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Properties of atomic or molecular clusters surrounded by a vapour phase are needed in predicting nucleation rates and in
development of phenomenological nucleation models. We have performed molecular dynamic (MD) simulations to
investigate effects of thermostatting, boundary conditions and system size in cluster–vapour equilibrium. The studied system
consists of Lennard–Jones (LJ) argon atoms with a potential cutoff of 6s. We used both periodic boundary conditions and a
spherical boundary with a repulsive wall to carry out the MD simulations. Interaction between the repulsive wall and vapour
atoms disturbs both the density and temperature distributions of the vapour. The evolution of temperature was studied both
without thermostat and with the system coupled to a Nosé–Hoover chain thermostat. We found that the particle exchange
between the cluster and vapour phase is not able to equalize the temperature in constant-energy simulations. The Nosé–
Hoover thermostat performs the temperature regulation quite well. First, following an equilibration period, compact cluster–
vapour systems were simulated. Second, to study the effects of system size, the small system is embedded into a large vapour
system with the same vapour density as the original system. The equilibrium cluster size and the thermodynamical properties
such as surface tension, can quite accurately be predicted by using the small system with a limited number of vapour atoms,
which shortens the simulation time.
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1. Introduction

Gas–liquid nucleation has been a focus of theoretical

interest since 1920s, mostly because of its importance in

atmospheric particle formation [1]. Nucleation is tradi-

tionally described in terms of so called classical

nucleation theory (CNT), where the nucleating droplet

is considered to consist of equilibrium bulk liquid with

all the concomitant properties, such as the surface tension

of planar interface. In many cases, the experimental

values of nucleation rates have been far from the

predictions of CNT, which has raised considerable

criticism of the approximations and assumptions forming

the backbone of the classical approach (see, e.g. Ref. [2]

and references therein). The deficiencies of CNT are not

surprising, because nucleation is a non-equilibrium

process and the system consisting of vapour and cluster(s)

is strongly heterogeneous.

In addition to purely theoretical attempts to improve

CNT or related theories, during the last two decades

computational methods have given much insight into the

nucleation process. Density functional theories, Monte

Carlo methods and molecular dynamics (MD) simulations

have all been applied with success to give more realistic

description of nucleation than CNT. Of these, MD is

probably the most versatile method because it does not

assume equilibrium conditions or pose any geometrical

constraints on the nucleating clusters. On the downside,

MD can be a very time-consuming method. The advances

in computer technology have alleviated this problem

greatly and in recent years nucleation simulations in very

large systems have become possible for relatively simple

(atoms or) molecules [3].

MD simulations of nucleation can roughly be divided

into two categories [4]. In a direct simulation (e.g. Refs.

[5,6]) a large amount of gas molecules are placed in

the simulation box and the system is quenched to a

supersaturated state. The simulation is then run until

a critical cluster appears. Indirect simulation (e.g. Refs.

[4,7]) amounts to surrounding a single cluster by a

supersaturated vapour phase. The cluster grows (shrinks)

if the cluster is larger (smaller) than the critical size.
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By performing several simulations and monitoring the

molecular content of the cluster one can deduce the

critical size.

The direct method is more closely related to

experimental setup and it allows various stages of clusters

and their properties to be measured during the simulation.

However, a very long simulation time is often needed to

observe a single nucleation event unless the super-

saturation is much higher than in the experiments. In the

indirect simulations, the critical cluster is found more

quickly, but information of, for example, cluster

distributions in pre-critical and post-critical stages is not

gained. Critical clusters in mildly supersaturated vapours

can be simulated by indirect means and since the number

of molecules is much smaller than in direct simulations,

systems consisting of fairly complex molecules can also

be studied.

In cluster simulations, one is often interested in clusters

which are in thermal equilibrium with their surroundings.

