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The kinetics of binary nucleation is investigated and an exact method to evaluate the nucleation rate 
is developed. The exact method accounts for all flows to the stable clusters, and thus the nucleation 
rate is obtained independently of determining the location of the saddle point in the Gibbs free 
energy surface. The exact method is based on determination of cluster concentrations, which can be 
obtained after solving a set of linear equations. The values of the nucleation rate and the direction 
of flow at the saddle point are calculated for water-sulphuric acid and water-ammonia systems. The 
results are compared to the results obtained by Stauffer’s saddle point integration method for binary 
nucleation kinetics. The saddle point integration method is found to give a reasonably accurate - 
estimation of nucleation rate in the water-sulphuric acid system. However, in the water-ammonia 
system the difference is found to be as high as three orders of magnitude. 0 1994 American 
Institute of Physics. 

1. INTRODUCTION 

Several theoretical papers concerning binary homoge- 
neous nucleation have appeared inrecent years. These papers 
have mostly concentrated on the energetics of the phenom- 
enon, while the kinetics has received considerably less atten- 
tion. This is understandable, since variations in factors gov- 
erning the energetics affect the resulting nucleation rate 
usually to a much larger extent than variations in the kinetic 
factors. Consequently, relatively crude approximations of the 
nucleation kinetics are quite often employed. However, there 
may be situations in which it is important to describe the 
kinetics correctly.. For instance,. when the shape of the free 
energy surface is relatively flat near the saddle point, the 
assumptions made in the derivation of the various approxi- 
mative expressions become questionable. 

To date, the most rigorous treatment of binary nucleation 
kinetics is due to Stauffer,’ but even his derivation is an 
approximative one, and holds only in the immediate vicinity 
of the saddle point. However, recent developments in~com- 
puter technology have ,made it possible to solve the exact 
kinetic equations numerically. In the present paper we devel- 
oped a matrix method for solving the binary nucleation rate. 
This method is an extension of well-known summative 
method in homomolecular nucleation (see, e.g. Ref. 2); be- 
low we will refer to it as the exact method. The most signifi- 
cant advantage of the exact method (besides not being re- 
stricted to the vicinity of the saddle point) is. that one does 
not have to determine the growth angle nor the Zeldovich 
factor any more in order to solve the nucleation rate. 

The approximative evaluatio.n of the. homogeneous 
nucleation rate in binary vapor systems is based on determin- 
ing the location of the saddle point in the three-dimensional 
space ( AG,i,j), where ,AG is the Gibbs free-energy, of for- 
mation of a molecular cluster, and i and j are the numbers of 
molecules of types a and w in the cluster (e.g., Refs. 3, 4, 5, 
6, and 7). The nucleation rate is the number of clusters reach- 
ing the free-energy barrier, i.e.,. becoming capable to grow to 
larger droplets, in unit time. Since the saddle point corre- 
sponds to the minimum height of the free-energy barrier, it is 

assumed that by far the most important contribution to the 
nucleation rate comes from the flow through the saddle 
point. In Stauffer’s’ treatment a saddle point integral method 
gives an expression to the saddle point flow direction and the 
nucleation rate. The nucleation rate is a pro-duct of three 
terms, the equilibrium concentration of clusters in saddle 
point, Zeldovich factor, and average growth rate. However, 
the saddle point is not always a very sharp minimum of the 
free-energy barrier, which means that the How, could be sig- 
nificant in quite a large region. Oue purpose of this work is 
to check the accuracies of the approximative expressions for 
the nucleation rate and saddle point flow direction, which are 
more convenient to use,in large (e.g., atmospheric) models. 
The exact method for solving the binary nucleation rate is 
not restricted to any particular theory for calculating free 
energies of molecular clusters. In numerical comparisons we 
use the classical theory-in the form first presented by Doyle3 
as a model of nucleation.energetics. However, unlike Doyle, 
we account for the fact that the free-energy change should be 
zero for monomers. This is done by applying the so-called 
self-consistency correcti0n.s We are aware’of the fact that 
Doyle’s theory is thermodynamically~ inconsistent ins that it 
assumes the overall mole fraction of the clusters to be the 
same as the bulk mole fraction, and thus does not take any 
surface enrichment effects into account.’ However, at present 
it is not possible to calculate the free energies of noncritical 
clusters in a thermodynamically consistent way within the 
framework of the classical theory.” In any case, the free 
energy model employed is not expected to affect the conclu- 
sions concerning nucleation kinetics. 

