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Three different derivations of the classical binary nucleation theory are considered in detail. It is
shown that the derivation originally presented by Wilemski Chem. Phys80, 1370 (1984)] is
consistent with more extensive derivatiof@xtoby and Kashchiev, J. Chem. Phy€0, 7665
(1994 ]; DebenedettiMetastable Liquids: Concepts and Principlé8rinceton University Press,
Princeton, 1996if and only if the assumption is made that the surface of tension of the binary
nucleus coincides with the dividing surface specified by the surface conditigrr; =0, where the

ng; denote surface excess numbers of molecules of spéecesd thev’s are partial molecular
volumes. From this condition, it follows thét) the surface tension is curvature independent(@hd

that the nucleus volume ¥=2n;v;=2g;v,;, where then;; are the numbers of molecules in the
uniform liquid phase of the droplet model encompassed by the surface of tension, anditbehe

total molecular occupation numbers contained by the nucleus. We show, furthermore, that the above
surface condition leads to explicit formulas for the surface excess numbem the nucleus.
Computations for the ethanol-water system show that the surface number for water molecules
(nsh,0) causes the negative occupation numbegs ) obtained earlier using the classical

nucleation theory. The unphysical behavior produced by the classical theory for surface active
systems is thus a direct consequence of the assumption of curvature independence of surface
tension. Based on the explicit formulas fay;, we calculate the full free-energy surfaces for binary
nucleation in the revised classical theory and compare these with the free-energy surfaces in the
Doyle (unrevised classicatheory. Significant differences in nucleus size and composition are found
between these models and they are related to surface excess density. It is shown that only for the
revised classical theory is the nucleus composition consistent with the Gibbs dividing surface
model. © 1999 American Institute of Physid§0021-96069)51029-5

I. INTRODUCTION sistent with the others ifand only if a certain dividing sur-
The classical binary nucleation theory is still today thefa.c.e Is assumed to 00|_nC|de with the surface of tens.|on of the
critical nucleus. We will also show that the unphysical pre-

only working theory that can be applied for calculation of ~." X .
y 9 y PP glictions are due to the same assumption, which, on the other

nucleation rates in nonideal molecular systems such as suh d. has © b de | der to iustify th licati f
furic acid/water, which is thought to be important in atmo- and, has to be made in order to justify the application o

spheric particle formation. Despite the simple appearance @\ljrvatgre-independent surface. tension' in 'the cqlculations.
the equations of the theory, their derivation contains puzzle ve will a'?o compare the various derivations with _those
that have not been solved so far. For example, Debentdetti 9'Ve" by lehloka and Kusakawe th_en go on to consider
has noted that the derivation presented by Wilefhstarts the numerical consequences of our findings.

off with an incorrect equation, but “interestingly” the result-

ing equations are correct. Furthermore, it is known that with|, THEORY

surface active systems such as ethanol/water, the theo
sometimes produces unphysical predictignegative occu-
pation numbers of water molecules in critical nugléut the Consider a two-component spherical cluster that has a
specific reasons for this behavior are somewhat unclear. BexolumeV and containg; andg, molecules of each compo-
low, we will examine closely three different derivations of nent, respectively. The cluster reference state is modeled as a
the theory, namely, a derivation extended from the work ofspherical liquid drop that has a sharp bound#@ipbs divid-
Oxtoby and Kashchie¥a derivation by Debenedelttand a  ing surfacé between the liquid and vapor phases. Differ-
derivation by Wilemsk?, and show that the last one is con- ences between the true cluster and the reference state in the

,r&,. Oxtoby—Kashchiev derivation

0021-9606/99/111(5)/2019/9/$15.00 2019 © 1999 American Institute of Physics
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Gibbs dividing surface model are collected in the surfaceRf at which this requirement holds is called the surface of
excess quantities. Thus the total number of each species tension, and we denote the surface tensioRfatwhich is a
the cluster(excess number of molecules over the uniformfunction of g7 andg3 only) by o,. Thus,

vapor phasgis independent of choice of dividing surface

and can be written as AP*=20{/RY, 9
gi=n;—ny+ng, (1) W*=—AP*V{ +Af 0. (10
wheren,;=Vp;; andn,;=Vp,; with p;; andp,; densities of The differentials of chemical potential and total pressure

speciesi in the uniform liquid and vapor phases, respec-in the liquid phase are related by
tively, andnyg; is the surface excess number of molecules of du;i=v;dP,, (11)

