1)}, \ldots, v_{\sigma \tau(k)}\right) \\
& =(\operatorname{sgn} \tau) \operatorname{Alt} T\left(v_{1}, \ldots, v_{k}\right)
\end{aligned}
$$

Hence

$$
\operatorname{Alt}\left({ }^{\tau} \alpha\right)=(\operatorname{sgn} \tau) \operatorname{Alt} \alpha
$$

We obtain

$$
\begin{aligned}
\operatorname{Alt}((\operatorname{Alt} \alpha) \otimes \beta) & =\operatorname{Alt}\left(\frac{1}{k!} \sum_{\sigma \in S_{k}}(\operatorname{sgn} \sigma)\left({ }^{\sigma} \alpha \otimes \beta\right)\right) \\
& =\frac{1}{k!} \sum_{\sigma \in S_{k}}(\operatorname{sgn} \sigma) \operatorname{Alt}\left({ }^{\sigma} \alpha \otimes \beta\right) \\
& =\frac{1}{k!} \sum_{\sigma \in S_{k}}\left(\operatorname{sgn} \sigma^{\prime}\right) \operatorname{Alt}^{\sigma^{\prime}}(\alpha \otimes \beta)
\end{aligned}
$$

where $\sigma^{\prime} \in S_{k+l}$ is a permutation s.t. $\sigma^{\prime}(1, \ldots, k, k+1, \ldots, k+l)=(\sigma(1), \ldots, \sigma(k), k+1, \ldots, k+l)$, and thus $\operatorname{sgn} \sigma^{\prime}=\operatorname{sgn} \sigma$ and ${ }^{\sigma^{\prime}}(\alpha \otimes \beta)={ }^{\sigma} \alpha \otimes \beta$. Since

$$
\operatorname{Alt}^{\sigma^{\prime}}(\alpha \otimes \beta)=\left(\operatorname{sgn} \sigma^{\prime}\right) \operatorname{Alt}(\alpha \otimes \beta)
$$

we get

$$
\begin{aligned}
\operatorname{Alt}((\operatorname{Alt} \alpha) \otimes \beta) & =\frac{1}{k!} \sum_{\sigma \in S_{k}} \underbrace{\left(\operatorname{sgn} \sigma^{\prime}\right)\left(\operatorname{sgn} \sigma^{\prime}\right)}_{=1} \operatorname{Alt}(\alpha \otimes \beta) \\
& =\operatorname{Alt}(\alpha \otimes \beta) .
\end{aligned}
$$

Hence

$$
\begin{aligned}
\alpha \wedge \beta & =\frac{(k+l)!}{k!l!} \operatorname{Alt}(\alpha \otimes \beta) \\
& =\frac{(k+l)!}{k!l!} \operatorname{Alt}((\operatorname{Alt} \alpha) \otimes \beta) \\
& =(\operatorname{Alt} \alpha) \wedge \beta
\end{aligned}
$$

Similarly the other equation in (b).
(c): Let $\tau \in S_{k+l}$,

$$
\tau(1, \ldots, k+l)=(k+1, \ldots, k+l, 1, \ldots, k)
$$

so $\operatorname{sgn} \tau=(-1)^{k l}$. Now

$$
(\alpha \otimes \beta)\left(v_{1}, \ldots, v_{k+l}\right)=(\beta \otimes \alpha)\left(v_{\tau(1)}, \ldots, v_{\tau(k+l)}\right)
$$

so $\alpha \otimes \beta={ }^{\tau}(\beta \otimes \alpha)$. Hence

$$
\operatorname{Alt}(\alpha \otimes \beta)=(\operatorname{sgn} \tau) \operatorname{Alt}(\beta \otimes \alpha)=(-1)^{k l} \operatorname{Alt}(\beta \otimes \alpha)
$$

that implies (c).
(d):

$$
\begin{aligned}
\alpha \wedge(\beta \wedge \eta) & =\frac{(k+l+p)!}{k!(l+p)!} \operatorname{Alt}(\alpha \otimes(\beta \wedge \eta)) \\
& =\frac{(k+l+p)!}{k!(l+p)!} \frac{(l+p)!}{l!p!} \operatorname{Alt}(\alpha \otimes \operatorname{Alt}(\beta \otimes \eta)) \\
& =\frac{(k+l+p)!}{k!l!p!} \operatorname{Alt}(\alpha \otimes \beta \otimes \eta)
\end{aligned}
$$

since $\operatorname{Alt}(\alpha \otimes \operatorname{Alt}(\beta \otimes \eta))=\operatorname{Alt}(\alpha \otimes(\beta \otimes \eta))=\operatorname{Alt}(\alpha \otimes \beta \otimes \eta)$. Computing similarly $(\alpha \wedge \beta) \wedge \eta$ we obtain (d).
(e): If $\alpha_{i} \in T^{d_{i}}(V)$, we obtain by repeating the property (d) that

$$
\begin{equation*}
\alpha_{1} \wedge \cdots \wedge \alpha_{k}=\frac{\left(d_{1}+\cdots+d_{k}\right)!}{d_{1}!\cdots d_{k}!} \operatorname{Alt}\left(\alpha_{1} \otimes \cdots \otimes \alpha_{k}\right) \tag{5.7}
\end{equation*}
$$

In particular, in case $d_{i} \equiv 1$ we get

$$
\begin{equation*}
\omega^{1} \wedge \cdots \wedge \omega^{k}=k!\operatorname{Alt}\left(\omega^{1} \otimes \cdots \otimes \omega^{k}\right) \tag{5.8}
\end{equation*}
$$

so

$$
\begin{aligned}
\omega^{1} \wedge \cdots \wedge \omega^{k}\left(v_{1}, \ldots, v_{k}\right) & =k!\frac{1}{k!} \sum_{\sigma \in S_{k}}(\operatorname{sgn} \sigma)\left(\omega^{1} \otimes \cdots \otimes \omega^{k}\right)\left(v_{\sigma(1)}, \ldots, v_{\sigma(k)}\right) \\
& =\sum_{\sigma \in S_{k}}(\operatorname{sgn} \sigma) \omega^{1}\left(v_{\sigma(1)}\right) \cdots \omega^{k}\left(v_{\sigma(k)}\right) \\
& =\operatorname{det}\left[\omega^{j}\left(v_{i}\right)\right] .
\end{aligned}
$$

Theorem 5.9. Let V be an n-dimensional and let $\left\{\omega^{1}, \ldots, \omega^{n}\right\}$ be a basis of V^{*}. The the set

$$
\mathcal{E}=\left\{\omega^{i_{1}} \wedge \cdots \wedge \omega^{i_{k}} \mid 1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n\right\}
$$

of k-covectors forms a basis of $\Lambda^{k}(V)$. In particular,

$$
\operatorname{dim} \Lambda^{k}(V)=\binom{n}{k}=\frac{n!}{k!(n-k)!}
$$

If $k>n$, then $\operatorname{dim} \Lambda^{k}(V)=0$.
Proof. Let $\omega \in \Lambda^{k}(V)$. In particular, $\omega \in T^{k}(V)$, so

$$
\omega=\omega_{i_{1} \cdots i_{k}} \omega^{i_{1}} \otimes \cdots \otimes \omega^{i_{k}}
$$

by Lemma 4.8. Since $\omega \in \Lambda^{k}(V)$, we have

$$
\begin{aligned}
\omega=\operatorname{Alt} \omega & =\omega_{i_{1} \cdots i_{k}} \operatorname{Alt}\left(\omega^{i_{1}} \otimes \cdots \otimes \omega^{i_{k}}\right) \\
& \stackrel{(5.8)}{=}\left(\frac{\omega_{i_{1} \cdots i_{k}}}{k!}\right) \omega^{i_{1}} \wedge \cdots \wedge \omega^{i_{k}}
\end{aligned}
$$

If above $i_{j}=i_{l}$ for some $j<l$, the corresponding term

$$
\omega^{i_{1}} \wedge \cdots \wedge \omega^{i_{j}} \wedge \cdots \wedge \omega^{i_{l}} \wedge \cdots \wedge \omega^{i_{k}}=0
$$

because it is an alternating tensor. Hence we may assume that in every multi-index all numbers i_{1}, \ldots, i_{k} are different. Furthermore, for every multi-index $i_{1} \cdots i_{k}$ there exists a permutation $\sigma \in S_{k}$ such that $\sigma\left(i_{1}\right)<\sigma\left(i_{2}\right)<\cdots<\sigma\left(i_{k}\right)$, and so

$$
\omega^{i_{1}} \wedge \omega^{i_{2}} \wedge \cdots \wedge \omega^{i_{k}}=(\operatorname{sgn} \sigma) \omega^{\sigma\left(i_{1}\right)} \wedge \omega^{\sigma\left(i_{2}\right)} \wedge \cdots \wedge \omega^{\sigma\left(i_{k}\right)} .
$$

Hence \mathcal{E} spans $\Lambda^{k}(V)$. Suppose then that

$$
\omega_{i_{1} \cdots i_{k}} \omega^{i_{1}} \wedge \cdots \wedge \omega^{i_{k}}=0 .
$$

Let $\left\{v_{1}, \ldots, v_{n}\right\}$ be the basis of V s.t. $\omega^{j}\left(v_{i}\right)=\delta_{i}^{j}$. Let $1 \leq j_{1}<\cdots<j_{k} \leq n$, so

$$
\begin{equation*}
\omega_{i_{1} \cdots i_{k}} \omega^{i_{1}} \wedge \cdots \wedge \omega^{i_{k}}\left(v_{j_{1}}, \ldots, v_{j_{k}}\right)=0 . \tag{5.10}
\end{equation*}
$$

If $i_{l} \notin\left\{j_{1}, \ldots, j_{k}\right\}$, it follows from (5.8) that

$$
\omega^{i_{1}} \wedge \cdots \wedge \omega^{i_{l}} \wedge \cdots \wedge \omega^{i_{k}}\left(v_{j_{1}}, \ldots, v_{j_{k}}\right)=0
$$

since $\omega^{j}\left(v_{i}\right)=\delta_{i}^{j}$. Hence there remains only one term in the sum (5.10) and therefore also this term must vanish, i.e.

$$
\omega_{j_{1} \cdots j_{k}}\left(\omega^{j_{1}} \wedge \cdots \wedge \omega^{j_{k}}\left(v_{j_{1}}, \ldots, v_{j_{k}}\right)\right)=0 .
$$

This is possible only if $\omega_{j_{1} \cdots j_{k}}=0$ because

$$
\omega^{j_{1}} \wedge \cdots \wedge \omega^{j_{k}}\left(v_{j_{1}}, \ldots, v_{j_{k}}\right)=\operatorname{det}\left[\delta_{j_{r}}^{j_{l}}\right]=\operatorname{det} I_{k}=1 .
$$

Hence the covectors in \mathcal{E} are linearly independent, and therefore \mathcal{E} forms a basis of $\Lambda^{k}(V)$. The other cases are left as an exercise.

Corollary 5.11. If $\operatorname{dim} V=n$, then $\operatorname{dim} \Lambda^{n}(V)=1$. If $\left(\omega^{1}, \ldots, \omega^{n}\right)$ is a basis of V^{*}, then $\omega^{1} \wedge$ $\cdots \wedge \omega^{n}$ spans $\Lambda^{n}(V)$.

5.12 Differential forms on manifolds

Recall that $T^{k} M$ is the bundle of k-covariants tensors over M. We denote by

$$
\Lambda^{k} M=\bigsqcup_{p \in M} \Lambda^{k}\left(T_{p} M\right)
$$

the bundle of alternating k-covariants tensors [$\Lambda^{k} M$ is a smooth subbundle of $T^{k} M$].
A differential k-form ω is a section of $\Lambda^{k} M$:

$$
M \rightarrow \Lambda^{k} M, p \mapsto \omega_{p} \in \Lambda^{k}\left(T_{p} M\right)
$$

By our earlier convention a 0 -covariant tensor is a real number, so a differential 0 -form is a realvalued function.

The exterior product of a differential k-form α and a differential l-form β is defined pointwise by

$$
(\alpha \wedge \beta)_{p}=\alpha_{p} \wedge \beta_{p}, \quad p \in M,
$$

so $\alpha \wedge \beta$ is a differential $(k+l)$-form.
If $(U, x), x=\left(x^{1}, \ldots, x^{n}\right)$, is a chart, then every differential k-form ω (in U) can be written (by Theorem 5.9) in a form

$$
\omega=\sum_{i_{1}<\cdots<i_{k}} \omega_{i_{1} \cdots i_{k}} d x^{i_{1}} \wedge \cdots \wedge d x^{i_{k}}
$$

Denote by $\mathcal{A}^{k}(M)$ the set of all smooth sections of $\Lambda^{k} M$. [Other frequently used notations are e.g. $\Omega^{k}(M), \mathcal{E}^{k}(M)$ and $\bigwedge^{k}(M)$.] The pull-back of a differential form under a smooth mapping is a special case of a pull-back of a k-covariant tensor field: If $f: M \rightarrow N$ is smooth ω is a differential k-form on N, then $f^{*} \omega$ is the differential k-form on M defined by

$$
\left(f^{*} \omega\right)_{p}\left(v_{1}, \ldots, v_{k}\right)=\omega_{f(p)}\left(f_{*} v_{1}, \ldots, f_{*} v_{k}\right)
$$

Lemma 5.13. Let $f: M \rightarrow N$ be smooth. Then:
(a) $f^{*}: \mathcal{A}^{k}(N) \rightarrow \mathcal{A}^{k}(M)$ is linear.
(b) $f^{*}(\alpha \wedge \beta)=\left(f^{*} \alpha\right) \wedge\left(f^{*} \beta\right)$.
(c) If $(U, y), y=\left(y^{1}, \ldots, y^{n}\right)$, is a chart on N, then

$$
f^{*}\left(\sum_{i_{1}<\cdots<i_{k}} \omega_{i_{1} \cdots i_{k}} d y^{i_{1}} \wedge \cdots \wedge d y^{i_{k}}\right)=\sum_{i_{1}<\cdots<i_{k}}\left(\omega_{i_{1} \cdots i_{k}} \circ f\right) d\left(y^{i_{1}} \circ f\right) \wedge \cdots \wedge d\left(y^{i_{k}} \circ f\right) .
$$

Proof. Exerc.

In the special case $k=n=\operatorname{dim} M=\operatorname{dim} N$ we obtain from (c) the following important (change of variables) formula.

Theorem 5.14. Let M and N be smooth n-manifolds and $f: M \rightarrow N$ a smooth mapping. Let $(U, x), x=\left(x^{1}, \ldots, x^{n}\right)$, be a chart on M and $(V, y), y=\left(y^{1}, \ldots, y^{n}\right)$ a chart on N. If u is a real-valued function on V, then in $U \cap f^{-1} V$ we have:

$$
\begin{equation*}
f^{*}\left(u d y^{1} \wedge \cdots \wedge d y^{n}\right)=(u \circ f)(\operatorname{det} D f) d x^{1} \wedge \cdots \wedge d x^{n} \tag{5.15}
\end{equation*}
$$

where $D f(p)$ is the matrix of $f_{* p}$ with respect to bases $\left\{\left(\partial / \partial x^{i}\right)_{p}\right\}$ and $\left\{\left(\partial / \partial y^{i}\right)_{f(p)}\right\}$ ($=$ the matrix of $\left(y \circ f \circ x^{-1}\right)^{\prime}(x(p))$ with respect to the standard basis of $\left.\mathbb{R}^{n}\right)$.

Proof. For every $p \in U, d x^{1} \wedge \cdots \wedge d x^{n}$ spans $\Lambda^{n}\left(T_{p} M\right)$ (by Corollary 5.11), so it is enough to show that both sides of (5.15) are equal for $\left(\partial / \partial x^{1}, \ldots, \partial / \partial x^{n}\right)$. Write $f^{j}=y^{j} \circ f$. By Lemma 5.13 (c),

$$
f^{*}\left(u d y^{1} \wedge \cdots \wedge d y^{n}\right)=(u \circ f) d f^{1} \wedge \cdots \wedge d f^{n}
$$

and further by Theorem 5.6,

$$
d f^{1} \wedge \cdots \wedge d f^{n}\left(\partial / \partial x^{1}, \ldots, \partial / \partial x^{n}\right)=\operatorname{det}\left(d f^{j}\left(\partial / \partial x^{i}\right)\right)=\operatorname{det}\left(\frac{\partial f^{j}}{\partial x^{i}}\right)=\operatorname{det} D f
$$

Hence

$$
\begin{aligned}
& f^{*}\left(u d y^{1} \wedge \cdots \wedge d y^{n}\right)\left(\partial / \partial x^{1}, \ldots, \partial / \partial x^{n}\right)=(u \circ f) \operatorname{det} D f \\
= & (u \circ f)(\operatorname{det} D f) \underbrace{\left(d x^{1} \wedge \cdots \wedge d x^{n}\right)\left(\partial / \partial x^{1}, \ldots, \partial / \partial x^{n}\right)}_{=1} .
\end{aligned}
$$

Example 5.16. Let $\omega \in \mathcal{A}^{2}\left(\mathbb{R}^{2}\right), \omega=d x \wedge d y$. We write ω in polar coordinates

$$
\left\{\begin{array}{l}
x=r \cos \theta \\
y=r \sin \theta
\end{array}\right.
$$

We get

$$
\begin{aligned}
\omega & =d x \wedge d y \\
& =d(r \cos \theta) \wedge d(r \sin \theta) \\
& =(\cos \theta d r-r \sin \theta d \theta) \wedge(\sin \theta d r+r \cos \theta d \theta) \\
& =r \cos ^{2} \theta d r \wedge d \theta-r \sin ^{2} \theta d \theta \wedge d r \\
& =r d r \wedge d \theta
\end{aligned}
$$

because $d r \wedge d r=d \theta \wedge d \theta=0$ and $d \theta \wedge d r=-d r \wedge d \theta$ by skew-symmetricity.

5.17 Exterior derivative

Next we define a differential operator, the so-called exterior derivative, that attach to a smooth differential k-form $\alpha \in \mathcal{A}^{k}(M)$ a smooth $(k+1)$-form $d \alpha \in \mathcal{A}^{k+1}(M)$. The form $d \alpha$ is called the exterior derivative of α.

Theorem 5.18. Let M be a smooth manifold. For every integer $k \geq 0$ there exists a unique $(\mathbb{R}-)$ linear mapping $d=d_{U}^{k}: \mathcal{A}^{k}(U) \rightarrow \mathcal{A}^{k+1}(U), U \subset M$ open, satisfying the following:
(i) d is \wedge-antiderivation: If $\alpha \in \mathcal{A}^{k}(U)$ and $\beta \in \mathcal{A}^{l}(U)$, then

$$
d(\alpha \wedge \beta)=d \alpha \wedge \beta+(-1)^{k} \alpha \wedge d \beta
$$

(ii) If $k=0$, then d is the differential

$$
d: \underbrace{C^{\infty}(U)}_{=\mathcal{A}^{0}(U)} \rightarrow \mathcal{A}^{1}(U), \quad f \mapsto d f
$$

(iii) $d^{2}=d \circ d=0$.
(iv) d commutes with the restriction: If $V \subset U \subset M$ are open and $\alpha \in \mathcal{A}^{k}(U)$, then $d(\alpha \mid V)=$ $(d \alpha) \mid V$.

The condition (iv) means that d is a local operator.
Proof. Let us first prove the uniqueness:
Suppose that there exists an operator d that satisfies conditions (i)-(iv). Let $(U, x), x=\left(x^{1}, \ldots, x^{n}\right)$, be a chart. It follows from (iii) and (ii) that

$$
d\left(d x^{i}\right)=0
$$

for the differential $d x^{i}$ of a coordinate function x^{i} since $x^{i} \in \mathcal{A}^{0}(U)=C^{\infty}(U)$. Let

$$
\alpha=\sum_{1 \leq i_{1}<\cdots<i_{k} \leq n} \alpha_{i_{1} \cdots i_{k}} d x^{i_{1}} \wedge \cdots \wedge d x^{i_{k}} .
$$

Since $d\left(d x^{i}\right)=0$, it follows from (i) that

$$
d\left(d x^{i_{1}} \wedge \cdots \wedge d x^{i_{k}}\right)=0
$$

Hence by (i) and (ii)

$$
\begin{equation*}
d \alpha=\sum_{1 \leq i_{1}<\cdots<i_{k} \leq n}\left(d \alpha_{i_{1} \cdots i_{k}}\right) \wedge d x^{i_{1}} \wedge \cdots \wedge d x^{i_{k}} \tag{5.19}
\end{equation*}
$$

This means that d is uniquely determined in U by conditions (i)-(iii) and hence in the whole M by condition (iv).
To prove the existence we define d in every chart (U, x) by the formula (5.19). Clearly such d is \mathbb{R}-linear and satisfies (ii). To verify (i) we may assume, by linearity of d, that

$$
\alpha=f d x^{i_{1}} \wedge \cdots \wedge d x^{i_{k}} \quad \text { and } \quad \beta=g d x^{j_{1}} \wedge \cdots \wedge d x^{j_{l}}
$$

Then

$$
\alpha \wedge \beta=f g d x^{i_{1}} \wedge \cdots \wedge d x^{i_{k}} \wedge d x^{j_{1}} \wedge \cdots \wedge d x^{j_{l}}
$$

so by (5.19)

$$
\begin{aligned}
& d(\alpha \wedge \beta)=d(f g) \wedge d x^{i_{1}} \wedge \cdots \wedge d x^{i_{k}} \wedge d x^{j_{1}} \wedge \cdots \wedge d x^{j_{l}} \\
& =(g d f+f d g) \wedge d x^{i_{1}} \wedge \cdots \wedge d x^{i_{k}} \wedge d x^{j_{1}} \wedge \cdots \wedge d x^{j_{l}} \\
& =\underbrace{d f \wedge d x^{i_{1}} \wedge \cdots \wedge d x^{i_{k}}}_{=d \alpha} \wedge g d x^{j_{1}} \wedge \cdots \wedge d x^{j_{l}}+(-1)^{k} f d x^{i_{1}} \wedge \cdots \wedge d x^{i_{k}} \wedge \underbrace{d g \wedge d x^{j_{1}} \wedge \cdots \wedge d x^{j_{l}}}_{=d \beta} \\
& =d \alpha \wedge \beta+(-1)^{k} \alpha \wedge d \beta
\end{aligned}
$$

To check the condition (iii) it suffices to show that $d(d \alpha)=0$ is

$$
\alpha=f d x^{i_{1}} \wedge \cdots \wedge d x^{i_{k}}
$$

For every $f \in \mathcal{A}^{0}(U)$

$$
d f=\sum_{i=1}^{n} \frac{\partial f}{\partial x^{i}} d x^{i},
$$

so

$$
\begin{aligned}
d(d \alpha) & =d\left(\sum_{i=1}^{n} \frac{\partial f}{\partial x^{i}} d x^{i} \wedge d x^{i_{1}} \wedge \cdots \wedge d x^{i_{k}}\right) \\
& =\sum_{i=1}^{n} d\left(\frac{\partial f}{\partial x^{i}} d x^{i} \wedge d x^{i_{1}} \wedge \cdots \wedge d x^{i_{k}}\right) \\
& =\sum_{i=1}^{n} d\left(\frac{\partial f}{\partial x^{i}}\right) \wedge d x^{i} \wedge d x^{i_{1}} \wedge \cdots \wedge d x^{i_{k}} \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n} \frac{\partial^{2} f}{\partial x^{j} \partial x^{i}} d x^{j} \wedge d x^{i} \wedge d x^{i_{1}} \wedge \cdots \wedge d x^{i_{k}}
\end{aligned}
$$

Hence

$$
d(d \alpha)=0
$$

since

$$
\frac{\partial^{2} f}{\partial x^{j} \partial x^{i}}=\frac{\partial^{2} f}{\partial x^{i} \partial x^{j}} \quad \text { and } \quad d x^{j} \wedge d x^{i}=-d x^{i} \wedge d x^{j}
$$

We have proven that in every chart (U, x) the formula (5.19) defines $d=d_{U}$ that satisfies conditions (i)-(iii). It remains to prove that these "local" ds defines d in every open subset of M and that (iv) holds. It is enough to verify that the definition is independent of a chart. Suppose that \tilde{d} is another operator defined by (5.19) in a chart (V, y), where $U \cap V \neq \emptyset$. Since also \tilde{d} satisfies (i)-(iii), then $d=\tilde{d}$ in $U \cap V$ by the local uniqueness.

Theorem 5.20. Let $f: M \rightarrow N$ be smooth. Then for every $\alpha \in \mathcal{A}^{k}(N)$

$$
\begin{equation*}
f^{*}(d \alpha)=d\left(f^{*} \alpha\right) \tag{5.21}
\end{equation*}
$$

Proof. By locality and linearity it is enough to verify (5.21) in an arbitrary chart $(V, y), y=$ $\left(y^{1}, \ldots, y^{n}\right)$, of N for a differential k-form

$$
\alpha=u d y^{i_{1}} \wedge \cdots \wedge d y^{i_{k}}
$$

where $u \in \mathcal{A}^{0}(V)$. Then

$$
\begin{aligned}
f^{*} \alpha & =(u \circ f) d\left(y^{i_{1}} \circ f\right) \wedge \cdots \wedge d\left(y^{i_{k}} \circ f\right), \\
d\left(f^{*} \alpha\right) & =d(u \circ f) \wedge d\left(y^{i_{1}} \circ f\right) \wedge \cdots \wedge d\left(y^{i_{k}} \circ f\right), \\
d \alpha & =d u \wedge d y^{i_{1}} \wedge \cdots \wedge d y^{i_{k}} \\
f^{*}(d \alpha) & =f^{*} d u \wedge f^{*} d y^{i_{1}} \wedge \cdots \wedge f^{*} d y^{i_{k}} \\
& =d(u \circ f) \wedge d\left(y^{i_{1}} \circ f\right) \wedge \cdots \wedge d\left(y^{i_{k}} \circ f\right)
\end{aligned}
$$

Theorem 5.22. If $\omega \in \mathcal{A}^{1}(M)$ and $X, Y \in \mathcal{T}(M)$, then

$$
\begin{equation*}
d \omega(X, Y)=X(\omega(Y))-Y(\omega(X))-\omega([X, Y]) \tag{5.23}
\end{equation*}
$$

Proof. Every smooth differential 1-form can be expressed locally as a sum of 1-forms $u d v$, where u and v are smooth real-valued functions. Thus it suffices to assume that

$$
\omega=u d v
$$

Let X and Y be smooth vector fields. Then the left-hand side of (5.23) is

$$
d(u d v)(X, Y)=d u \wedge d v(X, Y)=d u(X) d v(Y)-d v(X) d u(Y)=(X u)(Y v)-(X v)(Y u)
$$

and the right-hand side

$$
\begin{aligned}
& X(u d v(Y))-Y(u d v(X))-u d v([X, Y]) \\
= & X(u Y v)-Y(u X v)-u[X, Y] v \\
= & ((X u)(Y v)+u X(Y v))-((Y u)(X v)+u Y(X v))-u(X(Y v)-Y(X v)) \\
& =(X u)(Y v)-(X v)(Y u) .
\end{aligned}
$$

Theorem 5.22 is a special case of the following that could be used to define the exterior derivative.