II. THEORY 

Completely inelastic (sticking coefficient 1) collisions 
are used as a model of the nucleation process. The model can 
be simplified using the assumption that the monomer con- 
centrations are much higher than the concentrations of clus- 
ters. Accordingly only the collisions between monomers and 
clusters are taken into account, and cliister-cluster collisions 
are neglected due to their relatively low probabilities. 
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Changes of cluster concentrations with time are given by a 
set of first order differential equations’ 
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The concentration of clusters containing i molecules of 
species a and j molecules of species w is c(i,j). It is as- 
sumed that clusters with i>n or j >m are immediately re- 
moved from the system. This assumption is reasonable, if m dc(i,j) 

and n are large enough for the transition rates from sizes 
(n+ 1,j) to (p2,j) and (i,m+l) to (i,m) to be negligible. 

The net flow Z,(i,j) from cluster size (ij) to size (i,j 
fl), and the net flow Z,(i,j) from size (i,j) to size (i 
+ 1, j), are defined by,’ 

-=e,(i,j+ l)c(i,j+ l)+k,(i,j- 1 jc(i,j- 1) 
dt 

+e,(i+ l,j)c(i+ l,j)+k,(i- l,j)c(i- l,j) 

-[e,(i,j)+k,(i,j)+e,(i,j)+k,(i,j)lc(i,j), 
(8) 

OQi=Cn, OGjGm, (9) Z,(i,j)=k,(i,j)c(i,j)-e,(i,j+ l)c(i,j+ l), 

Z,(i,j)=k,(i,j)c(i,j)-e,(i+ l,j)c(i+ l,j), (1) 

where k, and k, are the condensation coefficients and e, 
and e, are the evaporation coefficients, for the species a and 
w , respectively. 

The condensation coefficients can be determined using 
the kinetic gas theory, 

(2) 
where T is temperature, k is Boltzmann’s constant, m(i,j) 
and u (i, j) are the mass and volume of the cluster, and c,, 
m,, ami u, are the concentration, mass, and volume of 
monomer a: respectively.” 

The determination of the evaporation coefficients is not 
as straightforward as with the condensation coefficients. In 
one-component systems the evaporation coefficients can be 
calculated assuming that the various cluster sizes obey the 
Boltzmann distribution in equilibrium conditions. An alter- 
native way of obtaining the evaporation coefficients (inde- 
pendently of any assumptions of cluster distributions) would 
be using the theory of Nowakowski and Ruckenstein.12 Their 
theory is, however, limited to molecules with simple interac- 
tion potentials. In binary systems the onIy alternative so far 
is to employ the extension of the first of the two methods. 
Thus, when detailed balance conditions’ 

Z,(i,j)=O; Z,(i,j)=O Vi,j, (3) 

hold, the equilibrium concentrations c”( i, j) follow the Bolt- 
zmann distribution 

c”(i,j)=F exp[ -hF:i’j)], (4) 

(i,j)~(O,l),(i,j)f(l,O). (10) 
The time derivatives of monomer concentrations are given 
by equations 

dc(l,O) 
-=C e,(ij)c(i,j)-k,(i,j)c(i,j), dt ij (12) 

In the steady state the monomer concentrations are constant. 
Consequently, the evaporation and condensation coefficients 
are also constants, and the differential equations (9) become 
linear. 

Equations (11) and (12) can now be replaced by 

c(O,l)=ca, (13) 

c(l,O)=c,, (14) 

where c, and c, are constants. 
The concentrations of clusters of different size can be 

solved from Eqs. (9), (13), and (14) as functions of time. The 
number of clusters growing to sizes outside the region lim- 
ited by m and rz in unit time is given by 

Z,,=% k,(i,m)c(i,m)+5 k,(n,j>c(n,j). (15) 
i=O j=O 

F=c(l,O)+c(O,l)+~ c(i,j)=c(f,O)+c(O,l). (-3 
i.i 

The evaporation coefficients can be expressed with conden- 
sation coefficients and equilibrium concentrations using con- 
ditions (3). The solutions are as follows: 

