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Reversible work of the formation of a layer of a new phase
on a spherical charged conductor within a uniform multicomponent
macroscopic mother phase
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A thermodynamically consistent formalism is applied to calculate the reversible work needed to
form a small layer of a new phagembryg around a charged insoluble conducting sphere within

a uniform macroscopic mother phase. To treat the embryos of arbitrary size which are not the critical
nuclei (i.e., which are not fragments that are in unstable equilibrium with the mother )please
constraint in the form of an external field is introduced. When a critical nucleus is of primary
interest, the specification of this constraint is not required. The results that are obtained for a critical
cluster do not depend on which path approaches a critical state. However, the properties of
noncritical clusters depend on the external constraining field and this effect is discussed in detail.
The obtained new expression for the work of embryo formation differs from the one commonly used
in the nucleation literature. The conditions of its extrema yield the correct conditions of equilibrium
between the critical nucleus and the mother phase. Expressions are derived that are suitable for
practical calculations of the size and composition of a critical nucleus20@3 American Institute

of Physics. [DOI: 10.1063/1.1620499

I. INTRODUCTION maintained the number of molecules contained in a cluster.
Debenedetti and Ref$also extended Gibbs’ interfacial ther-
The reversible work of the formation of a small fragment modynamics to noncritical clusters of a general system, over-
of a new phase is of primary interest in the field of nucle-stepping the limits of the system of a liquid cluster in a
ation. A critical nucleus is a fragment of a new phase, whichmother vapor phase. Their main interest was to get a thermo-
is in unstable equilibrium with the mother phase. The reversdynamically consistent and rigorous expression for the re-
ible work of a critical nucleus represents the free energwersible work of the formation of a noncritical cluster, from
barrier that a metastable system must surmount in passinghich the work of the formation of the critical nucleus fol-
from a local to a global minimum for the system free energy.lows as an extremum condition. In this context they focused
In a fully molecular theory the initial stages of this processon explicit consideration of the constraint that prevents the
would involve the formation of some appropriate molecularfree transfer of matter between the embryo and the mother
cluster that later develops into a recognizable piece of thghase but did not pay attention to the effect that constraint
new phase. However, such molecular theories are not genesxerts on the properties of a noncritical cluster. This effect
ally available for practically relevant systems, and one iswas not essential for their task since on approaching a critical
forced to rely on quasiphenomenological theories in whichhucleus(the unstable equilibrium state for which a constraint
the initial fragment is treated as though it were a piece of ds not requiredithe effect disappears. The difference between
stable phase with an appropriate allowance of surface effectthe thermodynamic potential values of the initial and final
e.g., a droplet in vapor—liquid phase transition. To estimatgtates of a thermodynamic systethe metastable and un-
the free energy change involved in the formation of a piecestable equilibrium states in the present ¢af®es not depend
of the stable phase purely thermodynamic methods can ben a path connecting these states. Different paths defined by
used. different constraints can be used to connect the initial and
Gibbs considered only a critical nucleus. Nishioka andfinal states of a thermodynamic system. Both Nishioka and
Kusaka extended Gibbs’ interfacial thermodynamics to non-Kusakd and Debenedetti and Refsebtained expressions
critical (arbitrarily sized liquid clusters in the vapor of mul- for the reversible work of the formation of a noncritical clus-
ticomponent systems. Their aim was to clarify the uncer+ter that differ from the one commonly used in the nucleation
tainty over whether or not the size and compositionliterature.
dependence of interfacial tension must be taken into account Dijikaev et al* extended the method of using constraints
in taking the extremity condition of the reversible work of a by Debenedetti and Refs$o the case of the formation of
noncritical cluster formation, when deriving the size and themulticomponent liquid droplets on solid, soluble or insoluble
composition of a critical nucleus. The extension of interfacialparticles and obtained a rigorous and thermodynamically
thermodynamics was done under an additional constraint thaonsistent expression for the reversible work of the forma-
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tion of an arbitrary dropletwhich may not be in equilibrium