Of the popular thermostatting methods used in MD

simulations, we have applied the Nosé–Hoover chain

thermostat [8,9], which is based on coupling of the system

to a set of friction parameters. Small systems coupled to a

single thermostat are known to result in inadequate

sampling of phase space in some cases [10,11]; Nosé–

Hoover chains, however, should fare better [8]. There are

simpler thermostatting schemes, for example velocity

scaling refined by Berendsen [12] and the stochastic

thermostat of Andersen [13], but the Nosé–Hoover

thermostat, besides giving correct canonical distribution

of velocities, has the advantage of being fully time-

reversible and deterministic. Moreover, Nosé–Hoover

thermostat is usually readily available in commercial and

non-commercial MD program suites. Thermostatting of

clusters with the Nosé–Hoover method has been subject

to some discussion, stimulated by strange behavior

observed when temperature regulation has been applied

to isolated clusters. Distorted dynamics of argon clusters

have been observed [14], and in bimolecular reactions the

Nosé–Hoover thermostat was found incapable of exiting

sufficiently the rotational modes of molecules [15]. The

thermostatted system is possibly subject to other

complications when the cluster is surrounded by a vapour

phase, because the interaction between the parts of the

system (cluster and vapour) is rather weak.

As to nucleation, different thermostatting methods can

be considered equally viable if the desired properties of

clusters and cluster–vapour systems are not affected by

the choice of thermostat. In this paper, we study the effect

of thermostatting, system size and boundary conditions on

properties important in predicting nucleation rates: vapour

density and pressure, cluster size and surface tension of

the cluster. The first three are readily obtained from

simulations. Surface tension and formation energy of a

cluster are connected thermodynamically: if the formation

energy is known, surface tension can be calculated [16].

Surface tension can also be found by a mechanical route

using pressure tensors in spherical geometry. Pioneered by

Thompson et al. [17] in their seminal work on argon

clusters, the Irving–Kirkwood definition of stress tensor

[18] is commonly used for this purpose. The method was

later used to find surface tension of clusters composed of

Stockmayer molecules [19], water clusters [20,21] and

silica nanoclusters [22]. The drawback of the pressure

tensor method is the inconsistency with the thermo-

dynamical definition of surface tension and thus it cannot

be used to predict the formation energy [23].

We perform simulations thermostatted with Nosé–

Hoover chains and without any temperature control

mechanism. In both the cases temperature, density and

pressure distributions as well as surface tension and

cluster size are evaluated and the results are then

compared. Particular emphasis is placed on the boundary

conditions and system size: we compare clusters

embedded in small and large vapour systems and run

simulations both with periodic boundary conditions and

with the system enclosed in a spherical shell. In this study,

we confine ourselves to simple atomistic Lennard–Jones

(LJ) fluids, but the results are most likely valid for systems

composed of more complicated molecules.

2. Methods

The simulated vapour–cluster systems are composed of

atoms interacting via the LJ pair potential

fðrÞLJ ¼ 4e
s

r

� �12

2
s

r

� �6
� �

; ð1Þ

where e and s are energy and length parameters and r is

intermolecular distance. We used the LJ parameters for

argon: e ¼ 0.24 kcal/mol and s ¼ 3.4 Å and atomic mass

is 40.0 amu. To speed up the calculations, we used a cutoff

of 6s for the LJ-potential. The potential is shifted so that

the potential at the cutoff distance rc is zero:

fðrÞ ¼
fðrÞLJ 2 fðrcÞLJ for r , rc

0 for r . rc:

(
ð2Þ

Several earlier studies (e.g. Ref. [4]) show that the used

cutoff distance does not induce significant errors to the

cluster properties compared to those obtained with the full

potential.

The MD simulations have been carried out both in a

cubic box with periodic boundary conditions and in a

spherical container with repulsive wall. The wall potential

is the repulsive part of LJ potential including an additional

term that shifts the potential minimum to zero:

fðrÞwall ¼
fðrÞLJ 2 fðs1=6ÞLJ for r , s1=6

0 for r . s1=6

(
ð3Þ

Wall potential cutoff thus lies on the distance of

potential minimum. We refer to this geometry as

“spherical boundary conditions” following Thompson

et al. [17].
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We started the simulation under the condition that

atoms were located in a cluster with a minimum energy

configuration [24]. During the equilibration a part of the

atoms evaporated and formed the vapour phase. The

centre-of-mass of system was adjusted to the middle of

the simulation box.