If n and m are small, the concentrations on these boundaries 
will be quite high, and significant transitions from sizes (n 
+ l,j) to (n,j> and (i,m+ 1) to (i,m) will be ignored. Znm 
will therefore have a value higher than that of the actual 
nucleation rate. When the values of n and m are high, the 
concentrations at the boundaries are near zero, and evapora- 
tion from clusters just outside the boundaries does not affect 
the system (and can therefore be ignored). n and m can be 
considered large enough when a change in their values does 
not result in any appreciable change in Z,,n. In these condi- 
tions I,, is equal to the nucleation rate. 

In steady-state the left-hand sides of Eqs. (9) are equal to 
zero. Consequently, Eqs. (9), (13), and (14) form a set of 
(m + 1) X (n + 1) ordinary linear equations, which can be ex- 
pressed in a matrix form 

Ac=b. (16) 
e (i j)= Ui,j- lY(iJ- 1) 

w 9 c”(i.j) 

e ci jj= Mi- lJ)ce(i- 1J) 
a I c”(i,j) ’ 

J. Chem. Phys., Vol. 101, No. 11, 1 December 1994 

The elements of matrix A are 

&,k= -[k,(i,j) +k,(iJ) +e,(ij) +e,(i,j>l, 
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= 

FIG. 1. The set of equations for steady-state concentrations in matrix form. 
DU,i)= -re,,(i,j)+k,“(i,i)+e.(i.j)+ko(i,j)i. 

Ak,k-,~-I=k,~(i,j-l), 
A k,k+r*+l=4U+ I), 

At,,+, =k,(i- 1 >A, 

&,k+l=e,ti+l,jj, 
(17) 

‘al,l=l, A,,,=O, when k#l, 

A2,z=1, Az,k=O, when kf2, 

A n+2,,*+2= 1, 4+2,k =O, when kfnf2, 

where k = j. (n + 1) + i + 1, and the components of vectors c 
and b are 

ck=c(i,j), 

b2=c,, 

b n+2=cL? 3 

bk=O, when kf 1,2,n+2. 

A is a sparse band matrix with nonzero elements only in five 
bands (Fig. 1). The number of zero bands between the first 
sub- and superdiagonal and the distant nonzero bands is 
n-l. 

The saddle point flow direction is given by 

tan q5= I1;/I,* , (19) 

Setting n =0 (m =0) produces the limiting homomolecu- 
lar system for w(a). The homomolecular nucleation rate for 
w is given by 

I,=k,(O,mjc(O,m)=k,(O,j)c(O,j)-e,(O,j+ 1) 

Xc(O,j+ l)=l,(O,jj, (20) 
which is independent of the value of j. 

The concentrations can be solved numerically, e.g., by 
using the NAG-library FORTRAN-routine F07BDF.r3 

Note that the model is analogous to a resistor network, 
the flows between different clusters corresponding to the 
electric currents, the Gibbs free-energy corresponding to the 
potential, and the combination of the evaporation and con- 
densation coefficients corresponding to the resistances. 

111. NUMERICAL RESULTS 

The nucleation rate and the saddle point flow direction 
were evaluated by both the exact method and Stauffer’s’ 
saddle point integration method in HzO-H2S04 and 
H20-NH, systems. The coordinates of the saddle point were 
defined graphically from the Gibbs free energy surface. 

In the numerical comparison we used the self-consistent 
form for the Gibbs free-energy change AG.8 This ensures 
AG=O for monomers (which is required for monomer 
evaporation coefficients to vanish). Thus, 

AG=--[j-(l-X)]kTln>--(i-X)kTlnAp 
wl al 

+(36~)“~a{(iv,+ju,)~‘~ 

-[( 1 -X)v,+xu,]Z’3}. (21) 
Here A,, and A,, are the activities of species a, and A,, and 
A,, are the activities of species w, in gas and liquid phases, 
respectively, q is the surface tension of the cluster, and X= il 
(i+j) is the mole fraction of a in the cluster. For the physi- 
cochemical data used in our calculations we refer to Refs. 14 
and 15. The numerical calculations with the saddle point 
integration method were performed in the same way as re- 
ported by Kulmala and Laaksonen.14 

The computer program for the exact method was 
checked by closing the matrix, i.e., setting e,=O for clusters 
with m water molecules and e,=O for clusters with y1 acid 
(or ammonia) molecules. As expected, the program produced 
the equilibrium concentration distribution (4) in these cir- 
cumstances. 

where the liows can be calculated from Eq. (l)? and the su- 
perscript * refers to the saddle point in the Gibbs free energy 
surface. 