with the vapor phage They indicate that considering a non-
equilibrium droplet as an equilibrium one without imposing
the necessary virtual constraints can lead to the dependence
of the calculated free energy of embryo formation of the path
of embryo formation. As an example, Djikaet al* consid-

ered the condensation of a single-component vapor on a solid -
soluble particlgconsisting of a single specie§hey used an ')‘
integro-differential method within the framework of the Q g%

common capillarity approximatior{the presence of con-
straints is disregardeédand calculated the free energy of the
formation of a droplet on two different paths in the plane of
the two variables of the state of the droplet. The obtained
values of free energy were different. In the present case, by
our opinion, the example is not convincing, because the rea-
son of divergence may not be the application of the common
capillarity approximation, but the thermodynamic inconsis-
tency of the modeling expression of the disjoining pressure
used in the calculation. It is possible to connect the initialF'G- 1- Thermodynamic system of a congtrained noncritical layer of two
. . .. . ._ phasesa and % around a charged conducting sphersurrounded by the
and final states, given as the critical droplets of different SIZ€phases. The interface between a conducting spheand a layer of dielec-
with two different paths consisting of the sequences of criti-ric fluid « is indicated by the radius of the surface of tensidgf. The
cal droplets of different size and composition. Integrationspherical layers of dielectric fluidsy and 7, are in equilibrium with each
along these paths that are close with the paths by Djikae9ther' The radius of the surface of tensiof? gives the position of their
4 . . .. . __interface. The phasesand » are constrained by an external field preventing
etal.” should also give different values as this ImeQrat'onmass transfer between the phageand 7. The field operates in a narrow
will lead to integrals over disjoining pressure that are similarzone between the phasesaind 8 at radiusr 72. The field does not influence
to the corresponding integrals by Djikaetal* and close to  the transition zone between the phaseand 7.
them by value, but in the present case the paths consist of the
sequences of unstable equilibrium stafes constraints are
neededl Like Debenedetti and Reisdjikaev et al* did not
pay attention to effect the constraint exerts on the propertiesvaluated on the basis of the reversible work of a noncritical
of a noncritical cluster. cluster. Therefore, the effect of a constraining field on the
In this paper we consider heterogeneous nucleation on properties of a noncritical cluster is discussed in detail.
charged core or on ions of multicomponent systémidne
extend the approach by Rusanov and Kimiho considered
a critical nucleus formed on a charged conductive sphere, to
the arbiFrarin sized clust.ers with the aim of olbtaining the EQUATIONS FOR CONSTRAINED DROPLET
expression for the reversible work of the formation of a non-j\ vapOR
critical cluster. Following Debenedetti and Refssg intro-
duce explicitly a constraint as an external field that prevents  Consider a spherically symmetric multicomponent sys-
the free transfer of matter between the noncritical cluster angem in the center of which is a charged partiglereating
the mother phase. Differently from Debenedetti and Reiss,electric field (see Fig. 1L Suppose that this is a small con-
who imposed an external field to act on the transition zonelucting sphere with a charge distributed uniformly on its
between the adjacent phases and a portion of the homogsurface surrounded by dielectric fluids 7, 8. The phasex
neous interior of the droplet, we impose an external field tds in equilibrium (unstablé with the phases. Preliminarily,
act in the environment of a cluster just outside of it and itsthe radiusr“” in Fig. 1 approximately indicates the position
transition zone. A constraint is not needed for a cluster obf the transition zone between the phaaesd 5. The radius
critical size. Enclosing of the cluster within an external fieldr 7? in Fig. 1 indicates the location of an external field that
when the state of environment is changed keeps the state pfevents the free transfer of matter between the phasesl
the cluster and its transition zone unchanged. They remain i. The phasey, which is in unstable equilibrium with a drop
equilibrium and, therefore, there is no need for an externabf the phasey, differs from the phas@ only by the compo-
field to act on the whole transition zone. When a criticalsition and pressure, not by the aggregate state. Following
nucleus is of primary interest the specification of the particuRusanov and Kurfi,the fundamental equations for such a
lar constraint is not required, but this is not so for a noncriti-system can be obtained if a conductor with its charged com-
cal nucleus provided that the thermodynamic quantitiesponents is included into the system. The whole system may
which are the equilibrium concepts, can be applied withthen be considered as without an external electric field, and
some accuracy also to a nonequilibrium system. For inordinary thermodynamic equations may be applied. For a
stance, if the evaporation rate of a noncritical cluster is esticonical part of the system within the solid angleit follows
mated by considering “the equilibrium constants of from the first and second laws of thermodynamics for an
evaporation—condensation reaction,” these constants am@pen system,