species that corrects for the difference between the numbers

of molecules that are obtained by integrating over the stef/hich holds for changes where temperature and composition
profiles and over the actual interfacial density profiles, re-Of the liquid are kept constant. If the liquid phase is assumed

spectively. incompressible, we can integrate this relation frBgto P,
The free-energy change to create the cluster can now Hdd use the equality of chemical potentials to write
expressed ds Vi AP= i (P) = wii (Py)
AG=(P,—P)V+ > (i~ myi)Ni = pyi(Py) =i (Py)=—Ap;, (12)
I

to obtain the Kelvin equation

* _ ) *
+ 2 (i i) Nsit @(91,92,V). @ Apl==20vi IR (13
and the work of nucleus formation
Here theP’s are the pressures and the's the chemical
potentials of the uniform _Il_qwd and vapor phas(ﬁsken at WH = 2 nNEAur +A oy (14)
the pressure and composition of the respective phase® [
is an excess energy term dependent on ho#ndg;. The  Eingly, note that it follows already from Eq12) that
critical nucleus is in unstable equilibrium with the environ- . .
ment. Thus we can set the partial derivativesAd® with Apiivii=Apslv,. (15

respect tov, nj;, andns; equal to zero and obtain the fol- This equation is used in the revised classical nucleation
lowing conditions: theory to determine the nucleus composition, and it is often

W= uk= i (3)  assumed to be a consequence of the binary Kelvin equations.
Importantly, however, incompressibility of the liquid phase
AP* =P —P,=[dd*/aV*], (4) s the only assumption needed in its derivation, and it is

where the asterisk denotes critical cluster, and the derivativ@ere'coreh mor(T fundamental thzra]p rt]he CaF?'”a”“]f approxima-
in square brackets is associated with a mathematical did!lon: OF the Kelvin equations, which contain surface tension.

placement of the dividing surface keeping all the physical
guantities of the system unaltered. The work of nucleus forg. pebenedetti derivation

mation then takes the form
Debenedetligives the the work of formation of a drop-

W* =AG* = — AP*V* + ®*. (5) let inside vapor phase in otherwise the same form as the
The subject of the paper of Oxtoby and Kashchie  fTé€-energy change of Oxtoby and KgshcﬁiEh?q. (2)], but
thermodynamic derivation of the nucleation theorem, and® €xcess energy term is already fixed to be surface area
they do not go any further in treating the pressure differencdMes surface tension, and the dividing surface is taken to be
and the nucleation work. However, producing the usuafhe surface.o_f.tensmn. ngenedettl then goes on to use the
equations of the classical nucleation theory from Egsand ~ Incompressibility assumption, E¢L2), to obtain
(5) is rather simple. Assume that the excess energy term can

be written as W:Z (i (Py) = myi(Py)) g,
d* =A* 0, (6)
whereo denotes surface tension, and the surface area and the + Z (Msi— myi(Py))Nsi+ Ao (16)
volume are -
Rpp— @ The conditions WIony) o, =0 and
: (AWl ang)|(n, gt =0 then lead to
V*=(4’7T/3)R*3=2 vy, (8) IW aAt

doy I s
+AMj+AtW”+ 2 n

—=0— >
ﬂn” té'n” i st an”

Wherev”E(&V/ﬁn“)h,PI,n”(j#) the partial molecular vol-
ume of species. Next, fix the volume of the droplet by +E ni I -0 (17)
requiring that[do(g*,V*)/dV*]=0. The special surface TNy '
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oW A ) do holds for changes where the phase equilibrium is maintained
e %no A +At_&n _ and the temperature as well as the composition of the liquid
* * * phase(x) are kept constant, whereas the pressures of both
s i phases, the composition of the gas phase and the radius as-
+Ei nSianSJ +2i M ang; =0, (18 sociated with the surface of tension are allowed to vary.