Theorem 5.24. If $\omega \in \mathcal{A}^{k}(M)$ and $X_{1}, \ldots, X_{k+1} \in \mathcal{T}(M)$, then

$$
\begin{aligned}
& d \omega\left(X_{1}, \ldots, X_{k+1}\right)=\sum_{i=1}^{k+1}(-1)^{i-1} X_{i}\left(\omega\left(X_{1}, \ldots, \hat{X}_{i}, \ldots, X_{k+1}\right)\right. \\
& +\sum_{1 \leq i<j \leq k+1}(-1)^{i+j} \omega\left(\left[X_{i}, X_{j}\right], X_{1}, \ldots, \hat{X}_{i}, \ldots, \hat{X}_{j}, \ldots, X_{k+1}\right),
\end{aligned}
$$

where \hat{X} indicates an omitted vector.
Proof. Omitted (see e.g. Lee [L2]).
Definition 5.25. We say that a differential form $\alpha \in \mathcal{A}^{k}(M)$ is
closed if $d \alpha=0$ and
exact if $\alpha=d \beta$ for some $\beta \in \mathcal{A}^{k-1}(M)$.
Since $d \circ d=0$, every exact form is closed. The converse is not true in general. The answer to the question when every closed p-form on M is exact depends, in fact, on topological properties of M and not at all on the smooth structure of M. Denote

$$
\begin{aligned}
\mathcal{Z}^{p}(M) & =\operatorname{Ker}\left[d: \mathcal{A}^{p}(M) \rightarrow \mathcal{A}^{p+1}(M)\right] \\
& =\{\operatorname{closed} p \text {-forms on } M\}, \\
\mathcal{B}^{p}(M) & =\operatorname{Im}\left[d: \mathcal{A}^{p-1}(M) \rightarrow \mathcal{A}^{p}(M)\right] \\
& =\{\operatorname{exact} p \text {-forms on } M\} .
\end{aligned}
$$

Let us make a convention that $\mathcal{A}^{p}(M)$ is a trivial vector space if $p<0$ or $p>\operatorname{dim} M$. The vector space (quotient space)

$$
H_{d R}^{p}(M)=\frac{\mathcal{Z}^{p}(M)}{\mathcal{B}^{p}(M)}
$$

is called the p th de Rham cohomology group of M. Its elements are the equivalence classes $[\omega]$ of closed p-forms. Closed forms ω and ω^{\prime} are equivalent (i.e. belong to the same equivalence class) if $\omega-\omega^{\prime}$ is exact. Now every closed p-form on M is exact if and only if $H_{d R}^{p}(M)=0$. The following de Rham theorem gives the connection to the topology of M : For every smooth manifold M and non-negative integer p, the de Rham cohomology group $H_{d R}^{p}(M)$ is isomorphic with the singular cohomology group $H^{p}(M, \mathbb{R})$ (see e.g. the books by Lee [L2] or Bredon [Br]).
Definition 5.26 (Interior multiplication). Let V be a finite dimensional vector space and $X \in V$. We say that the linear mapping $i_{X}: \Lambda^{k}(V) \rightarrow \Lambda^{k-1}(V)$,

$$
i_{X} \omega\left(Y_{1}, \ldots, Y_{k-1}\right)=\omega\left(X, Y_{1}, \ldots, Y_{k-1}\right)
$$

is the interior multiplication (or contraction) with X. If $k=0$, we make a convention that $i_{X} \omega=0$. We also denote

$$
X\lrcorner \omega=i_{X} \omega .
$$

Similarly, if $X \in \mathcal{T}(M)$ and $\omega \in \mathcal{A}^{k}(M)$, we define $i_{X} \omega \in \mathcal{A}^{k-1}(M)$ pointwise by setting

$$
\left(i_{X} \omega\right)_{p}=i_{X_{p}} \omega_{p}, \quad p \in M
$$

Theorem 5.27. Let $X \in \mathcal{T}(M)$. Then:
(i) $i_{X}: \mathcal{A}^{k}(M) \rightarrow \mathcal{A}^{k-1}(M)$ is $C^{\infty}(M)$-linear:

$$
i_{X}(f \alpha+g \beta)=f i_{X} \alpha+g i_{X} \beta, \quad f, g \in C^{\infty}(M), \alpha, \beta \in \mathcal{A}^{k}(M) .
$$

(ii) $i_{X} \circ i_{X}=0$.
(iii) i_{X} is a \wedge-antiderivation:

$$
i_{X}(\alpha \wedge \beta)=\left(i_{X} \alpha\right) \wedge \beta+(-1)^{k} \alpha \wedge\left(i_{X} \beta\right), \quad \alpha \in \mathcal{A}^{k}(M)
$$

(iv) $i_{f X} \omega=f i_{X} \omega$ if $f \in C^{\infty}(M)$.
(v) $i_{X} d f=X f$ if $f \in C^{\infty}(M)$.

Proof. (iii): Let $\beta \in \mathcal{A}^{l}(M)$. Denote $X_{k+l}=X$, so

$$
\begin{aligned}
& i_{X}(\alpha \wedge \beta)\left(X_{1}, X_{2}, \ldots, X_{k+l-1}\right)=(\alpha \wedge \beta)(\underbrace{X_{k+l}}_{=X}, X_{1}, \ldots, X_{k+l-1}) \\
& =(-1)^{k+l-1} \alpha \wedge \beta\left(X_{1}, \ldots, X_{k+l}\right) \\
& =\frac{(-1)^{k+l-1}}{k!l!} \sum_{\tilde{\sigma} \in S_{k+l}}(\operatorname{sgn} \tilde{\sigma}) \alpha\left(X_{\tilde{\sigma}(1)}, \ldots, X_{\tilde{\sigma}(k)}\right) \beta\left(X_{\tilde{\sigma}(k+1)}, \ldots, X_{\tilde{\sigma}(k+l)}\right) .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
& \left(i_{X} \alpha\right) \wedge \beta\left(X_{1}, X_{2}, \ldots, X_{k+l-1}\right) \\
& =\frac{1}{(k-1)!!!} \sum_{\sigma \in S_{k+l-1}}(\operatorname{sgn} \sigma) i_{X} \alpha\left(X_{\tilde{\sigma}(1)}, \ldots, X_{\tilde{\sigma}(k-1)}\right) \beta\left(X_{\tilde{\sigma}(k)}, \ldots, X_{\tilde{\sigma}(k+l-1)}\right) \\
& =\frac{k}{k!l!} \sum_{\sigma \in S_{k+l-1}}(\operatorname{sgn} \sigma) \alpha\left(X_{k+l}, X_{\tilde{\sigma}(1)}, \ldots, X_{\tilde{\sigma}(k-1)}\right) \beta\left(X_{\tilde{\sigma}(k)}, \ldots, X_{\tilde{\sigma}(k+l-1)}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \alpha \wedge i_{X} \beta\left(X_{1}, X_{2}, \ldots, X_{k+l-1}\right) \\
&= \frac{1}{k!(l-1)!} \sum_{\sigma \in S_{k+l-1}}(\operatorname{sgn} \sigma) \alpha\left(X_{\tilde{\sigma}(1)}, \ldots, X_{\tilde{\sigma}(k)}\right) i_{X} \beta\left(X_{\tilde{\sigma}(k+1)}, \ldots, X_{\tilde{\sigma}(k+l-1)}\right) \\
&=\frac{l}{k!l!} \sum_{\sigma \in S_{k+l-1}}(\operatorname{sgn} \sigma) \alpha\left(X_{\tilde{\sigma}(1)}, \ldots, X_{\tilde{\sigma}(k)}\right) \beta\left(X_{k+l}, X_{\tilde{\sigma}(k+1)}, \ldots, X_{\tilde{\sigma}(k+l-1)}\right) .
\end{aligned}
$$

Denote $S_{k+l}^{i}=\left\{\tilde{\sigma} \in S_{k+l}: \tilde{\sigma}(i)=k+l\right\}$. Then

$$
\begin{aligned}
& i_{X}(\alpha \wedge \beta)\left(X_{1}, X_{2}, \ldots, X_{k+l-1}\right) \\
& =\frac{(-1)^{k+l-1}}{k!l!}\left(\sum_{i=1}^{k} \sum_{\tilde{\sigma} \in S_{k+l}^{i}}(\operatorname{sgn} \tilde{\sigma}) \alpha\left(X_{\tilde{\sigma}(1)}, \ldots, X_{k+l}^{i}, \ldots, X_{\tilde{\sigma}(k)}\right) \beta\left(X_{\tilde{\sigma}(k+1)}, \ldots, X_{\tilde{\sigma}(k+l)}\right)\right. \\
& \left.+\sum_{j=1}^{l} \sum_{\tilde{\sigma} \in S_{k+l}^{k+j}}(\operatorname{sgn} \tilde{\sigma}) \alpha\left(X_{\tilde{\sigma}(1)}, \ldots, X_{\tilde{\sigma}(k)}\right) \beta\left(X_{\tilde{\sigma}(k+1)}, \ldots, X_{k+l}^{j}, \ldots, X_{\tilde{\sigma}(k+l)}\right)\right) .
\end{aligned}
$$

For every $\tilde{\sigma} \in S_{k+l}^{i}$ define $\sigma \in S_{k+l-1}$ by setting

$$
\sigma(j)= \begin{cases}\tilde{\sigma}(j), & 1 \leq j \leq i-1 \\ \tilde{\sigma}(j+1), & i \leq j \leq j+k-1\end{cases}
$$

Conversely, for any given $\sigma \in S_{k+l-1}$ there is a unique $\tilde{\sigma} \in S_{k+l}^{i}$ s.t. the above holds. On the other hand, $\sigma \in S_{k+l-1}$ can be interpreted as the element of S_{k} that keeps $(k+l)$ fixed. The sign $\operatorname{sgn} \sigma$ is the same in both interpretations. If σ and $\tilde{\sigma}$ correspond to each other in the way above, then

$$
\begin{aligned}
\sigma(1, \ldots, k+l) & =(\tilde{\sigma}(1), \ldots, \tilde{\sigma}(i-1), \tilde{\sigma}(i+1), \ldots, \tilde{\sigma}(k+l), k+l) \\
& =\sigma_{i}(\tilde{\sigma}(1), \ldots, \tilde{\sigma}(i-1), \tilde{\sigma}(i), \tilde{\sigma}(i+1), \ldots, \tilde{\sigma}(k+l))
\end{aligned}
$$

where $\sigma_{i} \in S_{k+l}$,

$$
\sigma_{i}(1, \ldots, k+l)=(1, \ldots, i-1, i+1, \ldots, k+l, i), \quad \operatorname{sgn} \sigma_{i}=(-1)^{k+l-i}
$$

So $\operatorname{sgn} \tilde{\sigma}=(-1)^{k+l-i} \operatorname{sgn} \sigma$. We obtain

$$
\begin{aligned}
& \sum_{\tilde{\sigma} \in S_{k+l}^{i}}(\operatorname{sgn} \tilde{\sigma}) \alpha\left(X_{\tilde{\sigma}(1)}, \ldots, X_{k+l}^{i}, \ldots, X_{\tilde{\sigma}(k)}\right) \beta\left(X_{\tilde{\sigma}(k+1)}, \ldots, X_{\tilde{\sigma}(k+l)}\right) \\
& \sum_{\sigma \in S_{k+l-1}}(-1)^{k+l-i}(\operatorname{sgn} \sigma) \alpha\left(X_{\sigma(1)}, \ldots, X_{\sigma(i-1)}, X_{k+l}^{i}, X_{\sigma(i)}, \ldots, X_{\sigma(k-1)}\right) \beta\left(X_{\sigma(k)}, \ldots, X_{\sigma(k+l-1)}\right) \\
= & \underbrace{(-1)^{k+l-i}(-1)^{i-1}}_{=(-1)^{k+l-1}} \sum_{\sigma \in S_{k+l-1}}(\operatorname{sgn} \sigma) \alpha\left(X_{k+l}, X_{\sigma(1)}, \ldots, X_{\sigma(k-1)}\right) \beta\left(X_{\sigma(k)}, \ldots, X_{\sigma(k+l-1)}\right)
\end{aligned}
$$

We do the same for all $1 \leq i \leq k$ to obtain

$$
\begin{gathered}
\sum_{i=1}^{k} \sum_{\tilde{\sigma} \in S_{k+l}^{i}}(\operatorname{sgn} \tilde{\sigma}) \alpha\left(X_{\tilde{\sigma}(1)}, \ldots, X_{k+l}^{i}, \ldots, X_{\tilde{\sigma}(k)}\right) \beta\left(X_{\tilde{\sigma}(k+1)}, \ldots, X_{\tilde{\sigma}(k+l)}\right) \\
k(-1)^{k+l-1} \sum_{\sigma \in S_{k+l-1}}(\operatorname{sgn} \sigma) \alpha\left(X_{k+l}, X_{\sigma(1)}, \ldots, X_{\sigma(k-1)}\right) \beta\left(X_{\sigma(k)}, \ldots, X_{\sigma(k+l-1)}\right)
\end{gathered}
$$

Similarly we conclude that

$$
\begin{gathered}
\sum_{j=1}^{l} \sum_{\tilde{\sigma} \in S_{k+l}^{k+j}}(\operatorname{sgn} \tilde{\sigma}) \alpha\left(X_{\tilde{\sigma}(1)}, \ldots, X_{\tilde{\sigma}(k)}\right) \beta\left(X_{\tilde{\sigma}(k+1)}, \ldots, X_{k+l}^{j}, \ldots, X_{\tilde{\sigma}(k+l)}\right) \\
=l(-1)^{k+l-1} \sum_{\sigma \in S_{k+l-1}}(\operatorname{sgn} \sigma) \alpha\left(X_{\sigma(1)}, \ldots, X_{\sigma(k)}\right) \beta\left(X_{k+l}, X_{\sigma(k+1)}, \ldots, X_{\sigma(k+l-1)}\right) .
\end{gathered}
$$

Hence (iii) holds.
The other cases are left as an exercise.
Lie derivatives of tensor fields. Using the flow of a vector field X we may define Lie derivatives of smooth tensor fields with respect to X. We consider only k-covariant tensor fields.

Let $\tau \in \mathcal{T}^{k}(M)$ be a smooth k-covariant tensor field, $X \in \mathcal{T}(M)$ and let θ be the flow of X. If $p \in M$ and $|t|$ is small enough, θ_{t} is a diffeomorphism between some neighborhoods of p and $\theta(t, p)$. Hence we can define the Lie derivative of τ with respect to X pointwise as the limit

$$
\left(L_{X} \tau\right)_{p}=\lim _{t \rightarrow 0} \frac{\left(\theta_{t}^{*} \tau\right)_{p}-\tau_{p}}{t}=\frac{d}{d t}\left(\theta_{t}^{*} \tau\right)_{p \mid t=0}
$$

It turns out that, indeed, the limit above exists at every point p and the mapping $p \mapsto\left(L_{X} \tau\right)_{p}$ is a smooth k-covariant tensor field.

Theorem 5.28. Suppose that $X, Y \in \mathcal{T}(M)$ are smooth vector fields, $f \in C^{\infty}(M), \sigma$ and τ are smooth covariant vector fields, and ω and η are smooth differential forms. Then
(a) $L_{X} f=X f$.
(b) $d\left(L_{X} \omega\right)=L_{X}(d \omega)$.
(c) $L_{X}(f \sigma)=\left(L_{X} f\right) \sigma+f L_{X} \sigma$.
(d) $L_{X}(\sigma \otimes \tau)=\left(L_{X} \sigma\right) \otimes \tau+\sigma \otimes\left(L_{X} \tau\right)$.
(e) $L_{X}(\omega \wedge \eta)=\left(L_{X} \omega\right) \wedge \eta+\omega \wedge\left(L_{X} \eta\right)$.
(f) $L_{X}\left(i_{Y} \omega\right)=i_{\left(L_{X} Y\right)} \omega+i_{Y}\left(L_{X} \omega\right)$.
(g) If $\sigma \in \mathcal{T}^{k}(M)$ and $Y_{1}, \ldots, Y_{k} \in \mathcal{T}(M)$, then

$$
\begin{aligned}
L_{X}\left(\sigma\left(Y_{1}, \ldots, Y_{k}\right)\right) & =\left(L_{X} \sigma\right)\left(Y_{1}, \ldots, Y_{k}\right)+\sigma\left(L_{X} Y_{1}, Y_{2}, \ldots, Y_{k}\right)+ \\
& \cdots+\sigma\left(Y_{1}, \ldots, Y_{k-1}, L_{X} Y_{k}\right)
\end{aligned}
$$

(h) $L_{f X} \omega=f L_{X} \omega+d f \wedge i_{X} \omega$.

Proof. We will prove some claims.
(b): Since the exterior derivative is linear, we obtain by Theorem 5.20 that

$$
\begin{aligned}
d\left(L_{X} \omega\right) & =d\left(\lim _{t \rightarrow 0} \frac{1}{t}\left(\theta_{t}^{*} \omega-\omega\right)\right) \\
& =\lim _{t \rightarrow 0} \frac{1}{t}\left(d\left(\theta_{t}^{*} \omega\right)-d \omega\right) \\
& =\lim _{t \rightarrow 0} \frac{1}{t}\left(\theta_{t}^{*}(d \omega)-d \omega\right) \\
& =L_{X}(d \omega)
\end{aligned}
$$

As an example we prove (c):
Let $\sigma \in \mathcal{T}^{k}(M), f \in C^{\infty}(M), p \in M$, and $v_{1}, \ldots, v_{k} \in T_{p} M$. Then

$$
\begin{aligned}
\left(L_{X}(f \sigma)\right)_{p}\left(v_{1}, \ldots, v_{k}\right) & =\lim _{t \rightarrow 0} \frac{1}{t}\left(\left(\theta_{t}^{*}(f \sigma)\right)_{p}-(f \sigma)_{p}\right)\left(v_{1}, \ldots, v_{k}\right) \\
& =\lim _{t \rightarrow 0} \frac{1}{t}\left((f \sigma)_{\theta(t, p)}\left(\theta_{t *}^{p} v_{1}, \ldots, \theta_{t *}^{p} v_{k}\right)-(f \sigma)_{p}\left(v_{1}, \ldots, v_{k}\right)\right) \\
& =\lim _{t \rightarrow 0} \frac{1}{t}\left(\left(f \circ \theta^{p}\right)(t) \sigma_{\theta(t, p)}\left(\theta_{t *}^{p} v_{1}, \ldots, \theta_{t *}^{p} v_{k}\right)-\left(f \circ \theta^{p}\right)(0) \sigma_{p}\left(v_{1}, \ldots, v_{k}\right)\right) \\
& =\lim _{t \rightarrow 0} \frac{1}{t}(\varphi(t) \psi(t)-\varphi(0) \psi(0)) \\
& =\varphi(0) \psi^{\prime}(0)+\varphi^{\prime}(0) \psi(0)
\end{aligned}
$$

where

$$
\begin{aligned}
& \varphi(t)=\left(f \circ \theta^{p}\right)(t), \quad \varphi(0)=f(p), \quad \varphi^{\prime}(0)=X_{p} f \\
& \psi(t)=\left(\theta_{t}^{*} \sigma\right)_{p}\left(v_{1}, \ldots, v_{k}\right), \quad \psi(0)=\sigma_{p}\left(v_{1}, \ldots, v_{k}\right), \text { and } \psi^{\prime}(0)=\left(L_{X} \sigma\right)_{p}\left(v_{1}, \ldots, v_{k}\right)
\end{aligned}
$$

Other cases are left as an exercise.

Theorem 5.29 (Cartan's magic formula). Let $X \in \mathcal{T}(M)$ and let $\omega \in \mathcal{A}^{k}(M)$. Then

$$
\begin{equation*}
L_{X} \omega=i_{X} d \omega+d i_{X} \omega \tag{5.30}
\end{equation*}
$$

Proof. We prove the claim by induction with respect to k. For $k=0$ Theorems 5.27 (v) and 5.28 (a) imply that

$$
L_{X} f=X f=i_{X} d f
$$

[Note: By our convention $i_{X} f=0$ for smooth functions f.]
Next we prove (5.30) for smooth 1-forms. By linearity and locality we may assume that

$$
\omega=u d v
$$

where u and v are smooth functions. Now

$$
L_{X}(u d v)=u L_{X} d v+\left(L_{X} u\right) d v=u d\left(L_{X} v\right)+(X u) d v=u d(X v)+(X u) d v
$$

and

$$
\begin{aligned}
i_{X} d(u d v)+d i_{X}(u d v) & =i_{X}(d u \wedge d v)+d((\overbrace{i_{X} u}^{=0}) \wedge d v+u i_{X} d v) \\
& =\left(i_{X} d u\right) \wedge d v-d u \wedge\left(i_{X} d v\right)+d(u X v) \\
& =(X u) d v-(X v) d u+u d(X v)+(X v) d u \\
& =u d(X v)+(X u) d v
\end{aligned}
$$

Hence (5.30) holds for $k=1$. Suppose that (5.30) holds for all smooth l-forms, where $l<k$ and $k>1$. Let $\omega \in \mathcal{A}^{k}(M)$ and write it locally as

$$
\omega=\sum_{i_{1}<\cdots<i_{k}} \omega_{i_{1} \cdots i_{k}} d x^{i_{1}} \wedge \cdots \wedge d x^{i_{k}}
$$

Denote

$$
\alpha_{i_{1} \cdots i_{k}}=\omega_{i_{1} \cdots i_{k}} d x^{i_{1}}
$$

and

$$
\beta_{i_{1} \cdots i_{k}}=d x^{i_{2}} \wedge \cdots \wedge d x^{i_{k}}
$$

Now we see that ω can be written as a sum of terms $\alpha \wedge \beta$, where α is a smooth 1 -form and β a smooth $(k-1)$-form. It is enough to verify the formula for such term. By the induction hypothesis and by Theorem 5.28 (e) the left-hand side of (5.30) is

$$
\begin{aligned}
L_{X}(\alpha \wedge \beta) & =\left(L_{X} \alpha\right) \wedge \beta+\alpha \wedge\left(L_{X} \beta\right) \\
& =\left(i_{X} d \alpha+d i_{X} \alpha\right) \wedge \beta+\alpha \wedge\left(i_{X} d \beta+d i_{X} \beta\right)
\end{aligned}
$$

Furthermore, both d and i_{X} are \wedge-antiderivations, so the right-hand side of (5.30) is

$$
\begin{aligned}
i_{X} d(\alpha \wedge \beta)+d i_{X}(\alpha \wedge \beta)= & i_{X}(d \alpha \wedge \beta-\alpha \wedge d \beta)+d\left(\left(i_{X} \alpha\right) \wedge \beta-\alpha \wedge i_{X} \beta\right) \\
= & \left(i_{X} d \alpha\right) \wedge \beta+d \alpha \wedge i_{X} \beta-\left(i_{X} \alpha\right) \wedge d \beta+\alpha \wedge i_{X} d \beta \\
& +\left(d i_{X} \alpha\right) \wedge \beta+i_{X} \alpha \wedge d \beta-d \alpha \wedge i_{X} \beta+\alpha \wedge d i_{X} \beta \\
= & \left(i_{X} d \alpha+d i_{X} \alpha\right) \wedge \beta+\alpha \wedge\left(i_{X} d \beta+d i_{X} \beta\right) \\
= & L_{X}(\alpha \wedge \beta)
\end{aligned}
$$

6 Integration of differential forms

Let $U \subset M$ be open and let ω be a differential form on U. Define the support of ω as

$$
\operatorname{supp} \omega=U \cap \overline{\left\{p \in U: \omega_{p} \neq 0\right\}}
$$

Suppose then that $U \subset \mathbb{R}^{n}$ is open and ω is a continuous compactly supported differential n-form in U, i.e. $\operatorname{supp} \subset U$ is compact. Then

$$
\omega=u(x) d x^{1} \wedge \cdots \wedge d x^{n}, \quad x=\left(x^{1}, \ldots, x^{n}\right) \in \mathbb{R}^{n}
$$

where $u: U \rightarrow \mathbb{R}$ is continuous and compactly supported $\left(u \in C_{0}(U)\right)$. Define

$$
\int_{U} \omega=\int_{\mathbb{R}^{n}} \omega=\int_{\mathbb{R}^{n}} u(x) d x
$$

where we have Riemann integral on the right-hand side. [In fact, it is enough to assume that u is Lebesgue integrable over \mathbb{R}^{n} and there is Lebesgue integral on the right-hand side.] Let then $f: W \rightarrow U$ be a diffeomorphism, where $W \subset \mathbb{R}^{n}$ is open. Suppose that U and W are connected. By the "change of variables fromula" (5.15),

$$
f^{*} \omega=(\operatorname{det} D f)(u \circ f) d x^{1} \wedge \cdots \wedge d x^{n}
$$

Using change of variables in Riemann (Lebesgue) integral we obtain

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} f^{*} \omega=\int_{W} f^{*} \omega=\int_{W}(u \circ f)(x) \operatorname{det} D f(x) d x=\operatorname{sgn} \operatorname{det} D f(x) \int_{U} u(y) d y=\operatorname{sgn} \operatorname{det} D f(x) \int_{\mathbb{R}^{n}} \omega \tag{6.1}
\end{equation*}
$$

Note that the sign of $\operatorname{det} D f$ can not change in U since f is a diffeomorphism ($\operatorname{det} D f \neq 0$) and U is connected.