Downloaded 12 Nov 2003 to 128.214.205.5. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



J. Chem. Phys., Vol. 119, No. 20, 22 November 2003 Formation of a new phase on a conducting sphere 10735

R tively (directions from the center of the system are consid-
oU=Tso5— 5wfo prrdr—pn(R) wR?6R ered to be positived andE become zero inside the conduc-
tor).
- - Substitution of Eqs(4)—(6) into Egs.(1)—(3) leads to
+2i mi N ”+2i '“iBaNim'; p{ONT, (D) the following equations(we now setw=4x for a full
sphere,
whereU is the energyT is the temperatureSis the entropy;
pr andpy are the tangential and normal components of thesy = 755 p\(R)47R25R+ >, w N7+ >, uf NP
pressure tensor, respectively;is the radius of an infinitely i i
distant boundary of the systefn is the radial coordinaje R
wi* is the chemical potential of thgh component of the +2 Mj75Nj7+f (8D4mr?)Edr, (7)
dielectric phaseg and 7, ,uf" is the chemical potential of the ] 0
ith component of the dielectric phage ZLJ-V is the electro- R
chemical potential of thigh component of the spherical con- U =TS—4wf prr2dr+ X, N+ Y, uPNP
ductor y, N{*7 is the total number of molecules of thth 0 ! !
component of the dielectric phasesand #; Niﬁ is the num-

R
ber of molecules of thith component of the dielectric phase  + 2>, u]N7+ f EDA4sr?dr, 8
B, andN/ is the number of molecules of theh component ' 0
of the conductor. The first term on the right-hand side of Eq. R
(1) is connected to the transfer of heat between the syster§5T_47T5( fo prrdr +DN(R)4WR25R+Z N7 Spi

and its environment; the fourth, fifth, and sixth terms are
connected with the transfer of mass. The second and third
terms describe the work of deformation. Using Euler’s theo-

R
+, NBsul+>, leaﬂjuf (SE)D4mr2dr=0.
. . ) i ] 0
rem and integrating Eq1) from »=0 to a certain value,

while keeping the values of the intensive variables constant, ©)
we get These equations refer to the whole conductor-dielectric sys-
R tem. However, since the quantitiessD, ED, D 6E possess
U=TS—wf prrdr+ Y, wNE7 a local meaning, Eqs(7)—(9) are applicable also to any
0 i

spherical part of the system. By writing each equation for

two values ofR (r’ andr”) and subtracting one from the
+2 MfNF+E ,TLJVN;/. (2 other, a corresponding equation for the bulk phase of the
! ! dielectric can be obtained. For a spherical layer of the bulk

Taking the differential of Eq(2) and comparing the result Phase of the dielectric, we thus obtain equation
with Eq. (1), we get the Gibbs—Duhem relation,

R
Sé‘T—wﬁU prr2dr
0

an g, Bsub Yo = , . : _
+§i: Ni™"oui +§i: NI owi +§j: Njor=0. ) \herer’ andr” are kept fixed in the taking of variations. For
) ) a thin spherical layer we obtain
For electrochemical potentials we use the standard expres-

sion Spr=s,dT+ >, p;du;+DSE, (11)
~ |
) =pl+ee, 4

\<;5T—477Ur (spo)radr
r/

+Ei N;oui
+pn(R)wR?6R

+Jr (SE)D4mr2dr=0, (10)
r/

wheres, is the entropy density, angl is the number density

whereeg; is the charge of iof, and¢ is the electrical poten-  f the component. The variation ofR in Eq. (9) at a given
tial of the conductor. If the conductor contains also neutralyysical state gives