A criterion is required to distinguish vapour atoms from

cluster atoms. We used the Stillinger definition: an atom

belongs to the cluster if it has at least one neighbour within

the distance rs ¼ 1:5s. Only the largest cluster in the

simulation box is regarded as the cluster, smaller entities

that satisfy the Stillinger definition are considered to be

part of the surrounding vapour. It has been shown that a

small variation of Stillinger radius in the neighbourhood

of 1:5s does not lead to a significant change in the cluster

equilibrium size distribution [4,25].

In this study, the desired temperature was 70 K. The

temperature of the system was obtained from the kinetic

energy of molecules Ek according to the equipartition

theorem

T ¼
2kEkl
3NkB

: ð4Þ

We did no separation into rotational, translational or

vibrational energies. Rotational energy of the cluster is

removed at the beginning of the simulation and its

contribution to the kinetic energy is insignificant

throughout the simulation. The translation of the cluster

is restricted due to the fixed centre of mass. The evolution

of temperature was studied in microcanonical (NVE) and

canonical (NVT) ensembles. Since the temperature is

related to the kinetic energy, the initial velocities of the

atoms must be carefully adjusted to obtain equal

temperatures for the cluster and the vapour, if a

temperature control mechanism is not used. Temperature

in NVT simulations was controlled using Nosé–Hoover

thermostat with chain length of 3. A mass-like parameter,

which sets the rate how quickly the system is thermo-

statted, was adjusted to a system with a liquid-state

density: Q1 ¼ 8.8 amu �A2·N tot and Qi ¼ 8.8 amu �A2,

(i ¼ 2; 3). Principally, then, we aim to regulate the

temperature of the cluster.

We studied system of sizes N tot ¼ 54, 138, 150, 250 and

300. To study the effects of the system size, the small

system was embedded into a large vapour system with the

same vapour density as the original system. The total

number of atoms in the larger system was 500. The

additional vapour atoms were spaced randomly around the

smaller simulation box with the velocities obtained from

the atoms of the smaller system. This method gives several

atoms the same velocity but ensures that the vapour

temperature is exactly the same as in the smaller system.

Our large system is comparable in size to the system

simulated by Laasonen et al. [4].

The total simulation time was in all our simulations

4.8 ns and the time step was 6.0 fs. The equilibration in

terms of cluster size and temperature took about 20,000

steps and after this period the density, pressure and surface

tension were calculated every 100 time steps. Density,

temperature and pressure profiles were calculated by

dividing the system into spherical layers of thickness s/10

with the origin fixed at the centre of mass of the cluster.

3. Results and discussion

3.1 Density and temperature profiles

To consider density and temperature profiles, as well as

variations of the cluster size, we first used a system

consisting 250 atoms as an example. Simulation boxes

with periodic and spherical boundary conditions were

adjusted to give a cluster size around 240 atoms. Later, we

studied properties of several cluster sizes.

Examples of the radial density distributions are shown

in figures 1 and 2. For a cluster simulated in cubic box,

the density profiles are almost identical with and without

thermostatting (figure 1). In the NVE-system, the velocity

distribution may be different from the Maxwell–

Boltzmann distribution (especially in vapour phase) but

Figure 2. Radial dependence of density. Total number of atoms is 250.
Simulation in the spherical shell with spherical boundary conditions and
a cubic box with periodic boundary conditions are compared. No
temperature control mechanism is present.