Suppose then that M is an oriented differentiable n-manifold. Let $\left\{\left(U_{\alpha}, x_{\alpha}\right)\right\}$ be an orientation, that is, a smooth atlas such that for every α and β for which $U_{\alpha} \cap U_{\beta} \neq \emptyset$, the Jacobian determinant of $x_{\beta} \circ x_{\alpha}^{-1}$ is positive at every point $q \in x_{\alpha}\left(U_{\alpha} \cap U_{\beta}\right)$:

$$
\operatorname{det}\left(x_{\beta} \circ x_{\alpha}^{-1}\right)^{\prime}(q)>0, \quad \forall q \in x_{\alpha}\left(U_{\alpha} \cap U_{\beta}\right)
$$

Let $(U, \varphi), \varphi: U \rightarrow W \subset \mathbb{R}^{n}$, be a chart in the orientation of M. Suppose that ω is a continuous differential n-form whose support $\operatorname{supp} \omega \subset U$ is compact. Then $\left(\varphi^{-1}\right)^{*} \omega$ is a continuous compactly supported differential n-form in W. We define

$$
\begin{equation*}
\int_{M} \omega=\int_{\mathbb{R}^{n}}\left(\varphi^{-1}\right)^{*} \omega \tag{6.2}
\end{equation*}
$$

Let $(V, \psi), \psi: V \rightarrow \tilde{W}$, be another chart in the orientation of M s.t. $\operatorname{supp} \omega \subset V$. Then $\operatorname{supp} \omega \subset$ $U \cap V$, so we may assume (to simplify notation) that $U=V$. Now $f=\psi \circ \varphi^{-1}: W \rightarrow \tilde{W}$ is a diffeomorphism whose Jacobian determinant is positive in W. Since $\varphi^{-1}=\psi^{-1} \circ f$, we have $\left(\varphi^{-1}\right)^{*}=f^{*} \circ\left(\psi^{-1}\right)^{*}$, and therefore

$$
\int_{\mathbb{R}^{n}}\left(\varphi^{-1}\right)^{*} \omega=\int_{\mathbb{R}^{n}} f^{*} \circ\left(\psi^{-1}\right)^{*} \omega=\int_{\mathbb{R}^{n}} f^{*}\left(\left(\psi^{-1}\right)^{*} \omega\right)=\int_{\mathbb{R}^{n}}\left(\psi^{-1}\right)^{*} \omega
$$

by (6.1). We conclude that the definition (6.2) is independent of the choice of the chart (within the orientation).

Next we want to define the integral over M of an arbitrary compactly supported continuous differential n-form.

6.3 Smooth partition of unity

Let X be a topological space. We say that a collection $\mathcal{U} \subset \mathcal{P}(X)$ is locally finite if every point of X has a neighborhood that intersects at most finitely many members of \mathcal{U}.

Definition 6.4 (Partition of unity). Let X be a topological space and $\mathcal{F}=\left\{U_{\alpha}: \alpha \in \mathcal{A}\right\}$ an open cover of X. A collection $\left\{\psi_{i}: i \in I\right\}$ of continuous functions $\psi_{i}: X \rightarrow \mathbb{R}$ is a partition of unity subordinate to \mathcal{F} if
(a) $0 \leq \psi_{i}(x) \leq 1$ for all $i \in I$ and $x \in X$,
(b) $\forall i \in I \exists \alpha \in \mathcal{A}$ s.t. $\operatorname{supp} \psi_{i} \subset U_{\alpha}$,
(c) $\left\{\operatorname{supp} \psi_{i}\right\}_{i \in I}$ is locally finite,
(d) $\sum_{i \in I} \psi_{i}(x)=1$ for every $x \in X$.

The index set I can be arbitrary, in particular, it may be uncountable. By the condition (c) every $y \in X$ has a neighborhood where the sum in (d) has only finitely many non vanishing terms. Hence there is no problem with the sum.

If M is a smooth manifold and each ψ_{i} is smooth, we call $\left\{\psi_{i}\right\}$ a smooth partition of unity.
Let \mathcal{U} be an open cover of X. We say that an open cover \mathcal{V} is a refinement of \mathcal{U} if for every $V \in \mathcal{V}$ there exists $U \in \mathcal{U}$ such that $V \subset U$. A topological space X is paracompact if X is Hausdorff and every open cover of X has a locally finite refinement.

Lemma 6.5. Every topological manifold has a countable, locally finite open cover $\left\{V_{j}\right\}_{j \in \mathbb{N}}$ by precompact sets V_{j}. Furthermore, the sets V_{j} can be chosen such that $i \in\{j-1, j, j+1\}$ if $V_{j} \cap V_{i} \neq \emptyset$.

Proof. Let M be a topological manifold and let $\left\{B_{j}\right\}_{j \in \mathbb{N}}$ be a countable cover where every B_{j} is precompact (see Theorem 0.20). Next we prove that M has a countable cover $\left\{U_{j}\right\}_{j \in \mathbb{N}}$ s.t. for every $j \in \mathbb{N}$
(a) U_{j} is open and precompact,
(b) $\bar{U}_{j} \subset U_{j+1}$,
(c) $B_{j} \subset U_{j}$.

Denote $U_{1}=B_{1}$. Suppose that there exist sets $U_{j}, j=1, \ldots, k$, satisfying (a)-(c). Since \bar{U}_{k} is compact and $\left\{B_{j}\right\}$ is an open cover of M, there exists $m_{k} \in \mathbb{N}$ s.t.

$$
\bar{U}_{k} \subset B_{1} \cup B_{2} \cup \cdots \cup B_{m_{k}} .
$$

We set $U_{k+1}=B_{1} \cup B_{2} \cup \cdots \cup B_{m_{k}}$. Then (a) and (b) hold for the index $j=k+1$, too. By increasing m_{k} if needed we may assume that $m_{k} \geq k+1$, so $B_{k+1} \subset U_{k+1}$ and (c) holds for the index $j=k+1$. We have proven by induction that there exists a countable family $\left\{U_{j}\right\}_{j \in \mathbb{N}}$ satisfying (a)-(c). Furthermore, it follows from (c) that $\left\{U_{j}\right\}_{j \in \mathbb{N}}$ is an open cover of M since $\left\{B_{j}\right\}_{j \in \mathbb{N}}$ is a cover of M. Finally we form a countable, locally finite open cover $\left\{V_{j}\right\}_{j \in \mathbb{N}}$ by precompact sets by setting $V_{1}=U_{3}$ and $V_{j}=U_{j+2} \backslash \bar{U}_{j}$ when $j \geq 2$. Then every \bar{V}_{j} is compact since it is a closed subset of a compact set \bar{U}_{j+2}. If $p \in M$, let k be the smallest positive integer such that $p \in U_{k+2}$. Then $p \in V_{k}$ and V_{k} intersects only with V_{k-1}, V_{k}, and V_{k+1}. Hence $\left\{V_{j}\right\}_{j \in \mathbb{N}}$ is locally finite.

Theorem 6.6. Let M be a smooth n-manifold. Every open cover of M has a countable, locally finite refinement $\left\{W_{i}\right\}_{i \in \mathbb{N}}$ such that
(i) there exist diffeomorphisms $\varphi_{i}: W_{i} \rightarrow B^{n}(0,3) \subset \mathbb{R}^{n}$ and
(ii) the sets $U_{i}=\varphi_{i}^{-1} B^{n}(0,1)$ cover M.

In particular, M is paracompact.
Proof. Let \mathcal{X} be an arbitrary open cover of M and let $\left\{V_{j}\right\}_{j \in \mathbb{N}}$ be a countable, locally finite open cover of M by precompact sets given by Lemma 6.5. For every $p \in M$ let

$$
W_{p}^{\prime}=\bigcap_{V_{j} \ni p} V_{j} .
$$

Since \mathcal{X} is an open cover of $M, p \in X_{p}$ for some $X_{p} \in \mathcal{X}$. Denote $W_{p}^{\prime \prime}=W_{p}^{\prime} \cap X_{p}$, so each $W_{p}^{\prime \prime} \subset X$ for some $X \in \mathcal{X}$. Let (U, φ) be a chart at p such that $\varphi(p)=0$. We may assume that $B^{n}(0,3) \subset \varphi\left(U \cap W_{p}^{\prime \prime}\right)$. Denote $W_{p}=\varphi^{-1} B^{n}(0,3)$ and $U_{p}=\varphi^{-1} B^{n}(0,1)$. The family $\left\{U_{p}: p \in\right.$ $\left.\bar{V}_{k}\right\}$ is an open cover of \bar{V}_{k} for every k. Since \bar{V}_{k} is compact, it can be covered by finitely many such $U_{k}^{1}, \ldots, U_{k}^{m_{k}}$. Let $\left(W_{k}^{1}, \varphi_{k}^{1}\right), \ldots,\left(W_{k}^{m_{k}}, \varphi_{k}^{m_{k}}\right)$ be the corresponding charts. Then the family $\left\{W_{k}^{i}: k \in \mathbb{N}, i \in\left\{1, \ldots, m_{k}\right\}\right\}$ is a countable open cover of M that is a refinement of \mathcal{X} and satisfies the conditions (i) and (ii). Next we prove that $\left\{W_{k}^{i}\right\}_{k, i}$ is locally finite. It is enough to show that each W_{k}^{i} intersects at most finitely many $W_{k^{\prime}}^{i^{\prime}}$. Assume on the contary that there are indices k_{0} and i_{0} such that $W_{k_{0}}^{i_{0}} \cap W_{k}^{i} \neq \emptyset$ for infinitely many W_{k}^{i}. For every k there exist only m_{k} sets W_{k}^{i}, so there must be infinitely many k such that $W_{k_{0}}^{i_{0}} \cap W_{k}^{i} \neq \emptyset$. By the construction $W_{k_{0}}^{i_{0}} \subset V_{j_{0}}$ for some j_{0} and each $W_{k}^{i} \subset V_{j}$ for some j, so there exists V_{j} that contain W_{k}^{i} for infinitely many k. On the other hand, $W_{k}^{i} \cap V_{k} \neq \emptyset$, so V_{j} intersects infinitely many V_{k}. This leads to a contradiction since each V_{j} intersects only V_{j-1}, V_{j}, and V_{j+1}.

Theorem 6.7. Let M be a smooth manifold and $\mathcal{U}=\left\{U_{\alpha}: \alpha \in \mathcal{A}\right\}$ an arbitrary open cover of M. Then there exists a smooth partition of unity $\left\{\psi_{i}: i \in \mathbb{N}\right\}$ subordinate to \mathcal{U}.

Proof. Let $\mathcal{U}=\left\{U_{\alpha}: \alpha \in \mathcal{A}\right\}$ be an open cover of M and $\left\{W_{i}\right\}_{i \in \mathbb{N}}$ a locally finite refinement of \mathcal{U} such that conditions (i) and (ii) in Theorem 6.6 hold. Let $f_{i}: M \rightarrow \mathbb{R}$ be a smooth function such that $0 \leq f_{i} \leq 1, f_{i} \equiv 1$ in U_{i}, and supp $f_{i} \subset W_{i}$ (see below). Define functions $\psi_{i}: M \rightarrow \mathbb{R}$,

$$
\psi_{i}=\frac{f_{i}}{\sum_{j} f_{j}} .
$$

Since $\left\{W_{i}\right\}$ is locally finite, each point of M has a neighborhood where the sum $\sum_{j} f_{j}$ (in the denominator) has only finitely many non-vanishing term. Furthermore, $\sum_{j} f_{j}(x) \geq 1$ for every x since $\left\{U_{i}\right\}$ covers M. Hence $\psi_{i} \in C^{\infty}(M), 0 \leq \psi_{i} \leq 1$, supp $\psi_{i} \subset W_{i}$, and $\sum_{i} \psi_{i}(x)=1$ for every $x \in M$. Let us prove next the existence of such f_{i}. First we notice that functions $f: \mathbb{R} \rightarrow \mathbb{R}$,

$$
f(t)= \begin{cases}e^{-1 / t}, & t>0, \\ 0, & t \leq 0,\end{cases}
$$

and $h: \mathbb{R} \rightarrow \mathbb{R}$,

$$
h(t)=\frac{f(2-t)}{f(2-t)+f(t-1),}
$$

are smooth (exerc.). Furthermore, $h(t)=1 \forall t \leq 1, h(t)=0 \forall t \geq 2$ and $0 \leq h(t) \leq 1 \forall t \in \mathbb{R}$. Hence the function $H: \mathbb{R}^{n} \rightarrow \mathbb{R}, H(x)=h(|x|)$, is smooth, $0 \leq H(x) \leq 1 \forall x \in \mathbb{R}^{n}, H(x)=1 \forall x \in$ $\bar{B}^{n}(0,1)$ and $\operatorname{supp} H \subset \bar{B}^{n}(0,2)$. Finally, we define functions $f_{i}: M \rightarrow \mathbb{R}$ by setting

$$
f_{i}(p)= \begin{cases}H\left(\varphi_{i}(p)\right), & p \in W_{i}, \\ 0, & p \in M \backslash \bar{W}_{i} .\end{cases}
$$

6.8 Integration of a differential n-form

Let M be oriented and let ω be an arbitrary continuous, compactly supported differential n-form on M. Let $\mathcal{U}=\left\{U_{\alpha}\right\}$ be an orientation of M and $\left\{f_{i}: i \in I\right\}$ a smooth partition of unity subordinate to \mathcal{U}.

Define

$$
\int_{M} \omega=\sum_{i \in I} \int_{M} f_{i} \omega
$$

In the sum there are only finitely many (non-vanishing) terms since supp ω is compact and $\left\{\operatorname{supp} f_{i}\right\}$ is locally finite. Let us prove that the definition above is independent of the choices of an atlas and a partition of unity if the chosen atlases define the same orientation. Let $\mathcal{V}=\left\{V_{\beta}\right\}$ be another atlas that determines the same orientation as $\left\{U_{\alpha}\right\}$ and let $\left\{g_{j}: j \in J\right\}$ be a smooth partition of unity subordinate to \mathcal{V}. Then
so

$$
f_{i}=f_{i} \sum_{j \in J} g_{j}=\sum_{j} f_{i} g_{j},
$$

$$
\int_{M} f_{i} \omega=\sum_{j} \int_{M} f_{i} g_{j} \omega
$$

and, furthermore,

$$
\begin{aligned}
\int_{M} \omega=\sum_{i} \int_{M} f_{i} \omega & =\sum_{i} \sum_{j} \int_{M} f_{i} g_{j} \omega \\
& =\sum_{j} \sum_{i} \int_{M} f_{i} g_{j} \omega=\sum_{j} \int_{M} g_{j} \omega
\end{aligned}
$$

as it should be. It is worth noticing that

$$
\int_{M} f_{i} g_{j} \omega
$$

is related to the atlas $\left\{U_{\alpha}\right\}$ when appearing on the first line above and to the atlas $\left\{V_{\beta}\right\}$ when appearing on the second line. These integrals are the same since both atlases determine the same orientation.

The change of variables formula generalizes as follows: Let M^{n} and N^{n} be smooth oriented n-manifolds and $f: M \rightarrow N$ a sense preserving diffeomorphism. If ω is a continuous compactly supported differential n-form on N, then

$$
\int_{M} f^{*} \omega=\int_{N} \omega .
$$

All the above hold for arbitrary Lebesgue integrable (compactly supported) differential n-forms.

7 Stokes's theorem

In his section we will state and prove Stokes's theorem. For that purpose we need the notion of a manifold with boundary and some more information on orientation.

7.1 Orientation

The following characterization is often used as a definition of orientability.
Theorem 7.2. A smooth n-manifold M is orientable if and only if there exists a smooth differential n-form (an orientation form) $\omega \in \mathcal{A}^{n}(M)$ that does not vanish at any point (i.e. for every $p \in M$ there exist vectors $v_{1}, \ldots, v_{n} \in T_{p} M$ s.t. $\left.\omega_{p}\left(v_{1}, \ldots, v_{n}\right) \neq 0\right)$.

Proof. Assume first that M is orientable ans let $\left\{\left(U_{\alpha}, x_{\alpha}\right)\right\}$ bean orientation. For every α define in U_{α} a smooth n-form

$$
\omega^{\alpha}=d x_{\alpha}^{1} \wedge d x_{\alpha}^{2} \wedge \cdots \wedge d x_{\alpha}^{n}
$$

In other words, $\omega^{\alpha}=x_{\alpha}^{*}\left(d x^{1} \wedge \cdots \wedge d x^{n}\right)$. If $\left(U_{\beta}, x_{\beta}\right)$ is another chart in the orientation s.t. $U_{\alpha} \cap U_{\beta} \neq \emptyset$, then by Theorem 5.14

$$
\begin{equation*}
\omega^{\beta}=\operatorname{det} D\left(x_{\beta} \circ x_{\alpha}^{-1}\right) \omega^{\alpha} . \tag{7.3}
\end{equation*}
$$

Furthermore, the function $p \mapsto \operatorname{det} D\left(x_{\beta} \circ x_{\alpha}^{-1}\right)(p)$ is positive in $U_{\alpha} \cap U_{\beta}$ since $\left(U_{\alpha}, x_{\alpha}\right.$ and $\left(U_{\beta}, x_{\beta}\right)$ belong to the same orientation. Let $\left\{\psi_{i}\right\}_{i \in \mathbb{N}}$ be a smooth partition of unity subordinate to $\left\{U_{\alpha}\right\}$. For every $i \in \mathbb{N}$ choose α_{i} s.t. $\operatorname{supp} \psi_{i} \subset U_{\alpha_{i}}$. Next we define

$$
\omega=\sum_{i \in \mathbb{N}} \psi_{i} \omega^{\alpha_{i}}
$$

Clearly ω is a smooth n-form. To show that ω does not vanish at any point, ix an arbitrary $p \in M$, so $p \in U_{\alpha_{j}}$ for some j. By (7.3)

$$
\omega_{p}^{\alpha_{i}}=a_{i} \omega_{p}^{\alpha_{j}}
$$

where the coefficients a_{i} are non-negative and $a_{i}>0$ if $p \in U_{\alpha_{i}}$. Let $\partial_{1}, \ldots, \partial_{n}$ be the coordinate vector fields associated to a chart $\left(U_{\alpha_{j}}, x_{\alpha_{j}}\right)$, so

$$
\omega^{\alpha_{j}}\left(\partial_{1}, \ldots, \partial_{n}\right) \equiv 1
$$

in $U_{\alpha_{j}}$. Since $\sum_{i} \psi_{i}(p)=1$, there exists $k \in \mathbb{N}$ s.t. $\psi_{k}(p)>0$. Then $p \in \operatorname{supp} \psi_{k} \subset U_{\alpha_{k}}$, so $a_{k}>0$ and

$$
\begin{aligned}
\omega_{p}\left(\partial_{1}, \ldots, \partial_{n}\right) & =\sum_{i} \psi_{i}(p) \omega_{p}^{\alpha_{i}}\left(\partial_{1}, \ldots, \partial_{n}\right) \\
& =\sum_{i} \psi_{i}(p) a_{i} \omega_{p}^{\alpha_{j}}\left(\partial_{1}, \ldots, \partial_{n}\right) \\
& =\sum_{i} \psi_{i}(p) a_{i} \geq \psi_{k}(p) a_{k}>0
\end{aligned}
$$

Suppose then that there exists $\omega \in \mathcal{A}^{n}(M)$ s.t. $\omega_{p} \neq 0 \forall p \in M$. Let $\left\{\left(U_{\alpha}, x_{\alpha}\right)\right\}$ be an atlas. We may assume that every $U \alpha$ is connected (replace U_{α} by its components and re-index if necessary). Then

$$
\omega \mid U_{\alpha}=\omega_{\alpha} d x_{\alpha}^{1} \wedge \cdots \wedge d x_{\alpha}^{n}
$$

where ω_{α} is a smooth function that does not vanish at any point of U_{α} and does not change its sign. By changing the sign of a coordinate function (e.g. x_{α}^{1}) if necessary, we may assume that $\omega_{\alpha}>0$ in U_{α} for all α. Let then $\left(U_{\alpha}, x_{\alpha}\right)$ and $\left(U_{\beta}, x_{\beta}\right)$ be charts such that $U_{\alpha} \cap U_{\beta}=W \neq \emptyset$. Then

$$
\left(x_{\alpha}^{-1}\right)^{*} \omega=\left(\omega_{\alpha} \circ x_{\alpha}^{-1}\right) d x^{1} \wedge \cdots \wedge d x^{n}
$$

in $x_{\alpha} W$ and

$$
\left(x_{\beta}^{-1}\right)^{*} \omega=\left(\omega_{\beta} \circ x_{\beta}^{-1}\right) d x^{1} \wedge \cdots \wedge d x^{n}
$$

in $x_{\beta} W$. On the other hand,

$$
\left(x_{\alpha}^{-1}\right)^{*} \omega=\left(x_{\beta}^{-1} \circ\left(x_{\beta} \circ x_{\alpha}^{-1}\right)\right)^{*} \omega=\left(x_{\beta} \circ x_{\alpha}^{-1}\right)^{*}\left(\left(x_{\beta}^{-1}\right)^{*} \omega\right)
$$

in $x_{\alpha} W$, so

$$
\begin{aligned}
\left(\omega_{\alpha} \circ x_{\alpha}^{-1}\right) d x^{1} \wedge \cdots \wedge d x^{n} & =\left(x_{\beta} \circ x_{\alpha}^{-1}\right)^{*}\left(\left(x_{\beta}^{-1}\right)^{*} \omega\right) \\
& =\left(x_{\beta} \circ x_{\alpha}^{-1}\right)^{*}\left(\left(\omega_{\beta} \circ x_{\beta}^{-1}\right) d x^{1} \wedge \cdots \wedge d x^{n}\right) \\
& =\left(\omega_{\beta} \circ x_{\beta}^{-1}\right) \circ\left(x_{\beta} \circ x_{\alpha}^{-1}\right) \operatorname{det}\left(x_{\beta} \circ x_{\alpha}^{-1}\right)^{\prime} d x^{1} \wedge \cdots \wedge d x^{n}
\end{aligned}
$$

by Theorem 5.14. It follows that

$$
\operatorname{det}\left(x_{\beta} \circ x_{\alpha}^{-1}\right)^{\prime}(q)>0
$$

for every $q \in x_{\alpha} W$ since both $\omega_{\alpha} \circ x_{\alpha}^{-1}$ and $\left(\omega_{\beta} \circ x_{\beta}^{-1}\right) \circ\left(x_{\beta} \circ x_{\alpha}^{-1}\right)$ are positive functions in $x_{\alpha} W$.
Let M be a smooth manifold and $S \subset M$ a smooth submanifold. We say that a mapping $V: S \rightarrow T M$ is a vector field along S if $V_{p} \in T_{p} M$ for all $p \in S$. If S is a submanifold of codimension 1 (i.e. a hypersurface), then a vector $v \in T_{p} M, p \in S$, is called transversal to S if v and $T_{p} S$ span $T_{p} M$. Furthermore, a vector field V along S is transversal to S if V_{p} is transversal to S for all $p \in S$.

Theorem 7.4. If M is orientable, $S \subset M$ a hypersurface, and V a smooth transversal vector field along S. Then S is orientable. If ω is an orientation form on M, then $\left(i_{V} \omega\right) \mid S$ is an orientation form on S.

Proof. (Exerc.)

7.5 Smooth manifolds with boundary

Denote

$$
\mathbb{H}^{n}=\left\{\left(x^{1}, \ldots, x^{n}\right) \in \mathbb{R}^{n}: x^{n}>0\right\} \quad \text { and } \quad \overline{\mathbb{H}}^{n}=\left\{\left(x^{1}, \ldots, x^{n}\right) \in \mathbb{R}^{n}: x^{n} \geq 0\right\}
$$

A topological space M is a topological n-manifold with boundary if M is Hausdorff, N_{2}, and every point of M has a neighborhood that is homeomorphic with some open subset of $\overline{\mathbb{H}}^{n}$ (w.r.t. relative topology).

A point $p \in M$ is called a boundary point of M if there exists a chart $(U, x), x=\left(x^{1}, \ldots, x^{n}\right): U \rightarrow$ $\overline{\mathbb{H}}^{n}$, s.t. $x^{n}(p)=0$. The set of boundary points is denoted by ∂M (this is not a boundary in topological sense).

To define the notion of a smooth manifold with boundary, recall that a mapping $f: A \rightarrow \mathbb{R}^{m}$, where $A \subset \mathbb{R}^{n}$ is arbitrary, is called smooth if every point $x \in A$ has a neighborhood V and a smooth mapping $F: V \rightarrow \mathbb{R}^{m}$ s.t. $F|V \cap A=f| V \cap A$.