In numerical simulations we have seen that the matrix 
method approaches correctly to one component limit. 

A. Water-sulphuric acid system 

The above description gives exact values for binary 
nucleation kinetics for a given set of AG(i,j), i<n,j<m, 
when the assumption of constant monomer concentrations 
hold. Note, that the exact method is in no way dependent on 
how the cluster free-energies are calculated, and can thus be 
used together with thermodynamical as well as microphysi- 
cal free-energy models. 

For simplicity we did not allow for sulphuric acid hydra- 
tion in the gas phase. This is not expected to affect the results 
concerning differences between the exact method and the 
saddle point integration method. 

The upper limits for the numbers of molecules in super- 
critical clusters (i.e., the matrix size in the exact method) 
were set to be n =20 for sulphuric acid and m =60 for water. 
To make sure that the limits were large enough the nucle- 
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FIG. 2. The number of clusters flowing out of the system in unit time I,,, 
with different upper liits m and n for water and sulphuric acid molecules 
in a cluster, respectively. The temperature is 233.15 K, the gas phase activity 
of water is 0.3 and the gas phase activity of sulphmic acid is 10e3. 

ation rate was calculated also with n =80 and m = 180. It was 
also noted that rates started to rise substantially when n was 
set below 10 and m below 50 (see Fig. 2). 

The nucleation rates and saddle point flow directions cal- 
culated using both methods are listed in Table I together with 
saddle point coordinates at different temperatures and gas 
phase activities. The nucleation rates given by the exact 
method and the saddle point integration method are always 
within the same order of magnitude. This shows that the 
traditional method describes the kinetics accurately enough 

to be used in large models, where the matrix method is not 
suitable due to the considerable computational effort needed. 

The integral method for the saddle point how direction is 
not reasonable, when the saddle point is in the immediate 
vicinity of the origin. Large differences can be seen in flow 
directions given by the two methods when the number of 
molecules in the critical cluster is below about 10; at,larger 
cluster sizes the differences decrease, as expected. The dif- 
ferences in flow directions seen here are estimated to pro- 
duce maximally a one order of magnitude difference in 
nucleation rate. 

-Figure 3 shows the Gibbs free energy surface and Fig. 4 
the corresponding steady-state concentrations at 233.15 K, 
with gas phase activities of 0.3 and lo-’ for water and sul- 
phuric acid, respectively. The saddle point is on the middle 
of the ridge of maximal concentrations in Fig. 4; however, 
the “AG-valley” in Fig. 3 does not appear very steep in the 
vicinity of the saddle point. Figure 5 shows the steady-state 
net flows in the same conditions. The arrow lengths are pro- 
portional to the logarithms of the flows. Interestingly, nega- 
tive net flows appear near the origin, creating “current 
loops.” As can be suspected from Fig. 3, substantial net 
flows can be seen going past the saddle point. This is some- 
what surprising considering the relative accuracy of the 
nucleation rate predictions produced by the saddle point in- 
tegration method, which assumes that the net flow to stable 
cluster sizes is dominated by the saddle point contribution. 

Note that Fig. 5 shows net flows in the direction of in- 

TABLE I. The nucleation rates evaluated with integral method I, and matrix method I, and the saddle point How directions evaluated by integral method & 
and matrix method r$,,, , the ratios of nucleation rates 2,/I,, and the coordinates of the saddle points (i*,j*) in HaO-HaSO, system with temperature T, gas 
phase activity of water S,“, and gas phase activity of sulphuric acid S, . 