components, their electrochemical potentials will be con-

verted into chemical potentials automatically with Ed) pr—pn=ED. (12)
and, therefore, no separate terms need to be written for thefj the case of a homogeneous and isotropic dielectric we
in Egs.(1)—(3). We use also the relationships have a linear relationship = e€,E and the integration of
Eqg. (11) at constanfl and u; gives
}/ L= = 2
2}_: N/e;=q=D4nr?, (5 . eeoEz_ . D2 .
. PT=Po > =Po Deeo’ (13
= JO Edr, (6)  wherep, is the pressure in the absence of electric fiEld

=0 at the same values of the temperature and chemical po-
where q is the charge of the conductoR and E are the tentials;e is the dielectric constant ang is the permittivity
electric flux density and the electric field strength, respecof vacuum. From Eq9.12) and(13) it follows
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eeoE? D2 Practically, the integration in Eq15) is made over the in-
PN=Po™ =5~ =Po (14 terfacial zone, wherg substantially differs from the tan-
gential components of the pressure tensor of the bulk phases,
p7 andp{. Equation(15) gives the one-to-one relationship
between the radius of the dividing surfageand the quantity

The system under consideration has four phases  7x: whicp is also called a surface tensﬂ)rFoIIovying
conductory, the fluid phases, 7 andg) and two interfaces. Rusanov the form of this relationship can be obtained by
Between the phases and 3, at the radiug 7, an external d|ffer_ent|at|ng Eq.(15) with respect tor, and keeping the
field is applied that prevents free transfer between the phase@hysical state of the system unchangéuis constancy is
We use the Gibbs concept of a dividing surface for the in-denoted by),
terfaces and, also, for the region of an external field. The %

Gibbs dividing surface is a mathematical construct whose ( X) x
contour conforms to that of the physical transition zone

within - which the properties of one phase continuouslyaccording to Eqs(5) and(13),

change into those of the contiguous phase. The position of

this dividing surface along the local normal to the physical q? 1 1
contour can be chosen arbitrarily. Having made a choice, one  PT(F) —P(r)=po—pPd+ _————| .~ — |- (17
treats the inhomogeneous system formally as though the 32m7eory | €7 €

various properties in the coexisting bulk phases remain thgypstitution of this equation into E6L6) and the solution of
same as in the bulk phases up to the dividing surface. Afne resulting differential equation gives

accounting of the total amounts of the various extensive

2eeq

IIl. EXCESS QUANTITIES FOR AN INTERFACE

| = PR =P (16)

properties in the system, on this basis, will then be in error. K 1 q° 1 1

For a given extensive quantity, the difference between the ¥x= 37 §(Po_p3)fx— sl (19
« L ry 327 egly \ €¥ €7

actual total amount and the “spurious” amount of the hypo-

thetical system, where the bulk properties continue up to thgyhereK is the integration constant. The valuelofis deter-
dividing surface is defined as the surface excess. Propertiggined by the behavior of the tangential component of the
of the bulk phases are chosen to coincide with the propertiesressure tensop(r) in the transition zone. For a system
of the actual system off the transition zones of the interfaceszonsisting of two bulk fluid phases and » separated by a

In our case, the temperature and the chemical potential vakpherical membrane of the radiugwith the uniform tension

ues of the hypothetical bulk system that are equal to the, and zero thickness, the condition of mechanical equilib-
corresponding quantities of the actual system uniquely defingum |eads to the formul*°

the state of bulk phases, provided that a bulk state with these
values exists. Hence, even if the properties of the real system , =~ ﬁ 19
do not reach their bulk values off the transition zone, the PN(rs) = PR(rs) = re’ (19

S
properties of hypothetical bulk system are well defined. o
Due to electric field, the pressurpg§ andp;} depend on the