Let $U \subset \overline{\mathbb{H}}^{n}$ be open and $f: U \rightarrow \mathbb{R}^{m}$ smooth. Suppose that $U \cap \partial \mathbb{H}^{n} \neq \emptyset$. We define partial derivatives of f at $p \in U \cap \partial \mathbb{H}^{n}$ as follows. Let V be a neighborhood of p (in \mathbb{R}^{n}) and $F: V \rightarrow \mathbb{R}^{m}$ a smooth mapping s.t. $F|V \cap U=f| V \cap U$. Then F has continuous partial derivatives of every order in V

$$
\frac{\partial^{|\alpha|} F_{i}}{\partial^{\alpha} x}, \quad i=1, \ldots, m
$$

and

$$
\frac{\partial^{|\alpha|} F_{i}}{\partial^{\alpha} x}=\frac{\partial^{|\alpha|} f_{i}}{\partial^{\alpha} x}
$$

in $V \cap \operatorname{int} U$. By continuity, we may define partial derivatives of f at p independently of the choice of F by setting

$$
\frac{\partial^{|\alpha|} f_{i}}{\partial^{\alpha} x}(p)=\frac{\partial^{|\alpha|} F_{i}}{\partial^{\alpha} x}(p) .
$$

A smooth n-manifold with boundary can now be defined as in the usual (without boundary) case. A pair (U, φ) is called a chart on an n-manifold M wih boundary if $U \subset M$ is open and $\varphi: U \rightarrow \varphi U \subset \overline{\mathbb{H}}^{n}$ is a homeomorphism (w.r.t. relative topology). Charts (U, φ) and (V, ψ) are C^{∞}-compatible if the mappings $\psi \circ \varphi^{-1}: \varphi(U \cap V) \rightarrow \psi(U \cap V)$ and $\varphi \circ \psi^{-1}: \psi(U \cap V) \rightarrow \varphi(U \cap V)$ are smooth. A smooth n-manifold with boundary is a pair (M, \mathcal{A}), where M is a topological n manifold with boundary and \mathcal{A} is a maximal C^{∞}-atlas on M. A chart (U, φ) is an interior chart if $\varphi U \subset \mathbb{H}^{n}$, otherwise it is a boundary chart (so $\varphi U \cap \partial \mathbb{H}^{n} \neq \emptyset$ in that case). The smoothness of a mapping between two (smooth) manifolds with boundary is defined by using local representations. Tangent vectors and the tangent space $T_{p} M$ at a boundary point $p \in \partial M$ as well as the tangent map $f_{* p}$ are defined as in the usual case of a manifold without boundary. In particular, $T_{p} M$ is an n-dimensional vector space also for points $p \in \partial M$.

It can be shown that ∂M is a topological $(n-1)$-manifold that has a canonical smooth structure so that the inclusion $i: \partial M \hookrightarrow M$ is a smooth embedding.

7.6 Stokes's theorem

For the Stokes's theorem we need a way to attach a suitable orientation to ∂M for an oriented M.
Let M be a smooth n-manifold with boundary ∂M. We consider ∂M as a smooth $(n-1)$ dimensional submanifol. We say that a vector $v \in T_{p} M$, where $p \in \partial M$, is inward-pointing if $v \notin T_{p} \partial M$ and there exists a smooth path $\gamma:\left[0, \varepsilon\left[\rightarrow M\right.\right.$ s.t. $\gamma(0)=p$ and $\dot{\gamma}_{0}=v$. Similarly, a vector $v \in T_{p} M$ is outward-pointing if $-v$ is inward-pointing. A vector field V along ∂M is inward-pointing (outward-pointing) if V_{p} is inward-pointing (outward-pointing) for every $p \in \partial M$.

Lemma 7.7. Let M be a smooth manifold with boundary, $p \in \partial M,(U, x), x=\left(x^{1}, \ldots, x^{n}\right): U \rightarrow$ $\overline{\mathbb{H}}^{n}$, a chart at p and let $\partial_{1}, \ldots, \partial_{n}$ be the corresponding coordinate vector fields in U. Then a vector $v=v^{i}\left(\partial_{i}\right)_{p} \in T_{p} M$ is inward-pointing if and only if $v^{n}>0$.

Proof. (Exerc.)
We can obtain the following existence result by applying partition of unity.

Lemma 7.8. Let M be a smooth manifold with boundary. Then there exists a smooth outwardpointing vector field along ∂M.

Proof. Let $\left\{\left(U_{\alpha}, x_{\alpha}\right)\right\}$ be a family of boundary charts of M such that $\partial M \subset \cup_{\alpha} U_{\alpha}$. Then

$$
\left.V^{\alpha}=-\frac{\partial}{\partial x_{\alpha}^{n}} \right\rvert\, \partial M \cap U_{\alpha}
$$

is a smooth outward-pointing vector field along $\partial M \cap U_{\alpha}$ for all α. Let $\left\{\psi_{i}\right\}$ be a smooth partition of unity subordinate to $\left\{U_{\alpha} \cap \partial M\right\}$ on ∂M. For every i choose α_{i} such that supp $\psi_{i} \subset U_{\alpha_{i}} \cap \partial M$. Then

$$
V=\sum_{i} \psi_{i} V^{\alpha_{i}}
$$

is a smooth vector field along ∂M. It remains to prove that V is ouward-pointing. Let $p \in \partial M$. Since $\sum_{i} \psi_{i}(p)=1$, there exists k s.t. $\psi_{k}(p)>0$, so $p \in U_{\alpha_{k}}$. Let $\partial_{1}, \ldots, \partial_{n}$ be the coordinate vector fields associated to the chart $\left(U_{\alpha_{k}}, x_{\alpha_{k}}\right)$ in $U_{\alpha_{k}}$. Denote by $\left(\psi_{i} V^{\alpha_{i}}\right)_{p}^{n}$ the nth component of a vector $\left(\psi_{i} V^{\alpha_{i}}\right)_{p}$ with respect to the basis $\left\{\left(\partial_{1}\right)_{p}, \ldots,\left(\partial_{n}\right)_{p}\right\}$. Then each $\left(\psi_{i} V^{\alpha_{i}}\right)_{p}^{n}$ is non-positive and, moreover, $\left(\psi_{k} V^{\alpha_{k}}\right)_{p}^{n}=-\psi_{k}(p)<0$. Then V_{p}^{n}, the nth component of V_{p} is negative:

$$
V_{p}^{n}=\sum_{i}\left(\psi_{i} V^{\alpha_{i}}\right)_{p}^{n} \leq-\psi_{k}(p)<0
$$

Suppose that M is an oriented smooth n-manifold with boundary and let ω be an orientation n-form associated to the orientation of M (see Theorem 7.2). More precisely: Let $\left\{\left(U_{\alpha}, x_{\alpha}\right)\right\}$ be an orientation of M and ω an orientation n-form s.t. in every U_{α}

$$
\omega \mid U_{\alpha}=\omega_{\alpha} d x_{\alpha}^{1} \wedge \cdots \wedge d x_{\alpha}^{n}
$$

where ω_{α} is a smooth positive function. Suppose, moreover, that V is a smooth otward-pointing vector field along ∂M. Then $\left(i_{V} \omega\right) \mid \partial M$ is an orientation $(n-1)$-form on ∂M. Finally, we equip ∂M with the orientation determined by $\left(i_{V} \omega\right) \mid \partial M$. Such orientation on ∂M is called the induced (or the Stokes) orientation. An arbitrary orientation n-form associated to the original orientation of M and any outward-pointing vector field along ∂M yield the same orientation on ∂M (Exerc.).

Example 7.9. Let $M=\overline{\mathbb{H}}^{n}$ and let

$$
\omega=d x^{1} \wedge d x^{2} \wedge \cdots \wedge d x^{n}
$$

be the standard orientation n-form on \mathbb{R}^{n} (and also on $\overline{\mathbb{H}}^{n}$). We identify $\partial \overline{\mathbb{H}}^{n}$ and \mathbb{R}^{n-1} by identifying points $\left(x^{1}, \ldots, x^{n-1}, 0\right) \in \partial \overline{\mathbb{H}}^{n}$ and $\left(x^{1}, \ldots, x^{n-1}\right) \in \mathbb{R}^{n-1}$. The vector field

$$
V=-\frac{\partial}{\partial x^{n}}
$$

restricted to $\partial \overline{\mathbb{H}}^{n}$ is a smooth outward-pointing vector field along $\partial \overline{\mathbb{H}}^{n}$. Let us compute $i_{V} \omega$ by
using the \wedge-antiderivation property (Theorem 5.27 (iii)):

```
\(i_{V} \omega=i_{V}\left(d x^{1} \wedge d x^{2} \wedge \cdots \wedge d x^{n}\right)\)
    \(=\left(i_{V} d x^{1}\right) \wedge\left(d x^{2} \wedge \cdots \wedge d x^{n}\right)-d x^{1} \wedge i_{V}\left(d x^{2} \wedge \cdots \wedge d x^{n}\right)\)
    \(=d x^{1}(V) d x^{2} \wedge \cdots \wedge d x^{n}-d x^{1} \wedge\left(i_{V} d x^{2}\right) \wedge\left(d x^{3} \wedge \cdots \wedge d x^{n}\right)+d x^{1} \wedge d x^{2} \wedge i_{V}\left(d x^{3} \wedge \cdots \wedge d x^{n}\right)\)
    \(=\sum_{i=1}^{n}(-1)^{i-1} \underbrace{d x^{i}(V)}_{=-\delta_{n}^{i}} d x^{1} \wedge d x^{2} \wedge \cdots \wedge \hat{d x^{i}} \wedge \cdots \wedge d x^{n}\)
    \(=-(-1)^{n-1} d x^{1} \wedge d x^{2} \wedge \cdots \wedge d x^{n-1}\)
    \(=(-1)^{n} d x^{1} \wedge d x^{2} \wedge \cdots \wedge d x^{n-1}\).
```

We observe that $\left(i_{V} \omega\right) \mid \partial \overline{\mathbb{H}}^{n}$ is the standard orientation $(n-1)$-form on \mathbb{R}^{n-1} (and hence the induced orientation of $\partial \overline{\mathbb{H}}^{n}$ is the same as the standard orientation of \mathbb{R}^{n-1}) if and only if n is even.

Theorem 7.10 (Stokes's theorem). Let M be a smooth oriented n-manifold with boundary and let ω be a smooth compactly supported $(n-1)$-form on M. Then

$$
\begin{equation*}
\int_{M} d \omega=\int_{\partial M} \omega \tag{7.11}
\end{equation*}
$$

where ∂M has the induced orientation.
Proof. (a) Let us prove the claim first in the case $M=\overline{\mathbb{H}}^{n}$. Since $\operatorname{supp} \omega$ is compact, there exists $R>0$ s.t. $\operatorname{supp} \omega \subset Q=[-R, R] \times \cdots \times[-R, R] \times[0, R]$. We may write ω in the form

$$
\omega=\sum_{i=1}^{n} \omega_{i} d x^{1} \wedge \cdots \wedge \hat{d x^{i}} \wedge \cdots \wedge d x^{n}
$$

so

$$
\begin{aligned}
d \omega & =\sum_{i=1}^{n} d \omega_{i} \wedge d x^{1} \wedge \cdots \wedge \hat{d x^{i}} \wedge \cdots \wedge d x^{n} \\
& =\sum_{i, j=1}^{n} \frac{\partial \omega_{i}}{\partial x^{j}} \underbrace{d x^{j} \wedge d x^{1} \wedge \cdots \wedge \hat{d x^{i}} \wedge \cdots \wedge d x^{n}}_{=\delta_{i}^{j} d x^{j} \wedge d x^{1} \wedge \cdots \wedge d \hat{x}^{i} \wedge \cdots \wedge d x^{n}} \\
& =\sum_{i=1}^{n} \frac{\partial \omega_{i}}{\partial x^{i}} d x^{i} \wedge d x^{1} \wedge \cdots \wedge \hat{d x^{i}} \wedge \cdots \wedge d x^{n} \\
& =\sum_{i=1}^{n}(-1)^{i-1} \frac{\partial \omega_{i}}{\partial x^{i}} d x^{1} \wedge \cdots \wedge d x^{n}
\end{aligned}
$$

Then

$$
\begin{aligned}
\int_{M} d \omega & =\sum_{i=1}^{n}(-1)^{i-1} \int_{Q} \frac{\partial \omega_{i}}{\partial x^{i}} d x^{1} \wedge \cdots \wedge d x^{n} \\
& =\sum_{i=1}^{n}(-1)^{i-1} \int_{Q} \frac{\partial \omega_{i}}{\partial x^{i}} d m(x) \\
& =\sum_{i=1}^{n}(-1)^{i-1} \int_{0}^{R} \int_{-R}^{R} \cdots \int_{-R}^{R} \frac{\partial \omega_{i}}{\partial x^{i}} d x^{1} \cdots d x^{n}
\end{aligned}
$$

Next we change, in each term, the order of integration so that we integrate first with respect to x^{i}. If $i \neq n$, we get

$$
\int_{-R}^{R} \frac{\partial \omega_{i}}{\partial x^{i}}\left(x^{1}, \ldots, x^{i}, \ldots, x^{n}\right) d x^{i}=\omega_{i}\left(x^{1}, \ldots, R, \ldots, x^{n}\right)-\omega_{i}\left(x^{1}, \ldots,-R, \ldots, x^{n}\right)=0
$$

for all $\left(x^{1}, \ldots, \hat{x}^{i}, \ldots, x^{n}\right)$ since $\operatorname{supp} \omega_{i} \subset Q$. Hence

$$
\sum_{i=1}^{n-1}(-1)^{i-1} \int_{Q} \frac{\partial \omega_{i}}{\partial x^{i}} d x^{1} \wedge \cdots \wedge d x^{n}=0
$$

and so

$$
\begin{aligned}
\int_{M} d \omega & =(-1)^{n-1} \int_{Q} \frac{\partial \omega_{n}}{\partial x^{n}} d x^{1} \wedge \cdots \wedge d x^{n} \\
& =(-1)^{n-1} \int_{-R}^{R} \int_{-R}^{R} \cdots \int_{0}^{R} \frac{\partial \omega_{n}}{\partial x^{n}} d x^{n} d x^{1} \cdots d x^{n-1}
\end{aligned}
$$

On the other hand

$$
\int_{0}^{R} \frac{\partial \omega_{n}}{\partial x^{n}}\left(x^{1}, \ldots, x^{n-1}, x^{n}\right) d x^{n}=-w_{n}\left(x^{1}, \ldots, x^{n-1}, 0\right),
$$

so

$$
\int_{M} d \omega=(-1)^{n} \int_{-R}^{R} \cdots \int_{-R}^{R} \omega_{n}\left(x^{1}, \ldots, x^{n-1}, 0\right) d x^{1} \cdots d x^{n-1}
$$

Next we integrate ω over $\partial \overline{\mathbb{H}}^{n}$ by using the standard orientation of \mathbb{R}^{n-1} on $\partial \overline{\mathbb{H}}^{n}$ (i.e. we integrate ω over $\left.\mathbb{R}^{n-1} \times\{0\}\right)$. We obtain

$$
\int_{\mathbb{R}^{n-1} \times\{0\}} \omega=\sum_{i=1}^{n} \int_{Q \cap \mathbb{R}^{n-1} \times\{0\}} \omega_{i} d x^{1} \wedge \cdots \wedge \hat{d} x^{i} \wedge \cdots \wedge d x^{n} .
$$

Now $d x^{n} \mid \mathbb{R}^{n-1} \times\{0\}=0$, so only one non-zero term (when $i=n$) remains:

$$
\int_{\mathbb{R}^{n-1} \times\{0\}} \omega=\int_{Q \cap \mathbb{R}^{n-1} \times\{0\}} \omega_{n} d x^{1} \wedge \cdots \wedge d x^{n-1} .
$$

By Example 7.9 the induced orientation of $\partial \overline{\mathbb{H}}^{n}(=\partial M)$ is the same as the standard orientation of \mathbb{R}^{n-1} if and only if n is even. Hence integrating ω with respect to the induced orientation yields

$$
\int_{\partial M} \omega=(-1)^{n} \int_{Q \cap \partial M} \omega_{n} d x^{1} \wedge \cdots \wedge d x^{n-1}=\int_{M} d \omega
$$

as desired.
(b) Let then M be an arbitrary smooth oriented n-manifold with boundary. Suppose first that ω is a smooth compactly supported $(n-1)$-form s.t. $\operatorname{supp} \omega \subset U$ for some chart (U, φ) belonging to the orientation of M. Then

$$
\int_{M} d \omega=\int_{\mathbb{\mathbb { H }}^{n}}\left(\varphi^{-1}\right)^{*} d \omega=\int_{\overline{\mathbb{H}}^{n}} d\left(\left(\varphi^{-1}\right)^{*} \omega\right) .
$$

By (a)

$$
\int_{\mathbb{\mathbb { H }}^{n}} d\left(\left(\varphi^{-1}\right)^{*} \omega\right)=\int_{\partial \overline{\mathbb{H}}^{n}}\left(\varphi^{-1}\right)^{*} \omega,
$$

when $\partial \overline{\mathbb{H}}^{n}$ has the induced orientation. Since φ is a sense preserving diffeomorphism, $((U, \varphi)$ belongs to the orientation of M) and φ_{*} maps outward-pointing vectors of $\partial M \cap U$ to outward-pointing vectors of $\partial \overline{\mathbb{H}}^{n}, \varphi \mid \partial M \cap U$ is a sense preserving diffeomorphism onto its image $\varphi U \cap \partial \overline{\mathbb{H}}^{n}$. Hence

$$
\int_{\partial \mathbb{H}^{n}}\left(\varphi^{-1}\right)^{*} \omega=\int_{\partial M} \omega .
$$

(c) Suppose finally that ω is an arbitrary smooth compactly supported ($n-1$)-form on M. Let $\left\{\left(U_{\alpha}, x_{\alpha}\right)\right\}$ be an orientation of M and let $\left\{\psi_{i}\right\}$ be a smooth partition of unity subordinate to $\left\{U_{\alpha}\right\}$. Applying what we proved above for forms $\psi_{i} \omega$ we get

$$
\begin{aligned}
\int_{\partial M} \omega & =\sum_{i} \int_{\partial M} \psi_{i} \omega=\sum_{i} \int_{M} d\left(\psi_{i} \omega\right) \\
& =\sum_{i} \int_{M}\left(d \psi_{i} \wedge \omega+\psi_{i} d \omega\right) \\
& =\int_{M} d\left(\sum_{i} \psi_{i}\right) \wedge \omega+\int_{M}\left(\sum_{i} \psi_{i}\right) d \omega \\
& =\int_{M} d \omega
\end{aligned}
$$

since $\sum_{i} \psi_{i} \equiv 1$, and therefore $d\left(\sum_{i} \psi_{i}\right) \equiv 0$.
Corollary 7.12. Let M be a smooth, compact, oriented n-manifold without boundary (i.e. $\partial M=$ $\emptyset)$. Then the integral of every exact n-form over M vanishes:

$$
\int_{M} d \omega=0 \quad \forall \omega \in \mathcal{A}^{n-1}(M)
$$

Corollary 7.13. Let M be a smooth, compact, oriented n-manifold with boundary. If $\omega \in \mathcal{A}^{n-1}(M)$ $i s$ closed, then the integral of ω over ∂M vanishes:

$$
\int_{\partial M} \omega=0 \quad \text { if } d \omega=0
$$

The divergence of a smooth vector field X with respect to an orientation n-form ω is the function $\operatorname{Div}_{\omega} X: M \rightarrow \mathbb{R}$ s.t. $\left(\operatorname{Div}_{\omega} X\right) \omega=L_{X} \omega$.

Corollary 7.14 (The divergence formula, the Gauss formula). Let M be a smooth, oriented n manifold with boundary and let ω be an orientation n-form on M (so-called volume form). Then for every compactly supported vector field $X \in \mathcal{T}(M)$

$$
\int_{M}\left(\operatorname{Div}_{\omega} X\right) \omega=\int_{\partial M} i_{X} \omega
$$

Corollary 7.15 (Integration by parts). Let M be a smooth, compact, oriented n-manifold with boundary, $X \in \mathcal{T}(M)$, $\alpha \in \mathcal{A}^{k}(M)$, and $\beta \in \mathcal{A}^{n-k}(M), 0 \leq k \leq n$. Then

$$
\int_{M}\left(L_{X} \alpha\right) \wedge \beta=\int_{\partial M} i_{X}(\alpha \wedge \beta)-\int_{M} \alpha \wedge\left(L_{X} \beta\right)
$$

8 Whitney embedding and approximation

First recall: If M is a smooth manifold and $\left\{U_{\alpha}\right\}$ an open cover of M, there exists a smooth partitioen of unity $\left\{\psi_{i}\right\}_{i \in \mathbb{N}}$ subordinate to $\left\{U_{\alpha}\right\}$.

Proposition 8.1. Let $\left\{U_{\alpha}\right\}$ and $\left\{\psi_{i}\right\}$ be as above. Let $g_{\alpha}: U_{\alpha} \rightarrow \mathbb{R}$ be arbitrary smooth functions. Fo each $i \in \mathbb{N}$ choose α_{i} such that $\operatorname{supp} \psi_{i} \subset U_{\alpha_{i}}$. Then the function $g: M \rightarrow \mathbb{R}$,

$$
g=\sum_{i \in \mathbb{N}} \psi_{i} g_{\alpha_{i}}
$$

is smooth.
Proof. The claim follows from the local finiteness of $\left\{\operatorname{supp} \psi_{i}\right\}$.
Lemma 8.2. Let M be a smooth manifold and $K \subset M$ a compact set. Let $g: K \rightarrow \mathbb{R}$ be smooth. [Recall that this means that g extends locally at each point $p \in K$ to a smooth function in a neighborhood of p.] Then g extends to a smooth function $\bar{g}: M \rightarrow \mathbb{R}$.

Proof. Cover K by open sets U_{α} (open in M) such that there exist $g_{\alpha}: U_{\alpha} \rightarrow \mathbb{R}$ with $g_{\alpha} \mid U_{\alpha} \cap$ $K=g$. Add $M \backslash K$ and the zero function to get an open covering of M. Passing to a refinement we may assume that this covering is locally finite (see Theorem 6.6). Let $\left\{\psi_{i}\right\}$ be a smooth partition of unity subordinate to this covering. Then $\bar{g}: M \rightarrow \mathbb{R}, \bar{g}=\sum_{i} \psi_{i} g_{\alpha_{i}}$ will do.

Theorem 8.3 (Whitney embedding theorem, compact case). If M^{n} is a compact n-dimensional smooth manifold, there exists a smooth embedding $g: M^{n} \rightarrow \mathbb{R}^{2 n+1}$.

Proof. Since M^{n} is compact, there exists a finite atlas $\left\{\left(U_{1}, \varphi_{1}\right), \ldots,\left(U_{k}, \varphi_{k}\right)\right\}$. We may assume that there are open sets $V_{i} \subset U_{i}$ such that $\bar{V}_{i} \subset U_{i}$. Now there are smooth functions $\lambda_{i}: M \rightarrow \mathbb{R}$ such that $\lambda_{i} \mid \bar{V}_{i}=1$ and supp $\lambda_{i} \subset U_{i}$ (this follows e.g. from Lemma 8.2). Define ψ_{i} by setting

$$
\psi_{i}(p)= \begin{cases}\lambda_{i}(p) \varphi_{i}(p), & p \in U_{i} \\ 0, & p \notin U_{i}\end{cases}
$$

Then ψ_{i} is smooth. Next define $\theta: M \rightarrow\left(\mathbb{R}^{n}\right)^{k} \times \mathbb{R}^{k}$ by

$$
\theta(p)=\left(\psi_{1}(p), \ldots, \psi_{k}(p), \lambda_{1}(p), \ldots, \lambda_{k}(p)\right)
$$

Then

$$
\theta_{*}=\psi_{1 *} \times \cdots \times \psi_{k *} \times \lambda_{1 *} \times \cdots \times \lambda_{k *}
$$

Claim 1. θ is an immersion.
Fix $p \in M$. Then $p \in U_{j}$ for some j. Since $\lambda_{j}=1$ in a neighborhood of p, ψ_{j} coincides with φ_{j} in a neighborhood of p. Thus $\psi_{j *}=\varphi_{j *}$ near p. Since φ_{j} is a chart, $\varphi_{j *}$ is injective, and therefore θ_{*} is injective.
Claim 2. θ is injective.
If $\theta(p)=\theta(q)$, then $\psi_{i}(p)=\psi_{i}(q)$ and $\lambda_{i}(p)=\lambda_{i}(q)$ for every i. Now $p \in V_{j}$ for some j, so $\lambda_{j}(p)=1$. Hence $\psi_{j}(p)=\lambda_{j}(p) \varphi_{j}(p)=\varphi_{j}(p)$, and therefore

$$
\varphi_{j}(p)=\underbrace{\lambda_{j}(p)}_{=1} \psi_{j}(p)=\underbrace{\lambda_{j}(q)}_{=1} \varphi_{j}(q)=\varphi_{j}(q)
$$

This implies $p=q$ since φ_{j} is a chart.

Since M^{n} is compact, θ is a homeomorphism onto its image, so θ is an embedding of M^{n} into \mathbb{R}^{N} for some (large) N. We regard this embedding as an inclusion $i: M^{n} \hookrightarrow \mathbb{R}^{N}$.
Claim 3. We can cut N down to $2 n+1$.
Suppose that we can find a vector $w \in \mathbb{R}^{n}$ such that w is not tangent to M^{n} at any point and that there are no points $x, y \in M^{n}$ with $x-y$ parallel to w. Then the orthogonal projection of M^{n} onto the ($N-1$)-dimensional subspace w^{\perp} is still injective and maps no nonzero tangent vector of M^{n} to zero. Hence we may embedd M^{n} into \mathbb{R}^{N-1}. Thus it suffices to show that such vector w exists if $N>2 n+1$. The argument is of "general position"-type. Suppose $N>2 n+1$ and consider the map $\sigma: T M^{n} \backslash$ zero section $\} \rightarrow \mathbb{R} P^{N-1}$ taking a tangent vector $v \neq 0$ to a vector in \mathbb{R}^{N} via the inclusion and then to the equivalence class of $v /|v|$ in $\mathbb{R} P^{N-1}, \sigma\left(v=\left[i_{*} v /\left|i_{*} c\right|\right]\right.$. Also consider the map $\tau: M^{n} \times M^{n} \backslash \Delta_{M^{n}} \rightarrow \mathbb{R} P^{N-1}$ taking a pair $(x, y), x \neq y$, to the equivalence class of $(x-y) /|x-y|, \tau(x, y)=[(x-y) /|x-y|]$. Both σ and τ are smooth. The dimensions of the domains of σ and τ are $2 n$ which is less than the dimension $N-1$ of the target manifold. By Sard's theorem, the images of both maps are of first category and hence the union of the images is also of first category which implies that there must be such a vector w.

Remark 8.4. Sard's theorem: If $\phi: M^{n} \rightarrow \mathbb{R}^{N}$ is smooth, then the set of critical values has zero N-dimensional measure.
Critical value: If $\phi: M^{m} \rightarrow N^{n}$ is smooth, then $p \in M^{m}$ is called a critical point of ϕ if $\phi_{*}: T_{p} M^{m} \rightarrow$ $T_{f(p)} N^{n}$ has rank $<n$, i.e. $\operatorname{dim} \phi_{*} T_{p} M^{m}<n$. The image $\phi(p) \in N^{n}$ of a critical point is called a critical value. All other points in N^{n} are called regular values (even if they do not belong to ϕM^{m}). First category: A subset of a topological space is of first category if it is a countable union of nowhere dense subsets.