Figure 1. Radial dependence of density. Total number of atoms is 250.
A cubic simulation box with periodic boundary conditions is used.
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this does not seem to affect the density profile. In figure 2,

cluster–vapour system has been simulated in cubic box

with periodic boundary conditions and another simulation

has been done in the spherical shell with spherical

boundary conditions. No temperature control mechanism

was present. Density profiles are virtually indistinguish-

able up to 9s where the vapour density in spherical shell

starts to decrease due to the repulsive wall. Since repulsive

interaction between atoms and wall decreases the vapour

density close to the wall, to get the same average vapour

density in the space unaffected by the boundary, with the

same number of atoms, we have to choose a larger

simulation shell if spherical boundary conditions are used.

The side length of cubic box is 20s (volume 8000s3)

whereas the diameter of spherical shell is 32s (volume

137,258s3). If the simulation box is chosen too large, an

extensive vapour phase is formed, which lengthens the

equilibration time. Interaction between the atoms of the

periodic system with the images of the cluster in

neighbouring cells are nonexistent because the potential

cutoff distance is smaller than the distance between the

cluster and its image. Small changes in starting

configuration does not have an significant effect on the

density distribution of the final system.

Radial dependence of the system temperature at four

different simulation conditions with cubic box are shown

in figure 3. In figure 3(A), the total number of atoms is 250.

Simulations are done without temperature control mech-

anism. Superficially, the system temperature seems rather

uniform. However, we found that it is time-consuming

to find initial parameters that lead to the correct

temperature in both phases and particle exchange between

cluster and vapour phase is too slow to equalize the

temperatures. Similar problem were reported by Kraska

[26] in constant-energy simulations of gas–liquid nuclea-

tion. System of the same size is shown figure 3(B). This

time the temperature of the system is controlled by Nosé–

Hoover chain thermostat. With thermostatting, the

temperature of the cluster converges fast to the desired

temperature, but as the thermostat parameters were

adjusted to thermostat atoms at liquid densities, the

temperature control in the vapourphase was imperfect.

Figure 3(C) and (D) shows temperature profiles in

enlarged systems. The clusters that are shown in

figure 3(A) and (B) are embedded in an enlarged vapour

phase with total number of atoms 500. Thus, the number

of vapour atoms in the bigger system was about 260,

whereas only about 10 atoms formed the vapour phase

in the smaller system. In all figures, we can see a peak

around 6s. This indicates the fact that the atoms that

escape from the cluster have higher kinetic energy than the

cluster atoms on average. However, they lose their excess

energy fast via the interaction with the vapour atoms

further away from the cluster. The average temperatures of

the cluster and vapour are in somewhat closer agreement

in NVT than NVE simulations. In the vapour phase, the low

density leads to poor statistics and thus the fluctuation of

average temperature is several decrees. Since the average

density is calculated in concentric spherical shells of

constant thickness, the shell volume increases with radius,

resulting better statistics near the box borders.

Temperature profiles for simulations with spherical

boundary conditions are presented in figure 4. The total

number of atoms is 250 and the volume of the simulation

shell is adjusted to give the same cluster size as in the

cubic box with periodic boundary conditions. The cluster

shown in figure 4(A) is simulated without thermostat and

Figure 4. Radial dependence of the system temperature T. Simulation
has been done with spherical boundary conditions. The origin is fixed to
the centre of mass of the cluster. The number of atoms in the cluster is
about 240; the total number of atoms is 250. In the figure: (A) no
thermostat is present; and (B) Nosé–Hoover thermostat is used.

Figure 3. Radial dependence of the system temperature T (K). Cubic
simulation box with periodic boundary conditions is used. The origin is
fixed at the centre of mass of the cluster. The number of atoms in the
cluster is about 240. In the figure: (A) total number of atoms N tot ¼ 250
and no thermostat is present; (B) N tot ¼ 250 and thermostat is used; (C)
N tot ¼ 500 and no thermostat; and (D) N tot ¼ 500 and thermostat.
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in figure 4(B), the thermostat is used. As in the case of

periodic boundary conditions, the temperature of the

liquid cluster adjusts to the desired temperature, but the

vapour is not so easily controlled. The repulsive wall

potential has a strong effect on the temperature close to the

shell boundary.