The expression for the derivative of surface tension with

with AMJ::"“IJ(PVI)_Mvi(Pv) and A:“j,::“si__l“vJ(Pv)- _ respect to the radius follows directly from E@4),
The sum of the third and fourth terms on the right hand side

of the first equalities in both Eq417) and (18) vanishes do
because of the Gibbs adsorption isotherm (W) =
X, T

dP

W) > (NgilAH)vy; (29
x, T :

Ei Nsidusit+Ador =0, (19 since the liquid pressure is inevitably dependent on the ra-

) ) dius Rf according to Eq(9), the condition=;ngv,;=0 has

and the fifth terms cancel because of the Gibbs—Duhery, pe saisfied at the surface of tension for the curvature

equation at constant temperature and pressure, dependence of the surface tension to vanish.
An alternative route to obtain this condition is presented
2 njidu; = 0. (20 below. Consider changes in the surface tension defined at the
' surface of tension, and evaluate these changes at constant
The surface area is nucleus compositiorix). These variations can only be pro-
3 2/3 duced by variations in gas-phase chemical potentials, thus
At:47TRt2:47T(4_2 (Vlinli)) (21)
™ do ( doy I Wy
and thus ¢A;/dnj;)=(2v,;/R) and @A;/dng))=0. The (&R{‘)X’T ™\ Iy X‘T( IRy )X'T' 26

equilibrium conditions are then
_ We now seek the condition that the left-hand side, giving the
Au’ +20v IRF =0, 22 . ; , .
i TVi IR @2 curvature dependence of, is zero. Consider, first, the first
Ap=0, (23)  terms on the right-hand side of E@6). For simplicity, sub-

. _script T is dropped, although all the derivatives are taken at
and the work of droplet formation becomes the same as W'“&onstant temperature. Using the chain rule we obtain
( doy

Oxtoby and Kashchie.
Jdo Jdo
() <l
Iy X Iy o) Iy

At this point we note that the Kelvin equations given in (27
the form of Eq.(22) contain a surface tensiarn which is not
specified to be that of a flat interface, In one component
nucleation theory, the approximatien=y is equivalent to *
the assumption that the equimolar dividing surface coincideg

Vi _ TNsi Nsj Vi
V)i A A v
Ay li t t li

C. Surface tension

The first equality is obtained using E¢l1) in the liquid
phase and the equality of chemical potentials in the gas and
quid phases, leading tdu,;=v,;dP;, and further to

with the surface of tensiohor, equivalently, to the condition S v
ns=_0. For the binary and multicomponent cases this result (ﬂ = (28)
can be generalized as follows: Consider the special dividing Ivil Vi

surface(K) defined by the conditiorE;nv,;=0. We now o ]
follow Ono and Kondd and show that curvature indepen- The second equality in E¢27) follows from the Gibbs ad-

dence of surface tension is equivalent to the assumption th&°rption isothern{19), which gives

this special dividing surfac€k) coincides with the surface of

tension. ( i ) L (29)
My

The form of the adsorption isotherm given in E49) I i
holds for the surface of tension only. Using the adsorption
isotherm we can express the differential of the surface ten- |nserting Eq.(27) for i=1,2 to Eq.(26) we have
sion in terms of differentials of chemical potentials,

( Jo ) _( —n51V|1_ns2V|2)
X

doy= -2 (nsi/AY)dps aR? A
dpyr| 1 dpyz| 1
:—Ei (nsi/Af)dMn:_zi (Nsi/Af)v;idPy, IRT XV_|1 ( IR xV_'2 : (30

(24) Consider now the reciprocals of the second factors on the
where we have used the phase equilibrium condi®yrand  right-hand side of Eq(26). By analysis similar to Eq(27),
relation (11) to obtain the last two equalities. Equati(2v) we obtain
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( IR ( IR* ) ( IR ) vaj) and the free energy change for the critical clusters reads
= =+ R —
ol \omil, o\l Lol AG* =(4m/3)R*2y. (38)
= 5 4 m v (31 E. Relation between the different formalisms
g o The main difference between the Oxtoby—Kashchiev
Inserting Eq.(31) for i=1,2 to Eq.(30) we end up with and Debenedetti derivations is clearly that in the former deri-
Jo ) vation the incompressibility assumption is used after the
( i) =——(NgVi1+NeV|o) equilibrium conditions are evoked, whereas in the latter deri-
IR M A vation the incompressibility assumption is applied first. Oth-

erwise, both derivations start from the same work of forma-

* -1
o +v|2( IR} ) 1 (32 tion (although the surface excess term is more general in the
My My

( IRf
%
" Ity

dpy2 Oxtoby—Kashchiev derivationand end up with the Kelvin

) o ) ] equation and the samé@&™*. The curious thing here is the
Since the expression in the square brackets is obviously fiyjilemski derivation, which starts off with a different equa-

nite, the required condition that the surface tension is indegion than do the others. but ends up with the same result.