Theorem 8.5 (Whitney embedding theorem, general case). A smooth manifold M^{n} can be embedded as a submanifold and a closed subset of $\mathbb{R}^{2 n+1}$.

Proof. Cover M^{n} by open subsets with compact closures and take a smooth partition of unity $\left\{\lambda_{i}\right\}_{i \in \mathbb{N}}$ subordinate to a locally finite and countable refinement of that cover. Let $h(x)=$ $\sum_{k} k \lambda_{k}(x)$. This is a smooth proper map $M^{n} \rightarrow[1, \infty) \subset \mathbb{R}$. Let $U_{i}=h^{-1}(i-1 / 4, i+5 / 4), C_{i}=$ $h^{-1}\left[i-1(3, i+4 / 3]\right.$. Then U_{i} is open, C_{i} is compact, and $\bar{U}_{i} \subset \operatorname{int} C_{i}$. Furthermore, all $C_{\text {odd }}$ are disjoint and, similarly, all $C_{\text {even }}$ are disjoint. Now, for all i, the proof of Theorem 8.3 shows that there exists a smooth map $g_{i}: M^{n} \rightarrow \mathbb{R}^{2 n+1}$ that is an embedding on \bar{U}_{i} and is 0 outside C_{i}. Composing this with a diffeomorphism $\mathbb{R}^{2 n+1} \rightarrow$ an open ball in $\mathbb{R}^{2 n+1}$, we may assume that $g_{i} M^{n}$ is bounded. Let $f_{o}=\sum g_{\text {odd }}, f_{e}=\sum g_{\text {even }}$ and $f=\left(f_{o}, f_{e}, h\right): M^{n} \rightarrow \mathbb{R}^{2 n+1} \times \mathbb{R}^{2 n+1} \times \mathbb{R}$. Now $f M^{n} \subset K \times \mathbb{R}$ for some compact $K \subset \mathbb{R}^{2 n+1} \times \mathbb{R}^{2 n+1}$ since $f_{o} M^{n}$ and $f_{e} M^{n}$ are bounded. Then f is proper since h is proper. If $f(x)=f(y)$, then $h(x)=h(y)$, and therefore x and y are in the same U_{i}. If this i is odd, then f_{o} is an embedding on U_{i}, and so $x=y$. Similarly, if i is even, we have $x=y$. Hence f is an embedding to a closed subset (by properness). Repeating a similar dimension reduction argument as in the proof of Theorem 8.3 we find a projection P of $\mathbb{R}^{2 n+1} \times \mathbb{R}^{2 n+1} \times \mathbb{R}$ to a $(2 n+1)$-dimensional subspace H such that P is an immersion on $f M^{n}$. Moreover, P can be chosen such that the original h-axis is not in $\operatorname{Ker} P$. That is, if $\pi: \mathbb{R}^{2 n+1} \times \mathbb{R}^{2 n+1} \times \mathbb{R} \rightarrow \mathbb{R}^{2 n+1} \times \mathbb{R}^{2 n+1}$ is the projection, then $\operatorname{Ker} \pi \cap \operatorname{Ker} P=\{0\}$. This implies that $\pi \times P$ is an inclusion, hence proper. Thus for a compact $C \subset H, K \times \mathbb{R} \cap P^{-1} C=(\pi \times P)^{-1}(K \times C)$ is compact, hence P is proper on $f M^{n} \subset K \times \mathbb{R}$. Therefore, $P \circ f$ is an embedding of M^{n} as a closed subset of $\mathbb{R}^{2 n+1}$.

8.6 Tubular neighborhoods

Definition 8.7 (Normal bundle). Let M^{n} be a smooth submanifold of $\mathbb{R}^{k}, k>n$. The normal bundle of M^{n} in \mathbb{R}^{k} is

$$
N M=\left\{(x, v) \in M^{n} \times \mathbb{R}^{k}: v \perp T_{x} M\right\},
$$

where the orthogonality \perp is with respect to the standard inner product of \mathbb{R}^{k}.
Then $N M$ is a vector bundle of $\operatorname{rank}(k-n)$ over M. Define $\theta: N M \rightarrow \mathbb{R}^{k}, \theta(x, v)=x+v$, and $N(M, \varepsilon)=\{(x, v) \in N M:|v|<\varepsilon\}$.

Theorem 8.8 (Tubular neighborhood theorem). Let M^{n} be a comapct smooth submanifold of \mathbb{R}^{k}. Then there exists $\varepsilon>0$ such that $\theta: N(M, \varepsilon) \rightarrow \mathbb{R}^{k}$ is a diffeomorphism onto the neighborhood $\left\{y \in \mathbb{R}^{k}: \operatorname{dist}(M, y)<\varepsilon\right\}$ of M^{n} in \mathbb{R}^{k}.

Proof. We have canonical splitting

$$
T_{x} \mathbb{R}^{k}=T_{x} M \oplus N_{x} M,
$$

where $N_{x} M$ is the normal space to $T_{x} M$ at x in \mathbb{R}^{k}. For fixed $x, v \mapsto \theta(x, v)=x+v$, is just a translation, so θ_{*} is the standard inclusion (identity) on $N_{x} M \rightarrow \mathbb{R}^{k}$. Also $\theta_{*}: T_{x} M \rightarrow T_{x} \mathbb{R}^{k}$ is just the differential of the inclusion $M \hookrightarrow \mathbb{R}^{k}$, so this part of θ_{*} is the standard inclusion of $T_{x} M$ in $T_{x} \mathbb{R}^{k}=\mathbb{R}^{k}$. Thus

$$
\theta_{*}: \mathbb{R}^{k}=T_{x} \mathbb{R}^{k}=T_{x} M \oplus N_{x} M \rightarrow \mathbb{R}^{k}
$$

is the identity. Therefore, θ_{*} is an isomorphism at $(x, 0)$ for every $x \in M$, so θ is a diffeomorphism on some neighborhood of $(x, 0)$. Consequently, θ_{*} is an isomorphism at (x, v) for any x and for $|v|$ small. By compactness, there exists $\delta>0$ such that θ_{*} is an isomorphism at all points of $N(M, \delta)$. Thus $\theta: N(M, \delta) \rightarrow \mathbb{R}^{k}$ ia a local diffeomorphism onto its image.
Claim: θ is injective on $N(M, \varepsilon)$ for some $0<\varepsilon \leq \delta$.
Suppose that θ is not injective on $N(M, \varepsilon)$ for any $\varepsilon>0$. Then there are sequences $\left(x_{i}, v_{i}\right) \neq\left(y_{i}, w_{i}\right)$ in $N M$ such that $\left|v_{i}\right| \rightarrow 0,\left|w_{i}\right| \rightarrow 0$ and $\theta\left(x_{i}, v_{i}\right)=\theta\left(y_{i}, w_{i}\right)$. Since M is compact and metrizable, there exist subsequences (after reindexing) such that $x_{i} \rightarrow x$ and $y_{i} \rightarrow y$. Then $\theta\left(x_{i}, v_{i}\right) \rightarrow \theta(x, 0)=$ x and $\theta\left(y_{i}, w_{i}\right) \rightarrow \theta(y, 0)=y$, so that $x=y$. But then, for i large, both $\left(x_{i}, v_{i}\right)$ and $\left(y_{i}, w_{i}\right)$ are close to $(x, 0)$. Since θ is injective locally near ($x, 0$), this gives a contradiction. Hence θ is injective on $N(M, \varepsilon)$ for some $\varepsilon>0$. To finish, we claim that $\theta N(M, \varepsilon)=\left\{y \in \mathbb{R}^{k}: \operatorname{dist}(y, M)<\varepsilon\right\}$. The inclusion \subset is clear. Suppose $\operatorname{dist}(y, M)<\varepsilon$ and choose $x \in M$ such that $|x-y|=\operatorname{dist}(y, M)$. Then $y-x$ is a normal to M at x of length $|y-x|<\varepsilon$, so $y \in \theta N(M, \varepsilon)$.

Note that the map $r=\pi \circ \theta^{-1}: \theta N(M, \varepsilon) \rightarrow M$ is a smooth retraction of the tubular neighborhood onto $M(r \mid M=\mathrm{id})$. Also r is homotopic to id_{M} via smooth homotopy, so r is a smooth "deformation retraction".

Theorem 8.9. Let M^{n} be a smooth manifold and $A \subset M^{n}$ closed. Let $f: M^{n} \rightarrow \mathbb{R}^{k}$ be continuous on M^{n} and smooth on A (w.r.t. induced structure). Given $\varepsilon>0$, there exists a smooth map $g: M^{n} \rightarrow \mathbb{R}^{k}$ such that $g(a)=f(a)$ for all $x \in A$ and $|f(x)-g(x)|<\varepsilon$ for every $x \in M$. Moreover, $f \simeq g$ rel A via an ε-small homotopy.

Proof. For every $x \in M^{n}$, let $V_{x} \subset M^{n}$ be an open neighborhood of x and $h_{x}: V_{x} \rightarrow \mathbb{R}^{k}$ such that
(i) if $x \in A, h_{x}$ is a smooth local extension of $f \mid A \cap V_{x}$,
(ii) if $x \notin A, V_{x} \cap A=\emptyset$ and $h_{x}(y)=h_{x}(x)$ for all $y \in V_{x}$,
(iii) if $y \in V_{x}$, then $|f(y)-f(x)|<\varepsilon / 2,\left|h_{x}(y)-f(x)\right|<\varepsilon / 2$ and $d(x, y)<\varepsilon / 2$, where d is a metric on M.

Let $\left\{U_{i}\right\}$ be a locally finite countable refinement of $\left\{V_{x}\right\}$ and $\left\{\lambda_{i}\right\}$ a smooth partition of unity subordinate to $\left\{U_{i}\right\}$. For each $i \in \mathbb{N}$ choose x_{i} such that $U_{i} \subset V_{x_{i}}$. Note that $\lambda_{i}=0$ on A if $x_{i} \notin A$. Define $g(y)=\sum_{i} \lambda_{i}(y) h_{x_{i}}(y)$.
Claim: g has the desired properties. We note that g is smooth by Propostion 8.1. Suppose $y \in A$. Then $g(y)=\sum_{i} \lambda_{i}(y) h_{x_{i}}(y)=\sum_{i} \lambda_{i}(y) f(y)=f(y)$. If $x \in M \backslash A$, taking the sums over those i for which $y \in U_{i}$ gives:

$$
\begin{aligned}
|g(y)-f(y)| & =\left|\sum_{i} \lambda_{i}(y) h_{x_{i}}(y)-f(y)\right| \\
& =\left|\sum_{i} \lambda_{i}(y)\left(h_{x_{i}}(y)-f\left(x_{i}\right)\right)+\sum_{i} \lambda_{i}(y)\left(f\left(x_{i}\right)-f(y)\right)\right| \\
& \leq \sum_{i} \lambda_{i}(y)\left(\left|h_{x_{i}}(y)-f\left(x_{i}\right)\right|+\left|f\left(x_{i}\right)-f(y)\right|\right) \\
& <\sum_{i} \lambda_{i}(y)(\varepsilon / 2+\varepsilon / 2) \leq \varepsilon .
\end{aligned}
$$

Finally, the standard homotopy $H(x, t)=t f(x)+(1-t) g(x)$ gives the desired ε-small homotopy rel A.

Theorem 8.10 (Smooth approximation theorem). Suppose that M^{m} and N^{n} are smooth manifolds, where N^{n} is compact with a metric d. Let $A \subset M^{m}$ be closed. Let $f: M^{m} \rightarrow N^{n}$ be a continuous map such that $f \mid A$ is smooth. Then or every $\varepsilon>0$ there exists a map $h: M^{m} \rightarrow N^{n}$ such that
(i) h is smooth,
(ii) $\operatorname{dist}(h(x), f(x))<\varepsilon$ for every $y \in M^{m}$,
(iii) $h|A=f| A$,
(iv) $h \simeq f \operatorname{rel} A$ by an ε-small homotopy.

Proof. Embed N^{n} into some R^{k}. By continuity of the inverse map of the embedding and compactness of N^{n}, hence by uniform continuity of the inverse, there exists $\delta>0$ such that $|p-q|<\delta$ implies $\operatorname{dist}(p, q)<\varepsilon$. Hence we may use on N^{n} the induced metric from \mathbb{R}^{k}. Take a $\delta / 2$-tubular neighborhood U of N^{n} in \mathbb{R}^{k} (taking smaller δ if necessary) and let $r: U \rightarrow N^{n}$ be the associated normal retraction. Approximate f by a smooth map $g: M^{M} \rightarrow \mathbb{R}^{k}$ within $\delta / 2$ (by Theorem 8.9). Then $g M^{m} \subset U$. Now for the map $h=r \circ g$ we have
(a) h is smooth,
(b) $|h(x)-f(x)| \leq|r(g(x))-g(x)|+\mid g(x)-f(x)) \mid<\delta / 2+\delta / 2=\delta$,
(c) $h|A=r \circ g| A=r \circ f|A=f| A$,
(d) $h \simeq f \operatorname{rel} A$ by $H(x, t)=r(t g(x)+(1-t) f(x))$.

Corollary 8.11. Suppose that M^{m} and N^{n} are smooth manifolds with N^{n} compact. Then every continuous $f: M^{m} \rightarrow N^{n}$ is homotopic to a smooth map. If f and g are smooth and $f \simeq g$, then $f \simeq g$ by a smooth homotopy $H: I \times M^{m} \rightarrow N^{n}$.

Proof. The first part follows directly from Theorem 8.10. Suppose then that $F: I \times M \rightarrow N$ is a homotopy between smooth maps f and g. Extend F to $\mathbb{R} \times M$ by making it constant with respect to $t \in \mathbb{R}$ on both ends $(-\infty, 0]$ and $[1, \infty)$. Then F is smooth on the subspace $\{0,1\} \times M$, and therefore Theorem 8.10 implies the existence of a smooth map $G: \mathbb{R} \times M \rightarrow N$ which coincides with F on $\{0,1\} \times M$. Finally, take $H=G \mid I \times M$.

We can get rid of the assumption N^{n} being compact in Theorem 8.10 and Corollary 8.11 by considering an " $\varepsilon(x)$-tubular" neighborhood of N^{n} in \mathbb{R}^{k} instead of a fixed ε-tubular neighborhood. Thus we obtain the following results.

Theorem 8.12. Let M and N be smooth manifolds and let $f: M \rightarrow N$ be continuous. Then f is homotopic to a smooth mapping $\tilde{f}: M \rightarrow M$. If f is smooth on a closed set $A \subset M$, then there exists smooth $\tilde{f}: M \rightarrow N$ such that $f \simeq \tilde{f}$ rel A.

Theorem 8.13. If $f, g: M \rightarrow N$ are smooth homotopic maps, then they are smoothly homotopic. If $f \simeq g \operatorname{rel} A$ for some closed $A \subset M$, then f and g are smoothly homotopic rel A.

8.14 Some consequences

Theorem 8.15. Let M^{m} be a smooth m-manifold and $n>m$. Then every continuous map $f: M^{m} \rightarrow \mathbb{S}^{n}$ is homotopic to a constant map.

Proof. Let $g: M^{m} \rightarrow \mathbb{S}^{n}$ be smooth and $g \simeq f$. By Sard's theorem, there exists $p \in \mathbb{S}^{n} \backslash g M^{m}$. Then $\mathbb{S}^{n} \backslash\{p\}$ is homotopic to \mathbb{R}^{n}, so it is contractible, i.e. $\mathrm{id}_{\mathbb{S}^{n} \backslash\{0\}} \simeq c$, a constant map. Composing g with such a contraction implies $f \simeq c$.

Theorem 8.16. The sphere \mathbb{S}^{n} is not a retract of the ball closed unit ball \bar{B}^{n+1}.
Proof. Supppose that $f: \bar{B}^{n+1} \rightarrow \mathbb{S}^{n}$ is a retraction. Then $f_{1}:=\frac{1}{2} f(2 \cdot): \bar{B}^{n+1}(0,1 / 2) \rightarrow$ $\mathbb{S}^{n}(1 / 2)$ is a retraction. Let $f_{2}: \mathbb{R}^{n+1} \backslash B^{n+1}(0,1 / 2) \rightarrow \mathbb{S}^{n}$ be the radial projection. Then $h: \mathbb{R}^{n+1} \rightarrow$ \mathbb{S}^{n},

$$
h(x)= \begin{cases}f_{2}(x), & x \in \mathbb{R}^{n+1} \backslash B^{n+1}(0,1 / 2) \\ \left(f_{2} \circ f_{1}\right)(x), & x \in \bar{B}(0,1 / 2)\end{cases}
$$

is a retraction $\bar{B}^{n+1} \rightarrow \mathbb{S}^{n}$ that is smooth in a neighborhood of \mathbb{S}^{n}. Thus we can smooth out h without changing it near \mathbb{S}^{n}. Thus we may assume that (the original) f is smooth and that it is the radial projection near \mathbb{S}^{n}. Let $x \in \mathbb{S}^{n}$ be a regular value of f. Then $f^{-1}(z)$ is a compact 1-manifold with boundary and its boundary is the single point $f^{-1}(z) \cap \mathbb{S}^{n}=\{z\}$. But any compact 1-manifold with boundary is homeomorphic to a disjoint union of circles and closed unit intervals, and hence has an even number of boundary points, which is a contradiction.

Corollary 8.17 (Brower's fixed point theorem). Every continuous map $f: \bar{B}^{n} \rightarrow \bar{B}^{n}$ has a fixed point.

Proof. Suppose there is a continuous map $f: \bar{B}^{n} \rightarrow \bar{B}^{n}$ without fixed points. Define $r: \bar{B}^{n} \rightarrow$ \mathbb{S}^{n-1} by letting $r(x) \in \mathbb{S}^{n-1}$ be the intersection point of \mathbb{S}^{n-1} and the ray from $f(x)$ to x. This is a continuous map, hence a retraction of \bar{B}^{n} onto \mathbb{S}^{n-1}, which is a contradiction. Continuity of r is
intuitively clear but unpleasant to prove.
Another proof: Define a continuous map $g: \bar{B}^{n}(0,2) \rightarrow \bar{B}^{n}(0,2)$,

$$
g(x)= \begin{cases}(2-|x|) f(x /|x|), & 1 \leq|x| \leq 2 \\ f(x), & |x| \leq 1\end{cases}
$$

Clearly g has no fixed points since, for $|x| \leq 1, g(x)=f(x)$ and thus such x cannot be a fixed point. Furthermore, if $|x|>1$, then $|g(x)|<1$, hence such x cannot be a fixed point either. Then define $r: \bar{B}^{n}(0,2) \rightarrow \mathbb{S}^{n-1}(0,2)$,

$$
r(x)=2(x-g(x)) /|x-g(x)|
$$

Now r is continuous and if $|x|=2$, then $g(x)=0$ and therefore $r(x)=2 x /|x|=x$. So r is a retraction $\bar{B}^{n}(0,2) \rightarrow \mathbb{S}^{n-1}(0,2)$ which is a contradiction.

9 A brief introduction to the de Rham cohomology

In this section we consider the de Rham cohomology briefly by introducing some central notions and results.

Let us recall the following definitions:

$$
\begin{aligned}
\mathcal{Z}^{p}(M) & =\operatorname{Ker}\left[d: \mathcal{A}^{p}(M) \rightarrow \mathcal{A}^{p+1}(M)\right] \\
& =\{\operatorname{closed} p \text {-forms on } M\} \\
\mathcal{B}^{p}(M) & =\operatorname{Im}\left[d: \mathcal{A}^{p-1}(M) \rightarrow \mathcal{A}^{p}(M)\right] \\
& =\{\operatorname{exact} p \text {-forms on } M\}
\end{aligned}
$$

The vector space (quotient space)

$$
H_{d R}^{p}(M)=\frac{\mathcal{Z}^{p}(M)}{\mathcal{B}^{p}(M)}
$$

is called the p th de Rham cohomology group of M. Its elements are the equivalence classes [ω] of closed p-forms ω. (A closed p-form $\omega^{\prime} \in[\omega]$ if $\omega^{\prime}-\omega$ is exact.)

By our convention $\mathcal{A}^{p}(M)=0\left(=\right.$ trivial vector space) if $p<0$ or $p>\operatorname{dim} M$, hence $H_{d R}^{p}(M)=0$ for these values of p.

Theorem 9.1. Let M be a connected smooth manifold. Then $H_{d R}^{0}(M)=\mathcal{Z}^{0}(M)=\{f: M \rightarrow \mathbb{R} \mid$ f constant $\}$. In particular, $\operatorname{dim} H_{d R}^{0}(M)=1$.

Proof. Since $\mathcal{B}^{0}(M)=0$, we have $H_{d R}^{0}(M)=\mathcal{Z}^{0}(M)=\{f: M \rightarrow \mathbb{R} \mid d f=0\}$. Furthermore, since M is connected, $\{f: M \rightarrow \mathbb{R} \mid d f=0\}=\{f: M \rightarrow \mathbb{R} \mid f$ constant $\}$.

Let $f^{*}: \mathcal{A}^{p}(N) \rightarrow \mathcal{A}^{p}(M)$ be the pull-back of a smooth mapping $f: M \rightarrow N$. Since f^{*} and d commute (Thm. 5.20), we get

$$
f^{*} \mathcal{Z}^{p}(N) \subset \mathcal{Z}^{p}(M) \quad \text { and } \quad f^{*} \mathcal{B}^{p}(N) \subset \mathcal{B}^{p}(M)
$$

Hence we may define the linear map (the induced cohomology map)

$$
f^{*}: H_{d R}^{p}(N) \rightarrow H_{d R}^{p}(M)
$$

by setting

$$
f^{*}[\omega]=\left[f^{*} \omega\right], \quad[\omega] \in H_{d R}^{p}(N)
$$

The definition is independent of the choice of the representative (Exerc.). If, furthermore, $g: N \rightarrow P$ is smooth, then $(g \circ f)^{*}=f^{*} \circ g^{*}: H_{d R}^{p}(P) \rightarrow H_{d R}^{p}(M)$. In particular, the induced cohomology map of the identity map $i d: M \rightarrow M$ is the identity map $(i d)^{*}: H_{d R}^{p}(M) \rightarrow H_{d R}^{p}(M)$. Hence diffeomorphic manifolds have isomorphic de Rham cohomology groups.

It turns out that, in fact, the de Rham cohomology groups are topological invariants: If M and N are homeomorphic smooth manifolds, their de Rham cohomology groups are isomorphic. We will (partly) prove this next.

Homotopy invariance. Let X and Y be topological spaces and $f_{0}, f_{1}: X \rightarrow Y$ continuous. We say that f_{0} and f_{1} are homotopic (denoted by $f_{0} \simeq f_{1}$) if there exists a continuous mapping (a homotopy from f_{0} to $\left.f_{1}\right) H: X \times I \rightarrow Y, I=[0,1]$, s.t. $\forall x \in X$

$$
\begin{aligned}
& H(x, 0)=f_{0}(x), \\
& H(x, 1)=f_{1}(x) .
\end{aligned}
$$

If, in addition, $H(x, t)=f_{0}(x)=f_{1}(x) \forall t \in I$ and $\forall x \in A \subset X$, we say that f_{0} and f_{1} are homotopic with respect to A, denoted by $f_{0} \simeq f_{1}$ rel A.

A continuous mapping $f: X \rightarrow Y$ is called a homotopy equivalence (and X and Y homotopy equivalent) if there exists a continuous mapping $g: Y \rightarrow X$ s.t. $f \circ g \simeq i d_{Y}$ and $g \circ f \simeq i d_{X}$.

If $f, g: M \rightarrow N$ are smooth mappings, then a collection of linear maps $h\left(=h^{p}\right): \mathcal{A}^{p}(N) \rightarrow$ $\mathcal{A}^{p-1}(M)$ s.t.

$$
\begin{equation*}
\underbrace{d(h \omega)+h(d \omega)}_{=d\left(h^{p} \omega\right)+h^{p+1}(d \omega)}=g^{*} \omega-f^{*} \omega \quad \forall \omega \in \mathcal{A}^{p}(N) \tag{9.2}
\end{equation*}
$$

is called a homotopy operator between f^{*} and g^{*}.
Lemma 9.3. Let M be a smooth manifold, $I=[0,1]$ and $i_{t}: M \rightarrow M \times I, t \in[0,1]$, an embedding

$$
i_{t}(x)=(x, t) .
$$

Then there exists a homotopy operator between i_{0}^{*} and i_{1}^{*}.
Proof. We define, for $\omega \in \mathcal{A}^{p}(M \times I)$,

$$
h \omega=\int_{0}^{1}\left(i_{\partial / \partial t} \omega\right) d t \in \mathcal{A}^{p-1}(M)
$$

where t is the (standard) coordinate in I and $\partial / \partial t$ the corresponding coordinate tangent vector. In other words,

$$
\begin{aligned}
(h \omega)_{q}\left(v_{1}, \ldots, v_{p-1}\right) & =\int_{0}^{1}\left(i_{\partial / \partial t} \omega\right)_{(q, t)}\left(v_{1}, \ldots, v_{p-1}\right) d t \\
& =\int_{0}^{1} \omega_{(q, t)}\left(\partial / \partial t, v_{1}, \ldots, v_{p-1}\right) d t
\end{aligned}
$$

Let $x=\left(x^{1}, \ldots, x^{n}\right)$ be a chart at q. It is enough to prove that (9.2) holds for forms
(i) $\omega=f(x, t) d t \wedge d x^{i_{1}} \wedge \cdots \wedge d x^{i_{p-1}}$ and
(ii) $\omega=f(x, t) d x^{i_{1}} \wedge \cdots \wedge d x^{i_{p}}$.