T (61 SO SW 1, l/m3 s I, l/m3 s lkJ1m i”,j* 4k (“) (6, (“I 

213.15 10-l 0.3 0.25x 10’4 0.65x lOI 0.38 2.4 73.2 41.7 
233.15 10-l 0.3 0.40x lOI O.61X1O’6 0.66 2,3 67.1 57.0 
253.15 10-l 0.3 0.83X 10’7 0.23X10’* 0.36 3,6 70.5 50.2 
273.15 10-l 0.3 0.12x 10’9 0.44x 10’9 0.27 5,3 58.8 89.9 
213.15 10-l 0.9 0.57x 10“’ o.17x10’6 0.03 L1 . . . 58.8 
233.15 10-l 0.9 0.23X lOI 0.44x 10’8 0.05 L1 . . . 49.4 
253.15 10-l 0.9 0.18x10*” 0.41x lo*” 0.44 2,5 75.8 53.4 
273.15 10-l 0.9 0.63X 10” 0.19x lo= 0.33 2.5 75.7 51.6 
293.15 .- 10-l 0.9 0.14x 1oz3 0 60x 1O!3 0.23 2‘4 72.4 66.0 
213.15 1oP 0.3 0.57x 10” 0:14xlo’~ 0.41 2,4 74.0 37.8 
233.15 1o-2 0.3 0.11x10’s 0.30x lOI 0.37 3.6 71.2 55.7 
253.15 10-Z 0.3 0.73x 1oL3 o.17x10’4 0.43 5,ll. 70.9 65.1 
273.15 lO-2 0.3 0.14x 1o14 0.36X lOI 0.39 6,13 70.2 67.6 
213.15 IO-* 0.9 0.13x10’4 0.24X lOi 0.54 25 76.7 62.9 
233.15 10-Z 0.9 0.79x10’* 0.25x 10’6 0.32 2,5 76.6 54.7 
253.15 10-s 0.9 0.28X lOL7 0.11x10’s 0.25 2,4 73.9 66.1 
273.15 10-a 0.9 0.95x10** 0.26X 10” 0.37 3,s 75.6 66.7 
213.15 10-3 0.3 0.15x 16” 0,41x lo8 0.37 3,6. 71.9 64.8 
233.15 IO-’ 0.3 0.18x 10’ 0.48X lo8 0.38 5,12 72.5 63.8 
253.15 to-’ 0.3 0.18X lo7 0.44x 107 0.41 8,20 72.5 69.9. 
213.15 10-3 0.9 0.26X 10” 0.84X 10” 0.3 I 2,5 77.3 59.8 
233.15 10-s 0.9 0.17x10’3 0.30x 10’3 057 x9 79.6 64.1 
253.15 10-a 0.9 0.13x10’4 0.37x lOI 0.35 3,8 75.9 67.6 
273.15 1o-3 0.9 0.94x 10’4 0.23x lOI 0.41 4,12 77.5 70.2 
213.15 10-4 0.3 0.19x 103 0.53x 103 0.36 $13 73.8 66.8 
213.15 In-4 0.9 0.45x lo* 0.84X 10’ 0.54 3,lO 80.0 60.5 
233.15 lo-+ 0.9 0.14x IO9 0.46X IO9 0.30 4,13 76.2 70.8 
213.15 10-3 ~. 0.9 0.10X lo9 0.13x 10s 0.77 4,14 82.5 71.0. / 
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FIG. 3. The Gibbs free-energy (per kT) of formation of the cluster in the 
HzO-HzSO,+ystem at 233.15 K with gas phase activity of H,O 0.3 and gas 
phase activity of HsSO, 10W3. The saddle point is marked with an asterisk. 

creasing numbers of both water and sulphuric acid mol- 
ecules. This indicates that the approximation of flows in wa- 
ter direction being zero, which has sometimes been used in 
the literature, is not valid. 

The total number concentration of both water and acid 
molecules bounded in clusters can be evaluated from the 
steady-state concentration distribution. It is seen that the 
monomer concentration of water is higher than the concen- 
tration of bounded water molecules, but this does hold for 
sulphuric acid molecules. This, in fact, means that the steady 
state approximation is very questionable in the case of binary 
water-sulphuric acid nucleation. 

B. Water-ammonia system 

The upper limits of numbers both water and ammonia 
molecules in one cluster, III and ~1, were set to be 50, and the 
calculations were repeated with m = n = 60. As with sulphu- 
ric acid, the nucleation rates calculated with too low limits 
were found to be too high. 