pendent of curvature is The problem can be solved by noting that Ef6) re-
duces to EQ.(34) under the special circumstances that
Ei Nsivi =0. (33 ngv,;+ngyvi,=0 as will be shown below. Remember, first,

that when the conditiomg;v,;+ng,Vv,=0 holds at the sur-
The “K”-dividing surface was mentioned in a paper by face of tensiong,=vy. Furthermore, the volume is thén

Frank Buff who noted that this surface “is conjugate to the =S.n,v;==.g,v;;, SO that the surface areas specified in
surface of tension” in the sense that “the distance betweerEqs. (16) and (34) are the sameA;=A), and the surface
these two dividing surfaces determines the curvature depenierm in Eq.(16) is thus equal tcAvy.
dence of these two surface tensions.” Equatig8), giving The first sum in Eq(16) can be written as
the condition for vanishing curvature dependence of the sur-
face tension, as defined at the surface of tension, is precisely
the condition that the distance between these two surfaces
vanishes as well. Thus it appears that our findings on this

Ei Apin;= 2. Api(gi—ng)

; ; i Apy  Aps
important point were long ago anticipated by Buff. :Z Apigi—novio| — n
i Vii Vi2
D. Wilemski derivation = Auigi, (39
I
Wilemsk assumes that the free-energy change to create . )
a cluster can be written as where it has been assumed that the numbers of displaced
vapor moleculesn,;, are negligible, and the last equality
AG=E (i (Py) = syi(Py) i + Ay, (34) follows from Eq.(15). Equation(16) then becomes
i
wherevy is the surface tension of a flat interface. The volume W= 2 Apigi+ Z Apingi+Ay. (40)
I |

of the cluster is taken to bé=g,v,;+d,v,,, and the radius
and surface area are obtained frowi=(47/3)R3, A

Applying the equilibrium condition dW/dng)|m. o 1=
=47R?. The critical cluster is then located by requiring that in:Dd); g a ? S')|{n" Msjt
(&AG) 0 (35 W A
—_ =V. d d t &O’t aMSi
ag; - = / - =
9i 9j é’nsj It ﬁnsj +AMJ +At(7nsj +2i ns'&nsj
Applying Eqg.(1) and assuming that the vapor teny) is
negligible, one has + S g,ﬂzo_ (41)
i 'ﬁnsj
A *+ﬂd-+n du+n,,d
Mi T TRe [AGiT M dsn T Miala2 The first, third, and fourth terms cancel in the same way as
with Eq. (18). The fifth term is
+Ns1 A+ Nspdp, +A*dy=0. (36)
The Gibbs—Duhem equatiaf20) and the Gibbs adsorption S g adl =S ny adl +n 13'“'1 n 25'“'2. (42)
isotherm (19) (with o;=1v) are then used to cancel terms i '(9nsj i Iansj s dNg;j s INg;

from Eq. (36), leading to the Kelvin equations . ] . ) ]
The first term on the right-hand side of this equation van-

2yvj; 37) ishes because of Gibbs—Duhem relation, and the remaining

Aul+ =0, -
Ki R* terms can be written as
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Apyq Ao Ill. SURFACE COMPOSITION AND CURVATURE
—VﬁlaT V|_21 ane |’ (43 DEPENDENCE OF THE INTERFACIAL TENSION
Sj Sj

NsoVi2
I . . A. General
which is zero, as can be seen by noting that smgcare kept
constant it follows from the relatiodw,; =v;;d P, [Eq. (11)] In the preceding section it was shown that the subclass
that duy,/vi;—du/vi,=dP,—dP,=0. We thus have of Gibbs droplets marked by the surface conditiiq. (33)]

Au’ =0, and substituting this into E@40) gives us Wilem-  ngv,;+ngv ;=0 where theng; are defined with reference
ski's starting relation, Eq(34). to surface of tension, has several important properties that
Finally, we note that the second equilibrium condition, are each equivalent to E¢33). These are first, the surface
(AWl any)| i

Si,nlj#}:o can be replaced by&W/agi)l{gm} tension equalityr,= y, which holds independent of the cur-
=0 becausey;=n, +ng;, and thus the rest of Wilemski's Vature of the drop. Thus the surface tension is independent of
derivation is consistent. the curvature of the drop. Second, the Wilemski free energy

model[Eq. (34)] is valid, i.e., equivalent to the more com-
F. Comparison to work by Nishioka and Kusaka plete forms given by Oxtoby and Kashchiev and Debene-