3.2 Fluctuation of cluster size

Once the equilibrium is reached, it is possible to study

variations of the cluster size. The evolution of the cluster

size is shown in figure 5. Total amount of atoms during the

first 4.9 ns is 250. Cubic box with periodic boundary

conditions was used without thermostatting. After that

system is embedded in an enlarged vapour phase and the

total number of atoms are 500. As we can see from the

figure, the size variation is larger when more vapour atoms

are present. Due to the small amount of vapour atoms in

the small system, evaporation or condensation of atoms

affect the vapour density immediately and the fluctuation

is subdued.

Even if we increase the system size, the average cluster

size does not change. This confirms that any effects caused

by the closeness of the boundary in the small system do

not affect significantly the cluster–vapour equilibrium.

We did some test simulations, where the small-system

cluster was placed in a larger vapour environment with the

vapour density increased or decreased by 30%. The cluster

size started immediately to chance and eventually after a

couple of nanoseconds, settled to fluctuate around a new

equilibrium value.

The size distribution for a cluster consisting around 240

atoms is shown in figure 6 in four different simulation

conditions. The narrowest peak represents a cluster

simulated with a small amount of vapour atoms and no

thermostat is used. When we embed the cluster in an

enlarged vapour phase, the size distribution profile became

broader; due to the larger amount of vapour atoms, the

cluster size can vary more than in the small system.

The size distribution is broader in a thermostatted system

than in a NVE-system.

We have simulated three other cluster sizes using

different total number of atoms and different sizes of

simulation boxes. Vapour pressure in each system

coincides with the equilibrium vapour pressure of the

respective cluster. In figure 7, we compare the cluster size

distribution in the small system obtained via NVE

simulations (solid line) with the NVT simulations (dashed

line), again using the cubic box. As we can see from

the figure, the most probable size is almost the same with

and without a thermostat. In all the systems except the

largest one thermostatting causes broader cluster size

distribution. The thermostat clearly alters the cluster

dynamics. Asymmetrical size distribution for the smallest

cluster size can be explained by the system size.

Distribution should also broaden to larger sizes, but the

Figure 6. The variation in the cluster size in four different simulation
conditions. Solid line shows cluster size distribution for a cluster
simulated without thermostat in a small system (N tot ¼ 250) and dashed
line is for a cluster with thermostat. The line with filled squares and the
line with circles are size distributions in the enlarged system (N tot ¼ 500)
simulated without and with the thermostat. A cubic box with periodic
boundary conditions are used.

Figure 7. The cluster size distribution in the four different equilibrium
system. Each cluster size has been simulated using different amount of
atoms (54, 138, 150, 250 and 300) and different size of simulation box
(volume 1754s 3, 5496s 3, 6064s 3, 8000s 3 and 8729s 3). The
simulations have been done without (solid line) and with (dashed line)
the thermostat. A cubic box with periodic boundary conditions are used.

Figure 5. Temporal fluctuations of the cluster size. After 4.9 ns, small
system consisting of 250 atoms is embedded in an enlarged vapour phase
and the total number of atoms is 500. No thermostat is present and a cubic
box with periodic boundary conditions are used.
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vapour atoms run out when the cluster grows enough and

further increase is not possible.

If a small cluster, for example Nclu ¼ 40, is embedded

in enlarged vapour phase, spontaneous cluster formation

occurs in the vapour because the vapour density is quite

high. Similar phenomenon is not observed in a small

system, where the number of vapour atoms is very small.

Coagulation of the original cluster with clusters formed in

the vapour distorts the equilibrium and the stabilization

time is very long. After a long simulation time system

settles down to another equilibrium state, e.g. bigger

cluster and more rare vapour phase.

Especially in the small systems, our cluster can be

considered to be in a stable equilibrium with the vapour,

because the response of the cluster size to a change in the

vapour density is very rapid, thus constraining the cluster

to an almost fixed size. This contrasts with unstable

critical clusters in an open system, where continuous

growth is possible [27]. The difference, however, is of

minor importance in the present study, because we do not

simulate the actual formation of the clusters out of the

vapour phase.