Suppose first that

$$
\omega=f(x, t) d t \wedge d x^{i_{1}} \wedge \cdots \wedge d x^{i_{p-1}}
$$

Then

$$
\begin{aligned}
d(h \omega) & =d\left(\left(\int_{0}^{1} f(x, t) d t\right) d x^{i_{1}} \wedge \cdots \wedge d x^{i_{p-1}}\right) \\
& =\frac{\partial}{\partial x^{j}}\left(\int_{0}^{1} f(x, t) d t\right) d x^{j} \wedge d x^{i_{1}} \wedge \cdots \wedge d x^{i_{p-1}} \\
& =\left(\int_{0}^{1} \frac{\partial f}{\partial x^{j}}(x, t) d t\right) d x^{j} \wedge d x^{i_{1}} \wedge \cdots \wedge d x^{i_{p-1}}
\end{aligned}
$$

On the other hand,

$$
d \omega=\frac{\partial f}{\partial x^{j}} d x^{j} \wedge d t \wedge d x^{i_{1}} \wedge \cdots \wedge d x^{i_{p-1}}
$$

since $d t \wedge d t=0$. Hence

$$
\begin{aligned}
h(d \omega) & =h\left(\frac{\partial f}{\partial x^{j}} d x^{j} \wedge d t \wedge d x^{i_{1}} \wedge \cdots \wedge d x^{i_{p-1}}\right) \\
& =\int_{0}^{1} \frac{\partial f}{\partial x^{j}}(x, t) i_{\partial / \partial t}\left(d x^{j} \wedge d t \wedge d x^{i_{1}} \wedge \cdots \wedge d x^{i_{p-1}}\right) d t \\
& =-\left(\int_{0}^{1} \frac{\partial f}{\partial x^{j}}(x, t) d t\right) d x^{j} \wedge d x^{i_{1}} \wedge \cdots \wedge d x^{i_{p-1}} \\
& =-d(h \omega)
\end{aligned}
$$

and so

$$
d(h \omega)+h(d \omega)=0
$$

Since $t \circ i_{0} \equiv 0$ and $t \circ i_{1} \equiv 1$, we have $i_{0}^{*} d t=i_{1}^{*} d t=0$, and therefore $i_{0}^{*} \omega=i_{1}^{*} \omega=0$, so the formula (9.2) holds. Suppose then that

$$
\omega=f(x, t) d x^{i_{1}} \wedge \cdots \wedge d x^{i_{p}}
$$

Now $i_{\partial / \partial t} \omega=0$, so $d(h \omega)=0$. Furthermore,

$$
\begin{aligned}
h(d \omega) & =h\left(\frac{\partial f}{\partial t} d t \wedge d x^{i_{1}} \wedge \cdots \wedge d x^{i_{p}}+\alpha\right) \\
& =\left(\int_{0}^{1} \frac{\partial f}{\partial t}(x, t) d t\right) d x^{i_{1}} \wedge \cdots \wedge d x^{i_{p}} \\
& =(f(x, 1)-f(x, 0)) d x^{i_{1}} \wedge \cdots \wedge d x^{i_{p}} \\
& =i_{1}^{*} \omega-i_{0}^{*} \omega
\end{aligned}
$$

where α is the sum of terms that do not contain $d t$.
Theorem 9.4. Let $f, g: M \rightarrow N$ be homotopic smooth mappings. Then the induced cohomology mappings $f^{*}, g^{*}: H_{d R}^{p}(N) \rightarrow H_{d R}^{p}(M)$ are equal for all p.

Proof. For the proof, we need smooth homotopy $H: M \times I \rightarrow N$ from f to g (see Theorem 8.13). Then $H \circ i_{0}=f$ and $H \circ i_{1}=g$, where i_{t} is as in Lemma 9.3. Let

$$
\tilde{h}=h \circ H^{*}: \mathcal{A}^{p}(N) \rightarrow \mathcal{A}^{p-1}(M)
$$

where h is the homotopy operator constructed in Lemma 9.3. If $\omega \in \mathcal{A}^{p}(N)$, then

$$
\begin{aligned}
\tilde{h}(d \omega)+d(\tilde{h} \omega) & =h\left(H^{*} d \omega\right)+d\left(h H^{*} \omega\right) \\
& =h d\left(H^{*} \omega\right)+d\left(h H^{*} \omega\right) \\
& =i_{1}^{*} H^{*} \omega-i_{0}^{*} H^{*} \omega \\
& =\left(H \circ i_{1}\right)^{*} \omega-\left(H \circ i_{0}\right)^{*} \omega \\
& =g^{*} \omega-f^{*} \omega
\end{aligned}
$$

Thus we have for the equivalence class $[\omega] \in H_{d R}^{p}(N)$ of a closed form $\omega \in \mathcal{A}^{p}(N)$

$$
g^{*}[\omega]-f^{*}[\omega]=\left[g^{*} \omega-f^{*} \omega\right]=[\tilde{h}(d \omega)+d(\tilde{h} \omega)]=[d(\tilde{h} \omega)]=0
$$

since $d \omega=0$ and $[\alpha]=0$ for exact forms α.
Theorem 9.5. If M and N are homotopy equivalent smooth manifolds, then $H_{d R}^{p}(M)$ and $H_{d R}^{p}(N)$ are isomorphic for all p. The isomorphism is induced by any smooth homotopy equivalence $f: M \rightarrow$ N.

Proof. Let $f: M \rightarrow N$ and $g: N \rightarrow M$ be continuous s.t. $f \circ g \simeq i d_{N}$ and $g \circ f \simeq i d_{M}$. Then there exist smooth maps $\tilde{f}: M \rightarrow N, \tilde{f} \simeq f$, and $\tilde{g}: N \rightarrow M, \tilde{g} \simeq g$ (see Theorem 8.12 and 8.13). Then $\tilde{f} \circ \tilde{g} \simeq i d_{N}$ and $\tilde{g} \circ \tilde{f} \simeq i d_{M}$. By Theorem 9.4

$$
\tilde{f}^{*} \circ \tilde{g}^{*}=(\tilde{g} \circ \tilde{f})^{*}=\left(i d_{M}\right)^{*}=i d_{H_{d R}^{p}(M)}
$$

Similarly, $\tilde{g}^{*} \circ \tilde{f}^{*}$ is the identity mapping on $H_{d R}^{p}(N)$, so $f^{*}: H_{d R}^{p}(N) \rightarrow H_{d R}^{p}(M)$ is an isomorphism.

Since every homeomorphism is, in particular, a homotopy equivalence, we obtain as a corollary the invariance of de Rham cohomology groups under homeomorphisms.

Corollary 9.6. If smooth manifolds M and N are homeomorphic, then their de Rham cohomology groups are isomorphic.

Theorem 9.7 (Poincaré lemma). Let $U \subset \mathbb{R}^{n}$ be a star-shaped open set. Then $H_{d R}^{p}(U)=0$ for all $p \geq 1$.

Proof. Let U be star-shaped with respect to $y \in U$. Then $i d_{U}$ is homotopic with the constant mapping $c_{y}: U \rightarrow\{y\}(H(x, t)=y+t(x-y))$. Hence $H_{d R}^{p}(U)$ is isomorphic with $H_{d R}^{p}(\{y\})$. Furthermore, $H_{d R}^{p}(\{y\})=0$ for $p \geq 1$.

10 Cochain complexes and their cohomology

In this section we introduce and develop basic notions and theory on (general) cochain complexes and their cohomology.

A sequence of vector spaces and linear maps

$$
A \xrightarrow{f} B \xrightarrow{g} C
$$

is exact if $\operatorname{Im} f=\operatorname{Ker} g$. So, $A \xrightarrow{f} B \rightarrow 0$ is exact if and only if f is surjective. On the other hand, $0 \rightarrow B \xrightarrow{g} C$ is exact if and only if g is injective. A sequence $A^{*}=\left\{A^{i}, d^{i}\right\}$,

$$
\cdots \rightarrow A^{i-1} \xrightarrow{d^{i-1}} A^{i} \xrightarrow{d^{i}} A^{i+1} \xrightarrow{d^{i+1}} A^{i+2} \rightarrow \cdots
$$

of vector spaces A^{i} and linear maps d^{i} is called a cochain complex if $d^{i+1} \circ d^{i}=0$. It is exact if Ker $d^{i}=\operatorname{Im} d^{i-1}$ for all i. An exact sequence

$$
\begin{equation*}
0 \rightarrow A \xrightarrow{f} B \xrightarrow{g} C \rightarrow 0 \tag{10.1}
\end{equation*}
$$

is called short exact. So, f is injective, g is surjective and $\operatorname{Im} f=\operatorname{Ker} g$.
The cokernel of a linear map $f: A \rightarrow B$ is $\operatorname{Cok}(f)=B / \operatorname{Im} f$. For a short exact sequence (10.1), g induces an isomorphism

$$
g: \operatorname{Cok}(f) \stackrel{ }{\cong} C .
$$

Every long exact sequence induces short exact sequences

$$
0 \rightarrow \operatorname{Im} d^{i-1} \rightarrow A^{i} \rightarrow \operatorname{Im} d^{i} \rightarrow 0
$$

that can be used to determine A^{i}. Furthermore, the isomorphisms

$$
A^{i-1} / \operatorname{Im} d^{i-2} \cong A^{i-1} / \operatorname{Ker} d^{i-1} \xrightarrow{d^{i-1}} \operatorname{Im} d^{i-1}
$$

are used in concrete calculations.
Recall that a direct sum of vector spaces A and B is the vector space

$$
\begin{aligned}
A \oplus B & =\{(a, b): a \in A, b \in B\} \\
\lambda(a, b) & =(\lambda a, \lambda b), \lambda \in \mathbb{R} \\
\left(a_{1}, b_{1}\right)+\left(a_{2}, b_{2}\right) & =\left(a_{1}+a_{2}, b_{1}+b_{2}\right)
\end{aligned}
$$

If $\left\{a_{i}\right\}$ and $\left\{b_{j}\right\}$ are bases of A and B, respectively, then $\left\{\left(a_{i}, 0\right),\left(0, b_{j}\right)\right\}$ is a basis of $A \oplus B$.
Lemma 10.2. Let $A \xrightarrow{\alpha} B \xrightarrow{\beta} C$ be an exact sequence. Suppose that A and C are finite-dimensional. Then also B is finite-dimensional and $\operatorname{dim} B \leq \operatorname{dim} A+\operatorname{dim} C$.

Proof. Since C is finite-dimensional, also $\operatorname{Im} \beta$ is finite-dimensional. Hence there exist $v_{1}, \ldots, v_{k} \in$ B such that $\operatorname{Im} \beta=\operatorname{span}\left\{\beta\left(v_{i}\right)\right\}$. Let $v \in B$ be arbitrary. Then $\beta(v)=\sum_{i=1}^{k} c_{i} \beta\left(v_{i}\right)$, and therefore $v^{\prime}:=v-\sum_{i=1}^{k} c_{i} v_{i} \in \operatorname{Ker} \beta=\operatorname{Im} \alpha$. Since A is finite-dimensional, also $\operatorname{Im} \alpha$ is finite-dimensional. Let $\left\{v_{k+1}, \ldots, v_{m}\right\}$ be a basis of $\operatorname{Im} \alpha$. Then

$$
v=\sum_{i=1}^{k} c_{i} v_{i}+v^{\prime}=\sum_{i=1}^{k} c_{i} v_{i}+\sum_{i=k+1}^{m} c_{i} v_{i}=\sum_{i=1}^{m} c_{i} v_{i}
$$

and therefore $\operatorname{dim} B \leq \operatorname{dim} A+\operatorname{dim} C$ is finite.
By modifying slightly the proof above we obtain:
Lemma 10.3. Suppose $0 \rightarrow A \xrightarrow{f} B \xrightarrow{g} C \rightarrow 0$ is a short exact sequence of vector spaces. If A and C are finite-dimensional, then B is also finite-dimensional and $B \cong A \oplus C$.

Definition 10.4. For a cochain complex A^{*},

$$
\cdots \rightarrow A^{p-1} \xrightarrow{d^{p-1}} A^{p} \xrightarrow{d^{p}} A^{p+1} \xrightarrow{d^{p+1}} A^{p+2} \rightarrow \cdots
$$

we define the p th cohomology vector space

$$
H^{p}\left(A^{*}\right)=\operatorname{Ker} d^{p} / \operatorname{Im} d^{p-1}
$$

Elements of Ker d^{p} are called p-cocycles (and are said to be closed) and elements of $\operatorname{Im} d^{p-1}$ are called p-coboundaries (or exact). Elements of $H^{p}\left(A^{*}\right)$ are called cohomology classes.

A cochain map $f: A^{*} \rightarrow B^{*}$ between cochain complexes consists of a family $f^{p}: A^{p} \rightarrow B^{p}$ of linear maps such that $d_{B}^{p} \circ f^{p}=f^{p+1} \circ d_{A}^{p}$:

Lemma 10.5. A cochain map $f: A^{*} \rightarrow B^{*}$ induces a linear map $f^{*}: H^{p}\left(A^{*}\right) \rightarrow H^{p}\left(B^{*}\right)$ for all p.
Proof. Let $a \in A^{p}$ be a p-cocycle $\left(d_{A}^{p} a=0\right)$ and $[a]=a+\operatorname{Im} d_{A}^{p-1}$ the corresponding cohomology class in $H^{p}\left(A^{*}\right)$. Define $f^{*}[a]=\left[f^{p}(a)\right]$. Then

$$
\begin{equation*}
d_{B}^{p} f^{p}(a)=f^{p+1} \underbrace{d_{A}^{p}(a)}_{=0}=0 \tag{i}
\end{equation*}
$$

so $f^{p}(a)$ is a p-cocycle and $\left[f^{p}(a)\right]$ is defined;
(ii) $\left[f^{p}(a)\right]$ is independent of the choice of a representative of $[a]$: If $\left[a_{1}\right]=\left[a_{2}\right]$, then $a_{1}-a_{2} \in$ $\operatorname{Im} d_{A}^{p-1}$ and

$$
f^{p}(\underbrace{a_{1}-a_{2}}_{=d_{A}^{p-1}(x)})=f^{p} d_{A}^{p-1}(x)=d_{B}^{p-1} f^{p-1}(x)
$$

so $f^{p}\left(a_{1}\right)-f^{p}\left(a_{2}\right) \in \operatorname{Im} d_{B}^{p-1}$ and thus $f^{p}\left(a_{1}\right)$ and $f^{p}\left(a_{2}\right)$ define the same cohomology class;
(iii) clearly f^{*} is linear.

A short exact sequence of cochain complexes

$$
0 \rightarrow A^{*} \xrightarrow{f} B^{*} \xrightarrow{g} C^{*} \rightarrow 0
$$

consists of cochain maps f and g such that

$$
0 \rightarrow A^{p} \xrightarrow{f^{p}} B^{p} \xrightarrow{g^{p}} C^{p} \rightarrow 0
$$

is exact for every p.
Lemma 10.6. For a short exact sequence of cochain complexes, the sequence

$$
H^{p}\left(A^{*}\right) \xrightarrow{f^{*}} H^{p}\left(B^{*}\right) \xrightarrow{g^{*}} H^{p}\left(C^{*}\right)
$$

is exact, i.e. $\operatorname{Im} f^{*}=\operatorname{Ker} g^{*}$.
Proof. Since $g^{p} \circ f^{p}=0$, we have

$$
g^{*} \circ f^{*}([a])=g^{*}\left(\left[f^{p}(a)\right]\right)=[\underbrace{g^{p}\left(f^{p}(a)\right)}_{=0}]=0
$$

for every cohomology class $[a] \in H^{p}\left(A^{*}\right)$. Hence $\operatorname{Im} f^{*} \subset \operatorname{Ker} g^{*}$.
Conversely, let $[b] \in \operatorname{Ker} g^{*} \subset H^{p}\left(B^{*}\right)$. Then $\left[g^{p}(b)\right]=g^{*}[b]=0$, so $g^{p}(b)-0 \in \operatorname{Im} d_{C}^{p-1}$. Hence
$g^{p}(b)=d_{C}^{p-1}(c)$. Since g^{p-1} is surjective, there exists $b_{1} \in B^{p-1}$ such that $g^{p-1}\left(b_{1}\right)=c$. It follows that $g^{p}\left(d_{B}^{p-1}\left(b_{1}\right)\right)=d_{C}^{p-1}\left(g^{p-1}\left(b_{1}\right)\right)=d_{C}^{p-1}(c)=g^{p}(b)$, and therefore $g^{p}\left(b-d_{B}^{p-1}\left(b_{1}\right)\right)=0$, i.e. $b-d_{B}^{p-1}\left(b_{1}\right) \in \operatorname{Ker} g^{p}=\operatorname{Im} f^{p}$. Hence there exists $a \in A^{p}$ such that $f^{p}(a)=b-d_{B}^{p-1}\left(b_{1}\right)$. We claim that a is a p-cocycle $\left(d_{A}^{p} a=0\right)$. Since f^{p+1} is injective it suffices to show that $f^{p+1}\left(d_{A}^{p} a\right)=0$. But

$$
f^{p+1}\left(d_{A}^{p} a\right)=d_{B}^{p}\left(f^{p}(a)\right)=d_{B}^{p}\left(b-d_{B}^{p-1}\left(b_{1}\right)\right)=d_{B}^{p}(b)=0
$$

since b is a p-cocycle (note that $[b] \in H^{p}\left(B^{*}\right)$). So we have found a cohomology class $[a] \in H^{p}\left(A^{*}\right)$ such that

$$
f^{*}[a]=\left[f^{p}(a)\right]=[b-\underbrace{d_{B}^{p-1}\left(b_{1}\right)}_{\in \operatorname{Im} d_{B}^{p-1}}]=[b]=0 .
$$

Remark 10.7. Th exact sequence in Lemma 10.6 need not be extendible to a short exact sequence. Even though $g^{p}: B^{p} \rightarrow C^{p}$ is surjective, the preimage $\left(g^{p}\right)^{-1}(c)$ of a p-cocycle $c \in C^{p}$ need not contain a p-cocycle.

However, on cohomology level this works:
Definition 10.8. For a short exact sequence of cochain complexes

$$
0 \rightarrow A^{*} \xrightarrow{f} B^{*} \xrightarrow{g} C^{*} \rightarrow 0,
$$

we define the linear map $\partial^{*}: H^{p}\left(C^{*}\right) \rightarrow H^{p+1}\left(A^{*}\right)$ by

$$
\partial^{*}([c])=\left[\left(f^{p+1}\right)^{-1}\left(d_{B}^{p}\left(\left(g^{p}\right)^{-1}(c)\right)\right)\right]
$$

The map ∂^{*} is called the connecting homomorphism.
To prove that ∂^{*} is well-defined we have to note several things. The definition requires that for every $b \in\left(g^{p}\right)^{-1}(c)$ we have $d_{B}^{p}(b) \in \operatorname{Im} f^{p+1}$ and then the uniquely determined $a \in A^{p+1}$ with $f^{p+1}(a)=d_{B}^{p}(b)$ is a $(p+1)$-cocycle. Finally, $[a] \in H^{p+1}\left(A^{*}\right)$ should be independent of the choice of $b \in\left(g^{p}\right)^{-1}(c)$.

We claim:
(i) If $g^{p}(b)=c$ and $d_{C}^{p}(c)=0$, then $d_{B}^{p}(b) \in \operatorname{Im} f^{p+1}$.
(ii) If $f^{p+1}(a)=d_{B}^{p}(b)$, then $d_{A}^{p+1}(a)=0$.
(iii) If $g^{p}\left(b_{1}\right)=g^{p}\left(b_{2}\right)=c$ and $f^{p+1}\left(a_{i}\right)=d_{B}^{p}\left(b_{i}\right)$, then $\left[a_{1}\right]=\left[a_{2}\right] \in H^{p+1}\left(A^{*}\right)$.

Proof. (i) follows since $g^{p+1} d_{B}^{p}(b)=d_{C}^{p}(c)=0$ and $\operatorname{Ker} g^{p+1}=\operatorname{Im} f^{p+1}$.
(ii): Since f^{p+2} is injective and $f^{p+2} d_{A}^{p+1}(a)=d_{B}^{p+1} f^{p+1}(a)=d_{B}^{p+1} d_{B}^{p}(b)=0$, we have $d_{A}^{p+1}(a)=0$.
(iii) follows since $b_{1}-b_{2} \in \operatorname{Ker} g^{p}=\operatorname{Im} f^{p}$, so $b_{1}-b_{2}=f^{p}(a)$ and hence $d_{B}^{p}\left(b_{1}\right)-d_{B}^{p}\left(b_{2}\right)=d_{B}^{p} f^{p}(a)=$ $f^{p+1} d_{A}^{p}(a)$ and furthermore

$$
\underbrace{\left(f^{p+1}\right)^{-1} d_{B}^{p}\left(b_{1}\right)}_{=a_{1}}-\underbrace{\left(f^{p+1}\right)^{-1} d_{B}^{p}\left(b_{2}\right)}_{=a_{2}}=d_{A}^{p}(a) \in \operatorname{Im} d_{A}^{p}
$$

Now a_{i} is a $(p+1)$-cocycle $\left(d_{A}^{p+1}\left(a_{i}\right)=0\right)$ since

$$
f^{p+2} d_{A}^{p+1}\left(a_{i}\right)=d_{B}^{p+1} f^{p+1}\left(a_{i}\right)=d_{B}^{p+1} d_{B}^{p}\left(a_{i}\right)=0
$$

and f^{p+2} is injective. Thus $\left[a_{1}\right]=\left[a_{2}\right] \in H^{p+1}\left(A^{*}\right)$.
Lemma 10.9. The sequence

$$
H^{p}\left(B^{*}\right) \xrightarrow{g^{*}} H^{p}\left(C^{*}\right) \xrightarrow{\partial^{*}} H^{p+1}\left(A^{*}\right)
$$

is exact.
Proof. Since

$$
\partial^{*} g^{*}([b])=\partial^{*}\left[g^{p}(b)\right]=[\left(f^{p+1}\right)^{-1}(\underbrace{d_{B}^{p}(b)}_{=0})]=[0]=0,
$$

$\operatorname{Im} g^{*} \subset \operatorname{Ker} \partial^{*}$.
Conversely, let $\partial^{*}[c]=0$. Choose $b \in B^{p}$ such that $g^{p}(b)=c$. Since $d_{C}^{p}(c)=0, d_{B}^{p}(b) \in \operatorname{Im} f^{p+1}$ by (i). So, $d_{B}^{p}(b)=f^{p+1}(\tilde{a})$ and $d_{A}^{p+1}(\tilde{a})=0$ by (ii). Since $\tilde{a} \in \operatorname{Ker} d_{A}^{p+1}=\operatorname{Im} d_{A}^{p}, \tilde{a}=d_{A}^{p}(a)$ for some $a \in A^{p}$. Now

$$
d_{B}^{p}\left(b-f^{p}(a)\right)=d_{B}^{p}(b)-d_{B}^{p} f^{p}(a)=d_{B}^{p}(b)-f^{p+1} \underbrace{d_{A}^{p}(a)}_{=\tilde{a}}=0
$$

and

$$
g^{p}\left(b-f^{p}(a)\right)=g^{p}(b)-\underbrace{g^{p} f^{p}(a)}_{=0}=g^{p}(b)=c
$$

Hence $g^{*}\left[b-f^{p}(a)\right]=[c]$, so $\operatorname{Ker} \partial^{*} \subset \operatorname{Im} g^{*}$.
Lemma 10.10. The sequence

$$
H^{p}\left(C^{*}\right) \xrightarrow{\partial^{*}} H^{p+1}\left(A^{*}\right) \xrightarrow{f^{*}} H^{p+1}\left(B^{*}\right)
$$

is exact.
Proof. Since

$$
f^{*} \partial^{*}[c]=f^{*} \partial^{*}[\underbrace{g^{p}(b)}_{=c}]=f^{*}\left[\left(f^{p+1}\right)^{-1}\left(d_{B}^{p}(b)\right)\right]=\left[d_{B}^{p}(b)\right]=0
$$

$\operatorname{Im} \partial^{*} \subset \operatorname{Ker} f^{*}$.
Conversely, suppose that $[a] \in \operatorname{Ker} f^{*}\left(\subset H^{p+1}\left(A^{*}\right)\right)$, that is $d_{A}^{p+1}(a)=0$ and $\left[f^{p+1}(a)\right]=f^{*}[a]=0$. Then $f^{p+1}(a)$ is exact, so $f^{p+1}(a)=d_{B}^{p}(b)$. Then $d_{C}^{p} g^{p}(b)=g^{p+1} d_{B}(b)=g^{p+1} f^{p+1}(a)=0$, and so

$$
\partial^{*}\left[g^{p}(b)\right]=\left[\left(f^{p+1}\right)^{-1}\left(d_{B}^{p}(b)\right)\right]=\left[\left(f^{p+1}\right)^{-1}\left(f^{p+1}(a)\right)\right]=[a]
$$

Hence Ker $f^{*} \subset \operatorname{Im} \partial^{*}$.
We collect these to:

Theorem 10.11 (Long exact cohomology sequence, "Zig-zag lemma"). Let

$$
0 \rightarrow A^{*} \xrightarrow{f} B^{*} \xrightarrow{g} C^{*} \rightarrow 0
$$

be a short exact sequence of cochain complexes. Then the sequence

$$
\cdots \rightarrow H^{p}\left(A^{*}\right) \xrightarrow{f^{*}} H^{p}\left(B^{*}\right) \xrightarrow{g^{*}} H^{p}\left(C^{*}\right) \xrightarrow{\partial^{*}} H^{p+1}\left(A^{*}\right) \xrightarrow{f^{*}} H^{p+1}\left(B^{*}\right) \rightarrow \cdots
$$

is exact.
Definition 10.12. Cochain maps $f, g: A^{*} \rightarrow B^{*}$ are ssaid to be cochain homotopic if there are linear maps $s: A^{p} \rightarrow B^{p-1}$ such that

$$
d_{B}^{p-1} s+s d_{A}^{p}=f-g: A^{p} \rightarrow B^{p}
$$

for every p.
Lemma 10.13. For two cochain homotopic maps $f, g: A^{*} \rightarrow B^{*}$, we have

$$
f^{*}=g^{*}: H^{p}\left(A^{*}\right) \rightarrow H^{p}\left(B^{*}\right)
$$

Proof. (cf. Theorem 9.4)
If $[a] \in H^{p}\left(A^{*}\right)$, then

$$
\left(f^{*}-g^{*}\right)[a]=\left[f^{p}(a)-g^{p}(a)\right]=[d_{B}^{p-1} s(a)-s \underbrace{d_{A}^{p}(a)}_{=0}]=[\underbrace{d_{B}^{p-1} s(a)}_{\in \operatorname{Im} d_{B}^{p-1}}]=0 \in H^{p}\left(B^{*}\right) .
$$

Lemma 10.14. If A^{*} and B^{*} are cochain ncomplexes, then

$$
H^{p}\left(A^{*} \oplus B^{*}\right)=H^{p}\left(A^{*}\right) \oplus H^{p}\left(B^{*}\right)
$$

Proof. Clearly

$$
\operatorname{Ker}\left(d_{A \oplus B}^{p}\right)=\operatorname{Ker} d_{A}^{p} \oplus \operatorname{Ker} d_{B}^{p}
$$

and

$$
\operatorname{Im}\left(d_{A \oplus B}^{p-1}\right)=\operatorname{Im} d_{A}^{p-1} \oplus \operatorname{Im} d_{B}^{p-1}
$$

Theorem 10.15 (The 5-Lemma). Consider the following diagram of vector spaces and linear maps (or Abelian groups and homomorphisms):

where horizontal sequences are exact and f_{1}, f_{2}, f_{4} and f_{5} are isomorphisms. Then also f_{4} is an isomorphism.