Nucleation rates, saddle point coordinates, and flow di- 
rections calculated with both methods are shown in Table II. 
The saddle point flow directions match quite well, but the 
nucleation rates given by different methods differ approxi- 

FIG. 4. Steady-state concentrations (per me3) in the HaO-HaSO,-system at 
233.15 K with Hz0 gas phase activity of 0.3 and H,S04 gas phase activity 
of 10b3. The location of the saddle point in Gibbs free-energy surface is 
marked with an asterisk. For graphical reasons, concentrations below 1 
particle/m3 are not shown. 
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FIG. 5. Steady-state flows in the H,O-H,SO,-system at 233.15 K with Ha0 
gas phase activity of 0.3 and HzSO., gas phase activity of 10W3. The arrow 
length is proportional to the logarithm of the flow. Flows below 3/m3 s are 
not shown. For clarity, we show flows only from cluster sizes containing an 
odd number of water molecules. 
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TABLE JI. The nucleation rates evaluated with integral method I, and matrix method I, and the saddle point flow directions evaluated by a integral method 
q$ and matrix method q$, , the ratios of nucleation rates WI,, and the coordinates of the saddle points (i*,j*) in H,O-NH, system with temperature 7’. gas 
phase activity of water S, and gas phase activity of ammonia 5,. 

. 

T UQ I, l/m3 s I, l/m3 s IkJrm i*,j* 4k (“1 h?i (“I 

233.15 0.31 2.5 0.84x lOI 
233.15 0.23 3.0 O.16X1O’7 
233.15 0.16 3.5 0.75x lOI 
223.15 0.45 2.5 0.23x 10’7 
223.15 0.33 3.0 0.20x10” 
223.15 0.25 3.5 0.26X10” 
223.15 0.19 4.0 0.28X 10” 
223.15 0.14 4.5 0.20x 10” 
223.15 0.11 5.0 032x 10’7 

0.38X lOI 
0.46X 1OL3 
0.31x10*3 
0.12x10” 
0.10x10’” 
0.12x lOI 
0.13x10’4 
0.86X 10’3 
0.12x10’4 

2.2x10’ 35.20 75.5 76.0 
3.5x lOA 36,18 77.6 80.9 
24x 103 37,15 80.4 84.4 
1.9x103 29,18 75.5 71.5 
2.0x 103 30,16 17.7 78.1 
2.2x103 31,15 79.0 81.6 
2.2x lo3 30.13 80.5 84.3 
23x103 31.12 81.5 86.0 
2.7x 103 31.11 82.1 87.0 

mately by a factor 2X 103. One reason for the difference may 
be that the Gibbs free energy surface is quite flat compared 
with e.g. the water-sulphuric acid case. Figure 6 shows the 
steady state net 00~s at 223.15 K with gas phase activities 
4.0 and 0.19 for water and ammonia, respectively. According 
to Wu,16 another possible contribution to the difference stems 
from the fact that Stauffer’s’ integration of the nucleation 
rate incorporates contributions from unphysical negative 
cluster sizes. 

IV. CONCLUSIONS 

The matrix method presented in this paper describes the 
binary nucleation kinetics exactly. The method is indepen- 
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FIG. 6. Steady-state flows in the H,O-NH,-system at 223.15 K with HZ0 
gas phase activity of 4.0 and NH, gas phase activity of 0.19. The arrow 
length is proportional to the logarithm of the flow. Flows below 3/m3 s are 
not shown. For clarity, we show flows only from cluster sizes containing an 
odd number of water molecules. 

dent of the way of obtaining evaporation coefficients. Using 
the same equations in nonsteady state situations and solving 
the differential equations one would be able to work out the 
time lag for binary homogeneous nucleation (see Ref. 17). 

The conventionally used theory approximates well the 
nucleation rates in water-sulphuric acid systems. In water- 
ammonia systems there is an approximately constant differ- 
ence of the order of lo3 between the nucleation rates calcu- 
lated with the exact method and Stauffer’s saddle point 
integration method. The saddle point flow directions given 
by Stauffer’s method are better approximations to the exact 
results in water-ammonia system than in water sulphuric 
acid system. 
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