The paper by Nishioka and Kus&kéNK) is an exten- detti, if and c_)nly_ if Eq.(33) applies. Finally, the volume of
the nucleus is given by

sive thermodynamic study aimed at clarifying the discrepan-

cies of the binary nucleation theory. In this section, we sum- V=0,1Vi1+GoV|o (45)
marize their key results, and highlight the relation of their
work to the other papers considered. if and only if Eq.(33) applies. In this section we obtain the

NK start by presenting what they call the “Gibbs for- molecular occupation numbers for the nucleus interior com-
mula” for evaluating the reversible work of critical nucleus position,n;; , and surface compositiong;, under the condi-
formation[Egs.(1)—(3) of NK], which is practically equiva- tion that Eq.(33) applies.
lent to the Oxtoby—Kashchiev Eg&), (9), and(10) above. The interior occupation numbers already follow from
They show that the incompressibility assumption can be useBgs. (15 and (37). The surface numbers can then be ob-
to derive an equation for the work of formation that containstained by subtracting they; from theg;, which, in turn, are
Au instead ofAP [Eq. (8) of NK]. given by Eq.(45) and the Gibbs—Duhem relatioit$9) and

NK then go on to consider the reversible work of forma- (20) for the surface and interior phases, respectively, as
tion of noncritical clusters, and show that it is given by anshown by Laaksoneat al? Substitutions using
equation similar to Eq(2) above with the slight differences
that they haveb=A.o; and assumeus;=u;; [Eq. (39 of _
NK]. Assuming incompressibility, they then obtain the coun- N+ N2
terpart of Eq.(16) [Eq. (45 of NK], from which they obtain
the Kelvin equationEq. (48) of NK] using the extremity
condition. They note that this equation may be employed to dup| "t dy
determine the composition and the radius of the critical ng=—A dx ) (&>
nucleus.

Based on their thermodynamic considerations, NK criti- du,) Y dy
cize the “commonly used expression for the reversible work  ng,=—A dx ) (ﬁ) (47)
of formation for a cluster of general size and composition,”

which they define agin our notation whereu;, are the chemical potentials of the two components
in a bulk binary solution of compositioxy under a flat inter-
W= njAu;+Aoy. (44)  face, andy is the surface tension of that solution. It is worth
' noting that in a recent paper on water—ethanol surface ten-

NK correctly point out that, in order to obtain the proper sion measurements, Aratoret all® considered the special
equations for the critical nucleus from the extremity condi-dividing surface(“ H") defined by the condition that!;
tion, the assumption has to be made thato,=0, although  +n",=0. [Note the similarity of this condition to E¢33)
“there is no logical justification to treado; as zero.” for the case that the molecular volumes of the two compo-

To summarize, NK presented correct equations for botments are equglThe excess quantities! obtained by Ara-
noncritical and critical clusters, and the NK derivations, al-tono et al. are recovered from Eqg47) upon settingv,;
though not quite as straightforward, are thus consistent withk=vy,,.
the Oxtoby—Kashchiev and Debenedetti derivati¢albeit
slightly less general because of their assumption that the
chemical potential of the cluster surface region equals that oé Calculations for ethanol
the interior even with noncritical clustgrsThey also showed
that the model for reversible work of noncritical cluster for- To illustrate the results of this section, consider the criti-
mation, Eq.(44), is not generally correct. However, it should cal nucleus for binary homogeneous nucleation of ethanol—
be noted that although NK refer to E@4) as an expression water vapor in the Gibbs drop model. Neglecting the dis-
which is “generally used in literature,” it is not the same as placed vapor from Eq.1), the total numbers of molecules in
Eq. (34) given by Wilemski. the critical nucleus are given as

N2 (46

to denote the composition yield after algebraic reduction

XV|2
(1_X)V|1+XV|2

(1=X)vig
(L—=Xx)v 1t XV,

—water droplets



2024 J. Chem. Phys., Vol. 111, No. 5, 1 August 1999 Laaksonen, McGraw, and Vehkamaki

21

120 |

[ %)
o
[52]

[
o

=
o]
w

acids in cluster (core)
=
\¥+]

18.5

250
[ 18

60 62 64 66 68 70 72

200 .
waters in cluster (core)