3.3 Vapour pressure and surface tension

We calculated the normal and transversal components of

the pressure tensor as a function of distance from the centre

of mass of the simulated cluster using Irwing–Kirkwood

definition and the general condition of mechanical

equilibrium. Calculation of the Irwing–Kirkwood pressure

tensor is described in Ref. [17]. Since in a homogeneous

phase the normal and transversal components of pressure

tensor are equal, we are able to calculate vapour pressure:

pv ¼ pN ¼ pT . The cluster sizes as a function of vapour

pressures are shown in figure 8. We calculated the vapour

pressure for all four system sizes shown in the figure 7. Both

periodic and spherical boundary conditions were used and

simulations were done with and without thermostat. The

presented vapour pressures are estimated average pressures

in vapour phase sufficiently long away from both the

cluster and the edge of the simulation box. Although the

pressures obtained from different simulation runs deviate

somewhat, no clean method-dependent trends can be seen.

Due to the very low temperature of vapour phase (56 K),

vapour pressure around a cluster consisting 130 atoms and

simulated with spherical boundary conditions and without

thermostat deviates from the other simulation results.

We used the mechanical route to calculate surface

tension of simulated cluster,

g3 ¼ 2
1

8
ðpl 2 pgÞ

2

� R3
1pNðR1Þ2 3

ðR1

0

r 2pNðrÞ dr

� �
; ð5Þ

where pl is pressure in the middle the cluster, pg is pressure

of the bulk vapour and R1 is a large radius at which the

normal component of pressure pN has the bulk vapour

phase value [17].

We calculated the surface tension of clusters for the

same systems as in the previous figure. Figure 9 shows

the surface tension as a function of the cluster size. The

surface tension increases with increasing cluster size.

The estimated surface tension value of LJ fluid in bulk

liquid–vapour equilibrium is 1.43s2=e [28]. Differences

in values of surface tension are not significant between the

different simulation methods. This is hardly surprising,

because, as we already recognize from the figures 1 and 2,

there is no visible difference in density profiles between

the different simulation methods. The calculated surface

tension values are in a qualitative agreement with the data

by Thompson et al. [17].

4. Conclusions

In this paper, we compared the equilibrium properties of

cluster–vapour systems in different simulation conditions.

We presented density and temperature profiles, vapour

pressures, surface tensions and cluster size distributions.

Figure 8. The cluster size as a function of the vapour phase pressure.
Results are shown for four different simulation conditions. Simulations
have been done with thermostat or without it and boundary conditions are
either spherical or periodic.

Figure 9. Surface tension as a function of the cluster size. Surface
tension has been calculated for same clusters as in figure 8.
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Our main goal was to study effects of a temperature

control mechanism on simulated cluster–vapour equili-

brium. For this purpose, we applied Nosé–Hoover chain

thermostat and compared the results to simulations

without thermostatting. While we chose to adjust the

thermostat parameters to thermostat the cluster, we found

that the temperature of surrounding vapour was in good

agreement with the temperature of cluster. If a thermostat

was not used, it was time-consuming to find initial

velocities that led to the desired temperature in both

phases, because particle exchange between the cluster and

the vapour phase was not able not equalize the

temperatures. However, if a spatial uniformity of

temperature was achieved, the cluster–vapour properties

in a NVE system were virtually indistinguishable from

those obtained from a NVT simulation. The second goal of

our work was to study the effect of boundary conditions on

simulated properties. Furthermore, simulations were

carried out in both periodic and spherical boundary

conditions. The wall–vapour interaction in the spherical

shell was found to disturb both the density and

temperature distributions of the vapour. The present

work mainly considered small systems containing only

few vapour atoms, but possible size effects was studied by

embedding a small system to a larger vapour phase. Our

simulations show that density distribution, surface tension

and the equilibrium cluster size can quite accurately be

predicted by using a small system with a very limited

number of vapour atoms. Using only a small amount of

vapour atoms dramatically shortens the simulation times

in indirect nucleation simulations.
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