Proof. (Exercise)
Remark 10.16. The assumptions can be weakened as:

$$
\begin{aligned}
& f_{2}, f_{4} \text { surjective and } f_{5} \text { injective } \Rightarrow f_{3} \text { surjective, } \\
& f_{2}, f_{4} \text { injective and } f_{1} \text { surjective } \Rightarrow f_{3} \text { injective. }
\end{aligned}
$$

11 De Rham Theorem

In this section we focus on de Rham cohomology and its connection to Čech and singular cohomologies.

We start with the fundamental Meyer-Vietoris theorem. Suppose that U and V are open subsets of M such that $U \cup V=M$. We have the following inclusions

pullbacks

and induced cohomology maps

Let us consider the following sequence

$$
\begin{equation*}
0 \rightarrow \mathcal{A}^{p}(M) \xrightarrow{k^{*} \oplus \ell^{*}} \mathcal{A}^{p}(U) \oplus \mathcal{A}^{p}(V) \xrightarrow{i^{*}-j^{*}} \mathcal{A}^{p}(U \cap V) \rightarrow 0, \tag{11.1}
\end{equation*}
$$

where

$$
\begin{aligned}
\left(k^{*} \oplus \ell^{*}\right) \omega & =\left(k^{*} \omega, \ell^{*} \omega\right), \omega \in \mathcal{A}^{p}(M), \\
\left(i^{*}-j^{*}\right)(\alpha, \beta) & =i^{*} \alpha-j^{*} \beta, \alpha \in \mathcal{A}^{p}(U), \beta \in \mathcal{A}^{p}(V) .
\end{aligned}
$$

Since pullbacks commute with the exterior derivative d, we have

$$
H_{d R}^{p}(M) \xrightarrow{k^{*} \oplus \ell^{*}} H_{d R}^{p}(U) \oplus H_{d R}^{p}(V) \xrightarrow{i^{*}-j^{*}} H_{d R}^{p}(U \cap V) .
$$

Suppose that

$$
\begin{equation*}
0 \rightarrow \mathcal{A}^{*}(M) \xrightarrow{k^{*} \oplus \ell^{*}} \mathcal{A}^{*}(U) \oplus \mathcal{A}^{*}(V) \xrightarrow{i^{*}-j^{*}} \mathcal{A}^{*}(U \cap V) \rightarrow 0 \tag{11.2}
\end{equation*}
$$

is a short exact sequence (of cochain complexes), i.e. the sequence (11.1) is exact for every p. Then the "Zig-zag lemma", Theorem 10.11, implies

Theorem 11.3 (The Meyer-Vietoris sequence). If $M=U \cup V$ for some open sets U and V, then the sequence

$$
\begin{aligned}
\cdots \rightarrow H_{d R}^{p}(M) & \xrightarrow{k^{*} \oplus \ell^{*}} H_{d R}^{p}(U) \oplus H_{d R}^{p}(V) \xrightarrow{i^{*}-j^{*}} H_{d R}^{p}(U \cap V) \xrightarrow{\partial^{*}} H_{d R}^{p+1}(M) \\
& \xrightarrow{k^{*} \oplus \ell^{*}} H_{d R}^{p+1}(U) \oplus H_{d R}^{p+1}(V) \rightarrow \cdots
\end{aligned}
$$

is exact.
This is a fundamental calculation technique that can be used to determine $H_{d R}^{*}(M)$ as a "function" of $H_{d R}^{*}(U), H_{d R}^{*}(V)$ and $H_{d R}^{*}(U \cap V)$. To prove Theorem 11.3 we need the following:
Lemma 11.4. Suppose that U and V are open subsets of M such that $M=U \cup V$. Then the sequence

$$
0 \rightarrow \mathcal{A}^{*}(M) \xrightarrow{k^{*} \oplus \ell^{*}} \mathcal{A}^{*}(U) \oplus \mathcal{A}^{*}(V) \xrightarrow{i^{*}-j^{*}} \mathcal{A}^{*}(U \cap V) \rightarrow 0
$$

is exact, where k, ℓ, i and j are inclusions as above.
Proof. Claim 1. $k^{*} \oplus \ell^{*}$ is injective:
Suppose $\sigma \in \mathcal{A}^{p}(M)$ satisfies $\left(k^{*} \oplus \ell^{*}\right) \sigma=(\sigma|U, \sigma| V)=(0,0)$. Since $M=U \cup V$, we have $\sigma=0$. Claim 2. $\operatorname{Im}\left(k^{*} \oplus \ell^{*}\right)=\operatorname{Ker}\left(i^{*}-j^{*}\right)$:
For every $\sigma \in \mathcal{A}^{p}(M)$,

$$
\left(i^{*}-j^{*}\right) \circ\left(k^{*} \oplus \ell^{*}\right) \sigma=\left(i^{*}-j^{*}\right)(\sigma|U, \sigma| V)=i^{*}(\sigma \mid U)-j^{*}(\sigma \mid V)=\sigma|(U \cap V)-\sigma|(U \cap V)=0
$$

so $\operatorname{Im}\left(k^{*} \oplus \ell^{*}\right) \subset \operatorname{Ker}\left(i^{*}-j^{*}\right)$.
Conversely, suppose

$$
\underbrace{(\alpha, \beta)}_{\in \mathcal{A}^{p}(U) \oplus \mathcal{A}^{p}(V)} \in \operatorname{Ker}\left(i^{*}-j^{*}\right)
$$

Thus

$$
\left(i^{*}-j^{*}\right)(\alpha, \beta)=i^{*} \alpha-j^{*} \beta=\alpha|(U \cap V)-\beta|(U \cap V)=0
$$

so $\alpha|(U \cap V)=\beta|(U \cap V)$. Hence we can define $\sigma \in \mathcal{A}^{p}(M)$ by

$$
\sigma= \begin{cases}\alpha, & \text { in } U \\ \beta, & \text { in } V\end{cases}
$$

Then $\left(k^{*} \oplus \ell^{*}\right) \sigma=\left(k^{*} \sigma, \ell^{*} \sigma\right)=(\alpha, \beta)$, hence $\operatorname{Ker}\left(i^{*}-j^{*}\right) \subset \operatorname{Im}\left(k^{*} \oplus \ell^{*}\right)$.
The only "nontrivial" part is the following.
Claim 3. $i^{*}-j^{*}$ is surjective:
If $U \cap V=\emptyset, M$ is disconnected and the claim is trivial. Let $\omega \in \mathcal{A}^{p}(U \cap V)$ be arbitrary. We need to find $\alpha \in \mathcal{A}^{p}(U)$ and $\beta \in \mathcal{A}^{p}(V)$ such that

$$
\omega=\left(i^{*}-j^{*}\right)(\alpha, \beta)=i^{*} \alpha-j^{*} \beta=\alpha|(U \cap V)-\beta|(U \cap V)
$$

Let $\{\varphi, \psi\}$ be a smooth partition of unity subordinate to $\{U, V\}$. Define

$$
\alpha= \begin{cases}\psi \omega, & \text { in } U \cap V \\ 0, & \text { in } U \backslash \operatorname{supp} \psi\end{cases}
$$

Since $\psi \omega=0$ on $(U \cap V) \backslash \operatorname{supp} \psi$, so $\alpha \in \mathcal{A}^{p}(U)$. Similarly,

$$
\beta= \begin{cases}-\varphi \omega, & \text { in } U \cap V \\ 0, & \text { in } V \backslash \operatorname{supp} \varphi\end{cases}
$$

Then $\alpha|(U \cap V)-\beta|(U \cap V)=\psi \omega+\varphi \omega=(\psi+\varphi) \omega=\omega$.

11.5 Some calculations and applications

Proposition 11.6 (Disjoint union). Let $M_{j}, j \in \mathbb{N}$, be disjoint smooth n-manifolds and $M=$ $\bigsqcup_{j \in \mathbb{N}} M_{j}$. Then, for every p, the inclusion maps $i_{j}: M_{j} \hookrightarrow M$ induce an isomorphism

$$
H_{d R}^{p}(M) \rightarrow \prod_{j \in \mathbb{N}} H_{d R}^{p}\left(M_{j}\right)
$$

Proof. Pullbacks $i_{j}^{*}: \mathcal{A}^{p}(M) \rightarrow \mathcal{A}^{p}\left(M_{j}\right)$ induce an isomorphism $\mathcal{A}^{p}(M) \rightarrow \prod_{j \in \mathbb{N}} \mathcal{A}^{p}\left(M_{j}\right)$, $\omega \mapsto\left(\omega\left|M_{1}, \omega\right| M_{2}, \ldots\right)$. This map is injective since $\left(\omega\left|M_{1}, \omega\right| M_{2}, \ldots\right)=(0,0, \ldots)$ if and only if $\omega=0$. It is surjective since arbitrary p-forms on M_{j} define a p-form on M.

Theorem 11.7. If M is simply connected, then $H_{d R}^{1}(M)=0$.
Remark 11.8. A smooth 1 -form $\omega \in \mathcal{A}^{1}(M)$ s exact if and only if $\int_{\gamma} \omega=0$ for every closed (piecewise) smooth $\gamma:[0,1] \rightarrow M$:
Indeed, if $\omega \in \mathcal{A}^{1}(M)$ is exact, $\omega=d f$ for some $f \in C^{\infty}(M)$. So,

$$
\int_{\gamma} \omega=\int_{\gamma} d f=f(\gamma(1))-f(\gamma(0))=0
$$

For the converse direction, let $\omega \in \mathcal{A}^{1}(M)$ and fix $x_{0} \in M$. For every $x \in M$, let $\alpha:[0,1] \rightarrow M$ be an arbitrary smooth path form $\alpha(0)=x_{0}$ to $\alpha(1)=x$ and define $f(x)=\int_{\alpha} \omega$. We claim that f is well-defined and $d f=\omega$. Let $\tilde{\alpha}:[0,1] \rightarrow M$ be another smooth path from $\tilde{\alpha}(0)=x_{0}$ to $\tilde{\alpha}(1)=x$. Then α followed by $-\tilde{\alpha},-\tilde{\alpha}(s)=\tilde{\alpha}(1-s)$ is closed and piecewise smooth, hence

$$
0=\int_{\alpha(-\tilde{\alpha}} \omega=\int_{\alpha} \omega+\int_{-\tilde{\alpha})} \omega=\int_{\alpha} \omega-\int_{-\tilde{\alpha}} \omega
$$

so f is well-defined. Finally, $d f=\omega$ follows from "real analysis".
Proof of Theorem 11.7. (Idea)
Let $\omega \in \mathcal{A}^{1}(M)$ be closed. We need to show that ω is exact. Let $\gamma:[0,1] \rightarrow M$ be closed and piecewise smooth. Since M is simply connected, γ bounds a surface $\Sigma=H([0,1] \times[0,1])$ with piecewise smooth boundary $\partial \Sigma=\gamma$. Above H is a smooth homotopy between γ and the constant (path) $\gamma(0)$. (We have also slightly abused the notation.) By Stokes's theorem,

$$
\int_{\gamma} \omega=\int_{\Sigma} d \omega=0
$$

since ω is closed. By Remark 11.8, ω is exact.
Theorem 11.9. For $n \geq 1$

$$
H_{d R}^{p}\left(\mathbb{S}^{n}\right)= \begin{cases}\mathbb{R}, & p=0 \text { or } p=n \\ 0, & 0<p<n\end{cases}
$$

Proof. Since \mathbb{S}^{n} is connected, $H_{d R}^{0}\left(\mathbb{S}^{n}\right)=0$ by Theorem 9.1.
Let $p \geq 1$. We prove the claim by induction on the dimension n. If $\omega \in \mathcal{A}^{1}\left(\mathbb{S}^{1}\right)$ is an orientation (volume) form, $c_{0}=\int_{\mathbb{S}^{1}} \omega \neq 0$. Hence ω is not exact and $[\omega] \in H_{d R}^{1}\left(\mathbb{S}^{1}\right)$ (note that every $\omega \in \mathcal{A}^{1}\left(\mathbb{S}^{1}\right)$ is closed). Let $\eta \in \mathcal{A}^{1}\left(\mathbb{S}^{1}\right)$ be arbitrary and $c:=\frac{1}{c_{0}} \int_{\mathbb{S}^{1}} \eta$. Then $\int_{\mathbb{S}^{1}}(\eta-c \omega)=0$, and so $\eta-c \omega$ is exact and $[\eta]=c[\omega]$. Hence $\operatorname{dim} H_{d R}^{1}\left(\mathbb{S}^{1}\right)$.
Let $n \geq 2$ and assume that the claim holds for \mathbb{S}^{n-1}. Since \mathbb{S}^{n} is simply connected, $H_{d R}^{1}\left(\mathbb{S}^{n}\right)=0$.

For $p>1$, we apply Meyer-Vietoris theorem. Let $x_{0}, y_{0} \in \mathbb{S}^{n}$ be the north and the south pole, $U=$ $\mathbb{S}^{n} \backslash\left\{y_{0}\right\}$ and $V=\mathbb{S}^{n} \backslash\left\{y_{0}\right\}$. Then U and V are diffeomorphic with \mathbb{R}^{n}, so $H_{d R}^{q}(U)=H_{d R}^{q}(V)=0$ for $q \geq 1$. By the Meyer-Vietoris theorem

$$
\underbrace{H_{d R}^{p-1}(U) \oplus H_{d R}^{p-1}(V)}_{=0} \rightarrow H_{d R}^{p-1}(U \cap V) \rightarrow H_{d R}^{p}\left(\mathbb{S}^{n}\right) \rightarrow \underbrace{H_{d R}^{p}(U) \oplus H_{d R}^{p}(V)}_{=0}
$$

is exact, hence $H_{d R}^{p-1}(U \cap V) \cong H_{d R}^{p}\left(\mathbb{S}^{n}\right)$. On the other hand, $U \cap V$ is diffeomorphic with $\mathbb{R}^{n} \backslash\{0\}$, hence homotopic with \mathbb{S}^{n-1}, so $H_{d R}^{p}\left(\mathbb{S}^{n}\right) \cong H_{d R}^{p-1}\left(\mathbb{S}^{n-1}\right)$ and the claim holds for \mathbb{S}^{n}.

Corollary 11.10. Let $n \geq 2, x \in \mathbb{R}^{n}$ and $M=\mathbb{R}^{n} \backslash\{x\}$. Then

$$
H_{d R}^{p}(M)= \begin{cases}\mathbb{R}, & p=0 \text { or } p=n-1, \\ 0, & \text { otherwise } .\end{cases}
$$

Furthermore, a closed ($n-1$)-form η is exact if and only if $\int_{S} \eta=0$ for all $(n-1)$-spheres surrounding x, i.e. $S=\partial B$ for some open ball $B \ni x$.

Proof. Let $S=\partial B$ for some open ball $B \ni x$. Then $\mathbb{R}^{n} \backslash\{x\}$ is homotopic with S hence with \mathbb{S}^{n-1}. Thus the first claim follows from Theorem 11.9 and 9.5.
Let η be a closed ($n-1$)-form on M. Then η is exact on M if and only if $i^{*} \eta$ is exact on S, where $i: S \hookrightarrow M$ is he inclusion (note that i is a homotopy equivalence $i \circ \mathrm{id}_{M} \cong \mathrm{id}_{M}, \operatorname{id}_{M} \circ i \cong \mathrm{id}_{\mathbb{S}^{n}}$). If η (hence $\left(i^{*} \eta\right.$) is exact, then $\int_{S} \eta=\int_{S} i^{*} \eta=0$ by Corollary 7.12. The converse direction follows from the following lemma.

Lemma 11.11. An n-form $\omega \in \mathcal{A}^{n}\left(\mathbb{S}^{n}\right)$ is exact if and only if $\int_{\mathbb{S}^{n}} \omega=0$.
Proof. The implication \Rightarrow follows from Corollary 7.12.
Let $\omega \in \mathcal{A}^{n}\left(\mathbb{S}^{n}\right)$. We prove the claim by induction on n. The case $n=1$ follows basicly from Remark 11.8.
Suppose the claim holds for \mathbb{S}^{n-1}. Let $\mathbb{S}^{n}=N \cup S$, where $N=\left\{x \in \mathbb{S}^{n}: x_{n+1} \geq 0\right\}$ and $S=\{x \in$ $\left.\mathbb{S}^{n}: x_{n+1} \leq 0\right\}$. Let $O_{N}=\left\{x \in \mathbb{S}^{n}: x_{n+1}>-\varepsilon\right\}$ and $O_{S}=\left\{x \in \mathbb{S}^{n}: x_{n+1}<\varepsilon\right\}$ for $0<\varepsilon<1 / 2$. The common boundary $\mathbb{S}^{n-1}=\partial N=\partial S$ has oppposite Stokes orientations with respect to N and S. By Poincaré's lemma 9.7 (applied with diffeomorphisms $\varphi: O_{S} \rightarrow B^{n}(0,1), \psi: O_{N} \rightarrow B^{n}(0,1)$), there exist $\alpha_{N} \in \mathcal{A}^{n-1}\left(O_{N}\right)$ and $\alpha_{S} \in \mathcal{A}^{n-1}\left(O_{S}\right)$ such that $d \alpha_{N}=\omega$ on O_{N} and $d \alpha_{S}=\omega$ on O_{S} (note that $d \varphi^{*}=\varphi^{*} d, d \psi^{*}=\psi^{*} d$). By the assumption and Stokes's theorem,

$$
\begin{aligned}
0 & =\int_{\mathbb{S}^{n}} \omega=\int_{N} \omega+\int_{S} \omega=\int_{N} d \alpha_{N}+\int_{S} d \alpha_{S} \\
& =\int_{\partial N} i^{*} \alpha_{N}+\int_{\partial S} i^{*} \alpha_{S}=\int_{\mathbb{S}^{n-1}} i^{*} \alpha_{N}-\int_{\mathbb{S}^{n-1}} i^{*} \alpha_{S} \\
& =\int_{\mathbb{S}^{n-1}} i^{*}\left(\alpha_{N}-\alpha_{S}\right),
\end{aligned}
$$

where $i: \mathbb{S}^{n-1} \hookrightarrow \mathbb{S}^{n}$ is the inclusion. By induction, $i^{*}\left(\alpha_{N}-\alpha_{S}\right)$ is exact. Let $O=O_{N} \cap O_{S}$ and $r: O \rightarrow \mathbb{S}^{n-1}$ be the retraction along meridians. Now $i \circ r \cong \mathrm{id}_{O}$. Since $d\left(\alpha_{N}-\alpha_{S}\right)=\omega-\omega=0$, $\alpha_{N}-\alpha_{S}-r^{*} i^{*}\left(\alpha_{N}-\alpha_{S}\right)$ is exact (Theorem 9.4). But $i^{*}\left(\alpha_{N}-\alpha_{S}\right) \in \mathcal{A}^{n-1}\left(\mathbb{S}^{n-1}\right)$ is exact (by the induction hypothesis), so $r^{*} i^{*}\left(\alpha_{N}-\alpha_{S}\right) \in \mathcal{A}^{n-1}(O)$ is exact. Hence $\alpha_{N}-\alpha_{S} \in \mathcal{A}^{n-1}(O)$ is exact. So, there exists $\beta \in \mathcal{A}^{n-1}(O)$ such that $d \beta=\alpha_{N}-\alpha_{S}$ on O. Finally, extend β by using a bump
function to $\gamma \in \mathcal{A}^{n-1}\left(\mathbb{S}^{n}\right)$ such that $\gamma=\beta$ on O and $\gamma=0$ on $\mathbb{S}^{n} \backslash V$, where V is open such that $\bar{O} \subset V$. Then

$$
\lambda= \begin{cases}\alpha_{N}, & \text { on } N \\ \alpha_{S}+d \gamma, & \text { on } S\end{cases}
$$

is smooth and $d \lambda=\omega$ on \mathbb{S}^{n}
Corollary 11.12. If $n \neq m$, then \mathbb{R}^{m} and \mathbb{R}^{m} are not heomeomorphic.
Proof. Suppose that \mathbb{R}^{n} and \mathbb{R}^{m} are homeomorphic. Then $\mathbb{R}^{n} \backslash\{0\}$ and $\mathbb{R}^{m} \backslash\{0\}$ are homeomorphic. Hence $H_{d R}^{p}\left(\mathbb{R}^{n} \backslash\{0\}\right) \cong H_{d R}^{p}\left(\mathbb{R}^{m} \backslash\{0\}\right)$ for all p, but this implies $n=m$.

Recall Theorem 8.16. There is no continuous map $f: \bar{B}^{n} \rightarrow \mathbb{S}^{n-1}$ with $f \mid \mathbb{S}^{n-1}=\operatorname{id}_{\mathbb{S}^{n-1}}$.
We give another proof for this. We may assume that $n \neq 2$ since $\bar{B}^{1}=[-1,1]$ is connected but $\mathbb{S}^{0}=\{-1,1\}$ is disconnected. The map $r: \mathbb{R}^{n} \backslash\{0\} \rightarrow \mathbb{R}^{n} \backslash\{0\}, r(x)=x /|x|$, is homotopic to $\operatorname{id}_{\mathbb{R}^{n} \backslash\{0\}}$ by $H(t, x)=t \operatorname{id}_{\mathbb{R}^{n} \backslash\{0\}}(x)+(1-t) r(x)$. If $f: \bar{B}^{n} \rightarrow \mathbb{S}^{n-1}$ were a continuous map with $f \mid \mathbb{S}^{n-1}=\operatorname{id}_{\mathbb{S}^{n-1}}$, then $f(\operatorname{tr}(x)), 0 \leq t \leq 1$, would be a homotopy between a constant map and r. This would imply that $\mathbb{R}^{n} \backslash\{0\}$ is contractible, hence $H_{d R}^{n-1}\left(\mathbb{R}^{n} \backslash\{0\}\right)=0$ which is a contradiction.

Theorem 11.13 (Hairy ball theorem). There exists a continuous nowhere vanishing vector field V on $\mathbb{S}^{n}\left(V_{x} \in T_{x} \mathbb{S}^{n} \forall x \in \mathbb{S}^{n}\right)$ if and only if n is odd.

Proof. Suppose n is odd, $n=2 m-1, m \geq 1$. Define $V: \mathbb{R}^{n+1} \rightarrow \mathbb{R}^{n+1}$ by

$$
V\left(x_{1}, \ldots, x_{2 m}\right)=\left(-x_{2}, x_{1},-x_{4}, x_{3}, \ldots,-x_{2 m}, x_{2 m-1}\right)
$$

Clearly, V is continuous, $|V(x)|=1 \forall x \in \mathbb{S}^{n}$ and $V(x) \cdot x=0$. Hence V is a continuous nowhere vanishing vector field on \mathbb{S}^{n}
Conversely, suppose that such V exists on \mathbb{S}^{n}. Extend it to a map $Y: \mathbb{R}^{n+1} \backslash\{0\} \rightarrow \mathbb{R}^{n+1} \backslash\{0\}$ by setting

$$
Y(x)=V(x /|x|), x \in \mathbb{R}^{n+1} \backslash\{0\}
$$

Then $Y(x) \neq 0$ and $Y(x) \cdot x=0$ on $\mathbb{R}^{n+1} \backslash\{0\}$. The map

$$
F(x, t)=\cos (t \pi) x+\sin (t \pi) Y(x)
$$

defines a homotopy from $f_{0}=\operatorname{id}_{\mathbb{R}^{n+1} \backslash\{0\}}$ to the antipodal map $f_{1}=-\mathrm{id}_{\mathbb{R}^{n+1} \backslash\{0\}}$. Hence f_{1}^{*} is the identity on $H_{d R}^{n}\left(\mathbb{R}^{n+1} \backslash\{0\}\right)$ which is 1-dimensional. On the other hand, $f_{1}^{*}: H_{d R}^{n}\left(\mathbb{R}^{n+1} \backslash\{0\}\right) \rightarrow$ $H_{d R}^{n}\left(\mathbb{R}^{n+1} \backslash\{0\}\right)$ operates by multiplication by $(-1)^{n+1}$ [Exerc.]. Hence n is odd.

11.14 Čech cohomology (sketch)

Definition 11.15. Let M be a smooth manifold and $\left\{U_{\alpha}\right\}_{\alpha \in \mathcal{A}}$ an open cover of M. We say that $\mathcal{U}=\left\{U_{\alpha}\right\}_{\alpha \in \mathcal{A}}$ is a good cover if for every finite set $\left\{\alpha_{1}, \ldots, \alpha_{k}\right\} \subset \mathcal{A}$ of indices the intersection $U_{\alpha_{1}} \cap \cdots \cap U_{\alpha_{k}}$ is either empty or diffeomorphic to \mathbb{R}^{n} (hence contractible).