FIG. 2. Free energy surfaces for sulfuric acid/water. Saturation ratios are 0.5
for water and 0.00033 for sulfuric acid@i=298 K. Figure shows the number

of acid molecules in core region encompassed by surface of tension vs
number of water molecules in the core. Solid contours indicate full surface,
dashed contours indicate the constant surface tension model surface, the
dashed straight line shows core composition, and the point shows core size
50 |- 4 and composition for the nucleus. Contours, reading from left to right in the
bottom of the figure and from right to left in the top of the figure, correspond
to energies 66.75, 66.76, 66.77, 66.78, 66.80, 66.90, 67, and 68 in units

. ' - - ] of KT.
1] 0.2 0.4 0.6 0.8 1

150 |-

9

100 [

molefraction ethanol (x)

FIG. 1. (a) Total number of water molecules vs ethanol mole fraction in the Ipv1 _ %
core. Curves are fon;, (number of ethanol molecules in the core region Ay gl'
encompassed by the surface of tengi20 (lowest curve, 40, 50, and 100 J

(highest curve T=260 K. (b) Total number of ethanol molecules vs etha- Equation(49) indicates that the slope should always be nega-
nol mole fr_action in the core. Curves are fgp= 20 (lowest curve, 40, 50, tive for positiveg; . We have shown here that the occurrence
and 100(highest curve T=260 K. . .
of negative occupation numbers for the total number of mol-
ecules of a speciegy() in the critical nucleus is already a
consequence of Eq#47), which as shown above are a con-
91="Nj1+ Ng, sequence of the assumption of zero curvature dependence of
o= N1pt Ney, (48)  the surface tensiofEq. (33)] used in the revised nucleation
theory. The fact that the nucleation theorem gives negative
where components 1 and 2 refer to water and ethanol, resalues for the ratio g,/g;) is now seen to be simply a
spectively. Each of the quantities on the right-hand side ofeflection of the fact thag, is itself predicted to be negative
Eqs.(48) is readily evaluated using Eqdl9), (33), (37), and  [Fig. 1(a)] for some range of nucleus size and composition as
(47). The values oh;, andx determine the are@®) in Egs.  a consequence of the zero curvature dependence assumption.
(47), the remaining quantities on the right-hand side of EqsThus for surface active binary systems the assumption of
(47) are functions of and are available from bulk solution zero curvature dependence can lead to unphysical, negative,
and interfacial tension measurements. occupation numbers in the nucleus and is therefore even
Figures 1a) and Xb) show, respectively, how the total more untenable as an approximation than it is in the case of
numbersy; andg, vary as functions ok for several differ-  single-component nucleation. Nevertheless, this assumption
ent values oh,,. The unphysical negative values@f seen  may be difficult to relinquish in practice due to the lack of
in Fig. 1(a) are especially interesting and coincide with the any direct experimental measurements of curvature depen-

negative occupation numbers of molecules in the criticalyence for binary clusters in the critical nucleus size range.
nucleus seen in calculations based on the revised nucleation

theory. Thesg negauve“occupauo’r,] numbers show up as M FREE-ENERGY SURFACE

gions of positive slopé,(“the hump”) seen on plots ofs,;

VS u,» at constant nucleation raté) for the ethanol-water In the preceding sections, a systematic method was pre-
system(and other surface active systems, such as propanolsented for calculation of the composition of the core of the
water, as wejl The connection between slope and occupanucleus(volume enclosed by the surface of tengjagener-

tion number is given by the nucleation theoferhwhich for  ally, and of the surface excess quantities under the special
a binary system takes the fotm condition[Eq. (33)] that the surface tension is curvature in-

(49
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FIG. 4. Classical sulfuric acid—water free energy surface from (&i).
FIG. 3. As in Fig. 2, but for ethanol/water. Saturation ratios are 1.5 for bothSaturation ratio is 0.5 for water and 0.00033 for sulfuric acid as in Fig. 2.
water and ethanolf =260 K. The dashed contours reading from left to right Contours are presented in terms of the total numbers of watg)sand
in the bottom of the figure and from right to left on top of the figure acids @,) in the drop. Contours reading from left to right in the bottom of
correspond to energies 30, 40, 42, 45, 50, and 60 in unk3.ofhe energies  the figure and from right to left in the top of the figure are 66.60, 66.61,
corresponding to the solid lines can be found out by noting that dashed angl6.62, 66.63, 66.64, 66.65, and 66.77 in unitsk®f The highest contour
solid contours corresponding to same values cross along the core compos$ével was chosen to be equal to the barrier height in the revised classical
tion line. theory. See text for further description of points and lines.

dependent. These occupation numbers provide sufficient in- _ _
formation for calculation of the full free-energy surface ~ from the revised classical theory. The free energy surface for
ethanol—-water, shown in Fig. 3, is more complicated but the

AGGibbSZE, (i — sy )N +2 (si— pmyi)Ngi+Ay  (50) Ioc:_:ttlon of the rewseq classical nucleus is nevertheless.seen
| i to lie on a local maximum of the surface where the deriva-
under the condition tha is curvature independent and we tives of the free energy with respect to the occupation num-

can equate the chemical potentials of surface and bulk Sp(5)_ers. of eaqh component vanish. The height of this small local
cies (=) Within the drop. The latter is a reasonable maximum is too small to be of consequence for the nucle-

assumption as the time scale for equilibration of species pefition rate and one can sill view t_h's part of_the surfacg asa
tween the surface and interior of the drop is expected to b road saddle region. That the rev!sed classical theory is able
rapid compared to the time scale for vapor equilibration.t0 correctly locate the saddle point of the free-energy sur-

This equality of surface and core chemical potentials can bCeS given by Eq(46) follows from the analysis present in

handled formally in the Gibbs nucleus model through the>€C: Il showing that the Wilemski free energy mogEq.

application of constraints as described recently by Debene(-34)] is equivalent to Eq(50) if and only if condition (33)

detti and Reis$. applies, : .
Free-energy surfaces based on Eif) have not appar- The saddle point of the classical free-energy surface as

ently been presented previous to the present study. The r?_escrlbed by Doylé? on th? pther hand, generally 9'06‘? not

sults are shown in Figs. 2 and(8olid contours for the two 1€ on th_e_ o_lashed line defining the_core composition in the

very different binary systems, sulfuric acid/water andG'_bbS d|V|d|ng surface mod_el. 'I_'h|5 is shown for the sulfuric

ethanol/water, respectively. In these figures the thick dashe |d—wat_er binary _systgm in Fig. 4, where contours are for

line gives the core composition obtained from ELF) using the classical sulfuric acid—water free-energy surface,

bulk solution and volumetric propertiésurface tension data 2

is not required to obtain this lineThe indicated point along AG= [ui(Py)— uyi(P)]1gi+AY, (51)

the line marks the composition and size of the critical =1

nucleus, with the nucleus size determined from 8@ us- and the liquid-phase chemical potentials and the surface

ing estimates of the surface tension for a bulk solution havtension are calculated using the overall nucleus mole frac-

ing the composition of the core. tion, g,/(g;+9,). Component 1 is water and component
The above prescription for obtaining the nucleus size i is acid and the conditions are the same as for Fig. 2. The

identical to the procedure previously used by Laaksonefong dashed line gives the core concentration bounded by

etal’® to implement the revised classical theory of the surface of tension in the Gibbs model and is the same as

Wilemski3 From Fig. 2 it is seen that the location of the in Fig. 2. The short dashed line connects the core com-

saddle point corresponds precisely to the location obtainedosition{n;;=65.260,n,,=19.143 and total nucleus com-
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position{n;;+ng;, N>+ Ny} with the surface composition dence has been eliminated, along with the corresponding sur-
{ng=—1.303,n5,=0.478 obtained from Eq943). The in-  face excess quantities, through the cancellation of(&8).
dicated saddle point marks the location of the saddle as obFhe surface generated by E4) is shown as the dashed
tained by partial differentiation oAG following the Doyle  contours in Figs. 2 and 3. As in the case for the full surface
prescription(i.e., the surface tension derivatives with respectof Eq. (50), the location of the nucleus in thg,,,. model is

to composition are included in the calculus of saddle locaconsistent with the Gibbs thermodynamic model and with
tion). It is seen that the Doyle saddle point location providesthe revised classical theory. Furthermore it is seen that the
an excellent estimate for thetal nucleus composition in this two sets of surfaces, as expected, agree at the core composi-
system. Nevertheless, the Doyle saddle point must be rdion.

garded as thermodynamically inconsistent with the Gibbs

model of the nucleus. For example, one cannot realize a cond. CONCLUSION

pressure under which the chemical potentials for each spe-
cies in the nucleus is equal to the chemical potential of th
corresponding species in the vapor phase. This thermod
namic inconsistency was pointed out by Wilem¥kindeed