Lemma 11.16. Every smooth manifold M has good covers.
Proof. Equip M with a Riemannian metric. Then for every $x \in M$ there exists $r_{x}>0$ such that (metric, geodesic) open balls $B(x, r)$ are convex for all $0<r \leq r_{x}$. Then $\left\{B\left(x, r_{x}\right)\right\}_{x \in M}$ is a good cover.

Definition 11.17. A smooth manifold M has finite topology if there exists a finite good cover $\left\{U_{1}, \ldots, U_{N}\right\}$.

Examples 11.18. 1. A compact manifold M has finite topology.
2. If $C \subset M$ is compact and U_{0} is an open neighborhood of C, there exists an open neighborhood U of C such that $U \subset U_{0}$ and U has finite topology.
Theorem 11.19. If M^{n} has finite topology, then all $H_{d R}^{p}(M)$ are finite dimensional.
Proof. The claim follows from the Meyer-Vietoris theorem and Lemma 10.2 by induction on the number of sets in a good cover.
Let $\mathcal{U}=\left\{U_{1}, \ldots, U_{N}\right\}$ be a good cover of M^{n}. If $N=1$, then $M=U_{1}$ is doffeomorphic to \mathbb{R}^{n}, so

$$
H_{d R}^{p}(M)= \begin{cases}\mathbb{R}, & p=0 \\ 0, & p>0\end{cases}
$$

Suppose the claim holds for $N-1$. Let $U=U_{2} \cup \cdots \cup U_{N}$. Then $\left\{U_{2}, \ldots, U_{N}\right\}$ is a good cover of U, hence $H_{d R}^{p}(U)$ are finite dimensional by the induction hypothesis. The manifold $U \cap U_{1}$ has a good cover $\left\{U_{1} \cap U_{2}, \ldots, U_{1} \cap U_{N}\right\}$, so the cohomology groups of $U \cap U_{1}$ are finite dimensional. Now $M=U \cup U_{1}$ and we have the exact Meyer-Vietoris sequence

$$
H_{d R}^{p-1}\left(U \cap U_{1}\right) \xrightarrow{\partial^{*}} H_{d R}^{p}(M) \rightarrow H_{d R}^{p}(U) \oplus H_{d R}^{p}\left(U_{1}\right)
$$

and the claim follows from Lemma 10.2.
In fact, the dimensions of $H_{d R}^{p}(M)$ are determined by intersection properties of sets U_{α}, i.e. by the list of multi-indices for which the intersections are non-empty. The collection of such multiindices is called the nerve of \mathcal{U}. This suggests that any cohomology theory whose input is the nerve of \mathcal{U} and cohomology groups (vector spaces) as output will be isomorphic to de Rham cohomology.

Let $\mathcal{U}=\left\{U_{1}, \ldots, U_{d}\right\}$ be a good cover of M. Denote by $N^{k}(\mathcal{U})$ the set of all multi-indices

$$
I=\left(i_{0}, \ldots, i_{k}\right), 1 \leq i_{0}, \ldots, i_{k} \leq d
$$

such that

$$
U_{I}:=U_{i_{0}} \cap \cdots \cap U_{i_{k}} \neq \emptyset .
$$

Hence such U_{I} is diffeomorphic to \mathbb{R}^{n}. For example, $I=(i, i, \ldots, i) \in N^{k}(\mathcal{U})$ since $U_{I}=U_{i}$. The disjoint union

$$
N(\mathcal{U})=\bigsqcup_{k \geq 0} N^{k}(\mathcal{U})
$$

is called the nerve of \mathcal{U} and $N^{k}(\mathcal{U})$ is the k-skeleton of $N(\mathcal{U})$. If $I=(i, i, \ldots, i) \in N^{k}(\mathcal{U})$, then

$$
I_{j}:=\left(i_{0}, \ldots, \hat{i}_{j}, \ldots, i_{k}\right) \in N^{k-1}(\mathcal{U})
$$

We associate a cochain complex $\left.C^{*} / \mathcal{U}\right)$ to $N(\mathcal{U})$ by defining the vector space

$$
C^{k}(\mathcal{U}, \mathbb{R})=\left\{u: N^{k}(\mathcal{U}) \rightarrow \mathbb{R}\right.
$$

The differential (or coboundary operator) is the linear map $d: C^{k}(\mathcal{U}, \mathbb{R}) \rightarrow C^{k+1}(\mathcal{U}, \mathbb{R})$ defined by

$$
d u(I)=\sum_{j=0}^{k+1}(-1)^{j} I_{j},
$$

that is,

$$
d u\left(i_{0}, \ldots, i_{k+1}\right)=\sum_{j=0}^{k+1}(-1)^{j} u\left(i_{0}, \ldots, \widehat{i_{j}}, \ldots, i_{k+1}\right.
$$

Then $d \circ d\left(: C^{k}(\mathcal{U}, \mathbb{R}) \rightarrow C^{k+2}(\mathcal{U}, \mathbb{R})\right)=0$. Indeed, if $u \in C^{k}(\mathcal{U}, \mathbb{R})$, then

$$
d(d u)(I)=\sum_{i=0}^{k+2}(-1)^{i} d u\left(I_{i}\right)=\sum_{i=0}^{k+2}(-1)^{i}\left(\sum_{j<i}(-1)^{j} u\left(I_{i, j}\right)+\sum_{j>i}(-1)^{j-1} u\left(I_{i, j}\right)\right)=0
$$

since each $u\left(I_{i, j}\right), i \neq j$, occurs twice, but with opposite signs. Note that the sign $(-1)^{j-1}$ for $j>i$ occurs since the (original) i th index i_{i} is missing and therefore i_{j} is the $(j-1)$ st index.

The cochain complex

$$
0 \rightarrow C^{0}(\mathcal{U}, \mathbb{R}) \xrightarrow{d} C^{1}(\mathcal{U} ; \mathbb{R}) \xrightarrow{d} \cdots \xrightarrow{d} C^{k}(\mathcal{U}, \mathbb{R}) \xrightarrow{d} \cdots
$$

is called the $\check{C} e c h$ cochain complex of the cover \mathcal{U} and the $\check{C} e c h$ cohomology vector spaces of the cover \mathcal{U} are

$$
H^{k}(\mathcal{U}, \mathbb{R})=\frac{\operatorname{Ker}\left(d: C^{k}(\mathcal{U}, \mathbb{R}) \rightarrow C^{k+1}(\mathcal{U}, \mathbb{R})\right)}{\operatorname{Im}\left(d: C^{k-1}(\mathcal{U}, \mathbb{R}) \rightarrow C^{k}(\mathcal{U}, \mathbb{R})\right)}
$$

Theorem 11.20. Suppose that M has a finite good cover \mathcal{U}. Then for all $k \geq 0$

$$
H^{k}(\mathcal{U} ; \mathbb{R}) \cong H_{d R}^{k}(M)
$$

Very rough idea of the proof: Both de Rham and Čech cohomology theories have Meyer-Vietoris sequences and satisfy the Poincaré lemma. Then the proof goes via induction on the number of sets in the good cover together with the 5-Lemma.

We can reduce the proof to the following general:
Proposition 11.21. Let M^{n} be a smooth manifold. Suppose $P(U)$ is a statement about open subsets $U \subset M$ satisfying;
(1) $P(U)$ is true if U is diffeomorphic to a convex subset of \mathbb{R}^{n};
(2) $P(U), P(V), P(U \cap V) \Rightarrow P(U \cup V)$;
(3) $\left\{U_{\alpha}\right\}$ disjoint and $P\left(U_{\alpha}\right) \forall \alpha \Rightarrow P\left(\cup_{\alpha} U_{\alpha}\right)$.

Then $P(M)$ holds.
Proof of Propositio 11.21. Assume first that M^{n} is diffeomorphic to an open subset of \mathbb{R}^{n}. So, we may think of M^{n} being an open subset of \mathbb{R}^{n}. By (1), (2) and induction it follows that $P(U)$ holds if U is a union of finite number of convex open subsets of \mathbb{R}^{n} because

$$
\left(U_{1} \cup U_{2} \cup \cdots \cup U_{n}\right) \cap U_{n+1}=\left(U_{1} \cap U_{n+1}\right) \cup \cdots\left(U_{n} \cap U_{n+1}\right)
$$

and a nonempty intersection of two convex sets is convex.
Let then $\left\{V_{i}\right\}$ be a collection of open sets such that \bar{V}_{i} is compact. Take a (smooth) partition of unity $\left\{f_{i}\right\}$ subordinate to $\left\{V_{i}\right\}$ and define $f=\sum_{j} j f_{j}$. Let $A_{j}=f^{-1}[j, j+1]$. Then A_{j} is compact since f is proper. Cover A_{j} by finite union U_{j} of convex open subsets contained in $f^{-1}\left(j-\frac{1}{2}, j+\frac{3}{2}\right)$. Then $A_{j} \subset U_{j} \subset f^{-1}\left(j-\frac{1}{2}, j+\frac{3}{2}\right)$. So $U_{\text {even }}$ are disjoint and similarly $U_{\text {odd }}$ are disjoint. Since U_{j}
is a finite union of convex open sets, $P\left(U_{j}\right)$ holds. By (3), $P(U)$ and $P(V)$ hold, where $U=\cup_{j} U_{2 j}$ and $V=\cup_{j} U_{2 j+1}$. Now

$$
U \cap V=\bigsqcup_{j}\left(U_{2 j} \cap U_{2 j+1}\right)
$$

is a disjoint union of sets $U_{2 i} \cap U_{2 j+1}$ that are either empty or finite unions of convex open sets. Hence $P(U \cap V)$ holds. Now it follows from (2) that $P(M)=P(U \cup V)$ holds. Hence $P(U)$ is true for all open U that are diffeomorphic to an open subset of \mathbb{R}^{n}. Replacing above "convex open" by "open" and repeating the argument completes the proof.

The crucial step in the proof of Theorem 11.20 is to verify the property (2) in Proposition 11.21 $[P(U), P(V), P(U \cap V) \Rightarrow P(U \cup V)]$. Here we apply Meyer-Vietoris sequences and the 5-Lemma to exact sequences

The 5-Lemma implies that also $H_{d R}^{p}(U \cup V) \rightarrow H^{p}(\{U \cup V\}, \mathbb{R})$ is an isomorphism.

11.22 Singular (co-)homology

Let e_{0}, e_{1}, \ldots be the standard basis of \mathbb{R}^{∞}. The standard p-simplex, $p \geq 0$, is

$$
\Delta_{p}=\left\{\sum_{i=0}^{p} \lambda_{i} e_{i}: \sum_{i=0}^{p} \lambda_{i}=1,0 \leq \lambda_{i} \leq 1\right\}
$$

i.e. the convex hull of $\left\{e_{0}, \ldots, e_{p}\right\}$. λ_{i} 's are called barycentric coordinates.

Let X be a topological space. A singular p-simplex in X is a continuous map $\phi: \Delta_{p} \rightarrow X$. "Singular" refers to the lack of regularity. The singular p-chain group of $X, C_{p}(X)$, is the free Abelian group generated by all singular p-simplices in X. An element of $C_{p}(X)$, called a singular p-chain, is a finite formal linear combination of singular p-simplices with integer coefficients

$$
\sum_{\phi} n_{\phi} \phi
$$

with $n_{\phi} \in \mathbb{Z}$ equal to zero for all but a finite number of ϕ.
Remark 11.23. Let us recall the notion of a free Abelian group generated by a set.
Let A be an arbitrary set and $F(A)=\{f: A \rightarrow \mathbb{Z} \mid f(a) \neq 0$ for only finitely many $a \in A\}$. Define in $F(A)$, the sum $f+g$ by $(f+g)(a)=f(a)+g(a)$. Then $(F(A),+)$ is an Abelian group. For any $a \in A$, define $f_{a}=\chi_{\{a\}} \in F(A)$. Then $\left\{f_{a}: a \in A\right\}$ is a basis for $F(A)$ as a free Abelian group. By identifying a with f_{a}, we may interpret A as the basis of $F(A)$.

For $p+1$ points $v_{0}, \ldots, v_{p} \in \mathbb{R}^{N}$ (not necessarily in general position) we define an affine singular p-simplex $\left[v_{0}, \ldots, v_{p}\right]: \Delta_{p} \rightarrow \mathbb{R}^{N}$ as the map

$$
\sum_{i=0}^{p} \lambda_{i} e_{i} \mapsto \sum_{i=0}^{p} \lambda_{i} v_{i}
$$

For each $i \in\{0, \ldots, p\}$, let $F_{i}^{p}: \Delta_{p-1} \rightarrow \Delta_{p}$ be the affine singular $(p-1)$-simplex $F_{i}^{p}=\left[e_{0}, \ldots, \widehat{e_{i}}, \ldots, e_{p}\right]$. More precisely, F_{i}^{p} is the restriction to Δ_{p-1} of the affine map such that

$$
\begin{aligned}
& e_{0} \mapsto e_{0} \\
& \vdots \\
& e_{i-1} \mapsto e_{i-1} \\
& e_{i} \mapsto e_{i+1} \\
& \vdots \\
& e_{p-1} \mapsto e_{p}
\end{aligned}
$$

F_{i}^{p} is called the i th face map. Note that F_{i}^{p} maps Δ_{p-1} homeomorphically onto the boundary face of Δ_{p} opposite the vertex e_{i}. Note also that, for $i>j$,

$$
\begin{equation*}
F_{i}^{p} \circ F_{j}^{p-1}=F_{j}^{p} \circ F_{i-1}^{p-1}: \Delta_{p-2} \rightarrow \Delta_{p} \tag{11.24}
\end{equation*}
$$

Let then $\phi: \Delta_{p} \rightarrow X$ be a singular p-simplex. We define a singular $(p-1)$-chain $\partial \phi$, called the boundary of ϕ by

$$
\partial \phi=\sum_{i=0}^{p}(-1) \text { Ãő } \phi \circ F_{i}^{p}
$$

This definition extends uniquely to a homomorphism $\partial: C_{p}(X) \rightarrow C_{p-1}(X)$, called the boundary operator

$$
\partial\left(\sum_{\phi} n_{\phi} \phi\right)=\sum_{\phi} n_{\phi} \partial \phi
$$

Proposition 11.25. The composition $\partial \circ \partial: C_{p}(X) \rightarrow C_{p-2}(X)$ is zero.
Proof. We have

$$
\begin{aligned}
\partial(\partial \phi) & =\sum_{j=0}^{p-1} \sum_{i=0}^{p}(-1)^{i+j} \phi \circ F_{i}^{p} \circ F_{j}^{p-1} \\
& =\sum_{0 \leq j<i \leq p}(-1)^{i+j} \phi \circ F_{i}^{p} \circ F_{j}^{p-1}+\sum_{0 \leq i \leq j \leq p-1}(-1)^{i+j} \phi \circ F_{i}^{p} \circ F_{j}^{p-1}
\end{aligned}
$$

Writing $j^{\prime}=i, i^{\prime}-1=j$ in the second sum and using (11.24) it bocomes

$$
\sum_{0 \leq j^{\prime}<i^{\prime} \leq p}(-1)^{i^{\prime}+j^{\prime}-1} \phi \circ F_{j^{\prime}}^{p} \circ F_{i^{\prime}-1}^{p-1}=\sum_{0 \leq j^{\prime}<i^{\prime} \leq p}(-1)^{i^{\prime}+j^{\prime}-1} \phi \circ F_{i^{\prime}}^{p} \circ F_{j^{\prime}}^{p-1}
$$

so the sums cancel term by term.
A singular p-chain σ is called a p-cycle if $\partial \sigma=0$. The set of all p-cycles, denoted by $Z_{p}(X)$, is a subgroup of $C_{p}(X)$ as the kernel of the homomorphism ∂. Similarly, the image $\partial C_{p+1}(X)$ is the subgroup $B_{p}(X)$ of all p-boundaries. The quotient group

$$
H_{p}(X)=Z_{p}(X) / B_{p}(X)
$$

is the pth (singular) homology group of X. This is zero if every p-cycle is the boundary of a $(p+1)$-chain. Intuitively, this means that there are no p-dimensional "holes" in X.

If $f: X \rightarrow Y$ is continuous, let $f_{\sharp}: C_{p}(X) \rightarrow C_{p}(Y)$ be the homomorphism defined by

$$
f_{\sharp} \sigma=f \circ \sigma
$$

for all p-simplex σ. Since f_{\sharp} commutes with $\partial, f_{\sharp}(\partial \sigma)=\partial f_{\sharp} \sigma, f_{\sharp}$ maps $Z_{p}(X)$ into $Z_{p}(Y)$ and $B_{p}(X)$ into $B_{p}(Y)$. Hence it passes to quotients and defines a homomorphism

$$
f_{\sharp}: H_{p}(X) \rightarrow H_{p}(Y) .
$$

We have the Meyer-Vietoris sequence: Let X be a topological space and $U, V \subset X$ open sets such that $X=U \cup V$. For each p there exists a homomorphism $\partial_{*}: H_{p}(X) \rightarrow H_{p-1}(U \cap V$ such that the sequence

$$
\cdots \xrightarrow{\partial_{*}} H_{p}(U \cap V) \xrightarrow{i_{*} \oplus j_{*}} H_{p}(U) \oplus H_{p}(V) \xrightarrow{k_{*}-\ell_{*}} H_{p}(X) \xrightarrow{\partial_{*}} H_{p-1}(U \cap V) \rightarrow \cdots
$$

is exact.
We define the singular pth cohomology group $H^{p}(X ; \mathbb{R})$ with coefficients in \mathbb{R} as a real vector space that is isomorphic to the space $\operatorname{Hom}\left(H_{p}(X), \mathbb{R}\right)$ of group homomorphisms $H_{p}(X) \rightarrow \mathbb{R}$. Any continuous map $f: X \rightarrow Y$ induces a linear map $f^{*}: H^{p}(Y ; \mathbb{R}) \rightarrow H^{p}(X ; \mathbb{R})$,

$$
\left(f^{*} \gamma\right)[c]=\gamma\left(f_{\sharp}[c]\right)
$$

for every $\gamma \in H^{p}(Y ; \mathbb{R}) \cong \operatorname{Hom}\left(H_{p}(Y), \mathbb{R}\right)$ and $[c] \in H_{p}(X)$. Singular cohomology groups satisfy the Meyer-Vietoris theorem.

11.26 Smooth singular homology

The connection between singular and de Rham cohomologies is established by integrationg differential p-forms over singular p-chains. Given a singular p-simplex $\sigma: \Delta_{p} \rightarrow M$ and a differential p-form ω, we would like to integrate the pullback σ^{*} over Δ_{p}.
However, we face a problem. Pullback is defined for smooth maps (at least C^{1}) only. [Regularity could be weakened further but not for arbitrary continuous maps.]
To circumvent this problem we need to define a smoothing operator $s: C_{p}(M) \rightarrow C_{p}^{\infty}(M)$ (smooth p-chain group) such that it commutes with the boundary operator $s \circ \partial=\partial \circ s$ and $s \circ i=\operatorname{id}_{C_{p}^{\infty}(M)}$ $\left[i: C_{p}^{\infty}(M) \hookrightarrow C_{p}(M)\right]$ and we need a homotopy operator that shows that $i \circ s$ induces the identity map on $H_{p}(M)$.

Definition 11.27. The p th smooth singular homology group of M is the quotient

$$
H_{p}^{\infty}(M)=\frac{\operatorname{Ker}\left[\partial: C_{p}^{\infty}(M) \rightarrow C_{p-1}^{\infty}(M)\right]}{\operatorname{Im}\left[\partial: C_{p+1}^{\infty}(M) \rightarrow C_{p}^{\infty}(M)\right]} .
$$

Theorem 11.28. For a smooth manifold M, the map $i_{*}: H_{p}^{*}(M) \rightarrow H_{p}(M)$ induced by the inclusion i : $C_{p}^{\infty}(M) \hookrightarrow C_{p}(M)$ is an isomorphism.

The proof is technical (based on Whitney type approximation) construction of homotopy from each continuous simplex to a smooth one that respects the restriction to each boundary face of Δ_{p}.

11.29 de Rham homomorphism, the de Rham's theorem

Let $\sigma: \Delta_{p} \rightarrow M$ be a smooth p-simplex and ω a closed p-form on M. Define

$$
\int_{\sigma} \omega:=\int_{\Delta_{p}} \sigma^{*} \omega
$$

This definition makes sense since Δ_{p} has the induced orientation from \mathbb{R}^{p+1}. If $c=\sum_{i} c_{i} \sigma_{i}$ is a smooth p-chain, then

$$
\int_{c} \omega:=\sum_{i} c_{i} \int_{\sigma_{i}} \omega .
$$

Stokes's theorem (we can neglect "corners"):
If c is a smooth p-chain and ω a smooth $(p-1)$-form, then

$$
\int_{\partial c} \omega=\int_{c} d \omega .
$$

We define the de Rham homomorphism $\Psi^{*}: H_{d R}^{p}(M) \rightarrow H^{p}(M ; \mathbb{R}) \cong \operatorname{Hom}\left(H_{p}(M), \mathbb{R}\right)$ by

$$
\Psi^{*}[\omega][c]=\int_{\tilde{c}} \omega, \quad \forall[\omega] \in H_{d R}^{p}(M),[c] \in H_{p}(M) \cong H_{p}^{\infty}(M)
$$

where \tilde{c} is any smooth p-cycle in $[c] \in H_{p}(M)$. It is well-defined. Indeed, if $c_{1}, c_{2} \in[c]$ are smooth, then $c_{1}-c_{2}=\partial b$ for some smooth $(p+1)$-chain, so

$$
\int_{c_{1}} \omega-\int_{c_{2}} \omega=\int_{\partial b} \omega=\int_{b} d \omega=0
$$

since $\omega \in[\omega]$ is closed. If $\omega=d \eta$ is exact, then

$$
\int_{\tilde{c}} \omega=\int_{\tilde{c}} d \eta=\int_{\partial \tilde{c}} \eta=0
$$

since $\partial \tilde{c}=0$. So, Ψ^{*} is a well-defined homomorphism.
Theorem 11.30 (The de Rham's theorem). The homomorphism

$$
\Psi^{*}: H_{d R}^{p}(M) \rightarrow H^{p}(M ; \mathbb{R})
$$

is an isomorphism for all p and for every smooth manifold M.
Proof. The idea of the proof is, of course, the same as in the proof of Theorem 11.20. We have Meyer-Vietoris sequences, Poincaré lemma and the 5-Lemma for both cohomologies.
Thus, let $P(U)$ be the property:

$$
\Psi^{*}: H_{d R}^{p}(U) \rightarrow H^{p}(U ; \mathbb{R})
$$

is an isomorphism for an open set $U \subset M$.
Then we have:
(1): $P(U)$ holds if U is diffeomorphic to an open convex subset of \mathbb{R}^{n} (Poincaré lemma).
(3): $\left\{U_{\alpha}\right\}$ disjoint and $P\left(U_{\alpha}\right)$ holds $\forall \alpha \Rightarrow P\left(\cup_{\alpha} U_{\alpha}\right)$ holds.
(2): Suppose $P(U), P(V)$ and $P(U \cap)$ hold. Then

The 5-Lemma implies that also $H_{d R}^{p}(U \cup V) \rightarrow H^{p}(U \cup V ; \mathbb{R})$ is an isomorphism, so $P(U \cup V)$ holds. Proposition 11.21 implies that $\Psi^{*}: H_{d R}^{p} \rightarrow H^{p}(M ; \mathbb{R})$ is an isomorphism.

References

[AMR] Abraham, R., Marsden, J.E., Ratiu, T. Manifolds, tensor analysis, and applications, Springer, 1988.
[BG] Berger, M., Gostiaux, B. Differential geometry: manifolds, curves, and surfaces, Springer, 1988.
[BC] Bishop, R., Crittenden, R. Geometry of manifolds, Academic Press, 1964.
[Bo] Boothby, W.M. An introduction to differentiable manifolds and Riemannian geometry, Academic Press, 1975.
[Br] Bredon, G.E. Topology and geometry, Springer, 1993.
[Ch] Chavel, I. Riemannian geometry: a modern introduction, Cambridge Univ. Press, 1993.
[CE] Cheeger, J., Ebin, D. Comparison theorems in Riemannian geometry, North-Holland Publishing Co., 1975.
[Ca1] do Carmo, M.P. Differential geometry of curves and surfaces, Prentice Hall, 1976.
[Ca2] do Carmo, M.P. Riemannian geometry, Birkhäuser, 1992.
[Ca3] do Carmo, M.P. Differential forms and applications, Springer, 1994.
[GH] Gallot, S., Hulin, D., Lafontaine, J. Riemannian geometry, Springer, 1987.
[Hi] Hicks, N. Notes in differential geometry, Van Nostrand, 1965.
[Ho] Holopainen, I. Differential geometry, luentomuistiinpanot, 1999 and 2001.
[KN] Kobayashi, S., Nomizu, K. Foundations of differential geometry, Vol. I, Interscience Publishers, 1963.
[L1] Lee, J.M. Riemannian manifolds, an introduction to curvature, Springer, 1997.
[L2] Lee, J.M. Introduction to smooth manifolds, Springer, 2002.
[MT] Madsen, I., Tornehave, J. From calculus to cohomology, Cambridge University Press, 1997.
[Pe] Petersen, P. Riemannian geometry, Springer, 1998.
[Ru] Rudin, W. Principles of mathematical analysis, McGraw-Hill, 1976.
[Sp] Spivak, M. A comprehensive introduction to differential geometry, Vol. I,II,III, IV, Publish or Perish, 1979.
[V] Väisälä, J. Topologia II, Limes, 1999.
[Wa] Warner, F. Foundations of differentiable manifolds and Lie groups, Springer, 1983.

[^0]: ${ }^{1}$ Every Lie group is parallelizable; $\mathbb{S}^{1}, \mathbb{S}^{3}$, and \mathbb{S}^{7} are the only parallelizable spheres; $\mathbb{R} P^{1}, \mathbb{R} P^{3}$, and $\mathbb{R} P^{7}$ are the only parallelizable projective spaces; a product $\mathbb{S}^{n} \times \mathbb{S}^{m}$ is parallelizable if at least one of the numbers $n>0$ or $m>0$ is odd.