We have considered three different derivations of the
Classical nucleation theory within Gibbs dividing surface for-
¥nalism. It was shown that two of the derivations, one ex-
N . ttended from the work of Oxtoby and Kashchiev and the
the 'O”Q'd‘i‘shed line |n_F|g. 4 gives the CO”?p'Ete IOCU_S Obther originally presented by Debenedetti, are consistent
such conditions for which equality of chemical IOOtentIaISwith each other and are generally valid for the Gibbs model.

holds—and the saddle point of the classical surface clearlyn contrast, the third derivation by Wilemski is consistent

does not lie on this line. The free energy surfaces in Figswith the other two if(and only if the specific condition

2-4 thus highlight a very important distinction between theEinsiV“:0 holds for the surface of tension. Erom this as-

Doyle nucleus and the Gibbs nucleus models. The latter Pr%umption it follows that(1) surface tension is curvature in-

\éldesqmuch m(t)_re V|afble _tz.asns for iax.tetnsmn I?'f the thermtoaependent and2) the nucleus volume is given by
ynamic _properties ot critical_nucler to multicomponen =2,0;v)i » Where theg's are the total numbers of molecules

5
syst\?vmsl. ¢ t implified f ; h tcontained in the nucleus. In practice the assumption
€ hext present a simpliied iree-energy surtace aE-nsiv“:O is always made implicitly when applying the

: f f f i
like the full surfaces shown by the solid contours in Figs. .chassical nucleation theory unless a specific curvature depen-

and 3, is algo consis'Fent with the Gibb_s thermodynamlqjence is assumed for the surface tension.
model. Consider the Gibbs—Duhem equation, From the assumption of a curvature-independent surface
tension it was shown that the nucleus composittosth core
> (ngidus)=—Ady, (52)  and surfacpis fully determined. For the case of the highly
' surface active system, ethanol-water, this assumption was
where the summation is over all components in the nucleufound to result in the occurrence of unphysical negative oc-
(in the present case just two components are consigjeaed  cupation numbers of water in the nucleus. Previously de-
use this result to obtain an approximate expansion of theluced from the occurrence of positive slope regigftae
surface tension about the core surface tensigp. for finite  hump”) seen in plots ofu,; Vs u,, at constant nucleation

differences in composition rate, these negative occupation numbers have now been
shown, through the results of Sec. lll, to be a direct conse-
_z (tsi— fyi)Nsi—A(Y = Yeord ~ 0 (53 guence of the assumption of curvature independence. In ad-
= \ )
|

dition the assumption of curvature-independent surface ten-

. . . . sion was demonstrated to be sufficient for the generation of
Equation(53) is actually the integrated form of the Gibbs— full free-energy surfaces for binary nucleation in the Gibbs

Duhem equation above and is therefore valid only near the : .
. . . nucleus model. The location of the saddle point on these

core composition where the differences in the parentheses o . .
-~ . - Surfaces was shown to coincide with the nucleus size and

are sufficiently small. Nevertheless, assume its validity lo-

composition predicted by the revised classical theory. On the
caIIy. for the momgnt and add together E¢S0) and (53) to other hand the saddle point of the unrevised classical surface
obtain the approximate surface

was found to be thermodynamically inconsistent with the
Gibbs model. Finally, a simplified free-energy surfdtee

AGaplorox:Ei (pi = pyi) i+ A¥core (54 ... mode) was presented that is also consistent with the

Gibbs model and in exact agreement with the full surface

This model is virtually identical to the thermodynamic for- from that model at the saddle point and along the core com-
mula for the reversible work of forming a noncritical cluster position line obtained from the revised classical theory. Fur-
by Nishioka and Mot [their Eq.(12)]. For a curvature- thermore they,,, surface is actually easier to calculate than
independent surface tension, as assumed here, the models #re unrevised classical free-energy surface because the sur-
indeed equivalent. We will refer to Eq54) as they.,, face tension is required at only one solution composition,
model. A moments reflection reveals that E§4) differs  namely at the composition of the core. For systems that are
from the Doyle free-energy surface only in that thenot too strongly surface active, such as illustrated here for
composition-dependent surface tension of the Doyle theorgulfuric acid—water mixtures, the.,.. surface was found to
has been replaced with the constant core surface tensidie in excellent agreement with the full surface even at sig-
Yeore- IN €Ssence the surface tension composition depemificant distances away from the saddle region.
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