A. Surface of tension and surface tension radiusr. Equationg18) and(19) determine uniquely the val-

Let us consider a quantitf prdV, wheredV is the vol-  ues of the radiuss and the surface tensiop By a mechani-
ume of a portion of a system that is under the tangentiafal effect(by acting forcesthe interfacial zone can be mod-
componenpy of the pressure tensor and integration extend€led as a membrane of the tensiptocated at the radius.
over the whole volume of the system. Due to the electridy Gibbs™ the dividing surface with this radius; that sat-
field, the pressure is not uniform even in the bulk parts of thdsfies Eq.(19) is called the surface of tension. The following
system. The quantitye f prdV is the work of deformation, ~relations connect the pressure differemge- pg and the in-
when the size of a conical systdsee Fig. 1is increased by tegration constanK with the parameters of the surface of
a solid angledw. Consider a layer containing the contiguous tension,
phasesy and » and the interface between them. Suppose that

one spherical boundary of the radius of the layer lies in a_ n:2_7+ q° i_ i (20)

the phaser and another boundary of the radiuslies in the Po™Po I's 327-rzeor‘s" e e’

phasen, where these phases have bulk properties, i.e., the

properties of bulk matter at the same temperature and chemi- 1, q® 1 1

cal potentials of the components as the actual system has. K= §7fs+ o | e (21
48w egrs \ € €7

The Gibbs dividing surface of the radiugis chosen to lie in
the interfacial region. The surface excess for the quantityn the absence of electric field the derivative with respect to

f[',’pT47rr2dr is prescribed by the radiusr, at the left-hand side of Eq16) is zero at the
surface of tensiofj.e., the surface of tension and the respec-
jrﬁpT4Trr2dr— jrxp$4wr2dr— Jr”p¥47-rr2dr tive surface tension correspond to the minimum point of the
r’ r’ Iy function y,(r,) of Eq.(18). This is not the case for a charged

, droplet!® Using Eq.(14), the Laplace equatiofl9) may be
=—4mryx. (19  presented as
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sure tensor reaches the value of the bulk phdsat the
position of “a rigid partition.” In the inward direction from

r 7% the componenp reaches the value of the bulk phage

If the depth and width of the well are chosen such that the
surface tension calculated by E45) gives a value that sat-
isfies EQ.(19) (in the notationa should be replaced by, 7

by 8 andrg or r, by r7P), then the dividing surfacéa math-
ematical construgtwith the radiusr 7% is the surface of ten-
sion.

B. lllustrative case: An excess quantity of an external
field acting in an ideal gas

Let us consider, for the purpose of illustration, the effect
of external field more detailed, when the phasgand
behave as an ideal gas. It follows from the mechanical equi-
librium that

V-ﬁ’:—Ei piV (1), 23

In the following, the surfaces of tension are chosen as th&hereP is the pressure tensor agi(r) is the potential of an

dividing surfaces for the interfaces between the phaseg of
and @, and @ and 7. Rusanov and Kufiihave presented a

external field acting on a molecule of thth component
[Debenedetti and ReiSased the notatiog;f(r)]. In case of

. . . . . . H 12
more detailed discussion of interface properties, also consiciPherical symmetry Eq23) reduces t&f
ering the dependencies of these properties on the size and

charge of the critical nucleus. This discussion is also appli-

cable to the interfaces between the phaseg afid o, anda
and 7. Between the phases and 3, at the radiug 7%, an

dpy

ar (24

2 d
+F(pN_pT):_Z Pialﬂi(r)-

external field is applied that prevents free transfer of mol4e suppose that the phageremains gaseous in the region
ecules between the phases. The external field acts the inwagl an external field. Substituting Eqél3) and (14) (these

of the dividing surface of the radiug’” but, differently from
Debenedetty and Reidsgjoes not reach the transition zone
between the phasesand 7. As the external field is supposed
to prevent free transfer of molecules between the phidmes
tweenn andg, nis in equilibrium with«), there should exist
a region next to the radius”? that the molecules cannot

reach, i.e., where an energy barrier exists with energy values

equations remain valid also in the presence of an external
field) into Eq. (24) we obtain

q° de dpy

2e%eyr* T dpgi dr

2 dei

i dr

d
= —Ei Pmalﬂi(f),
(25

not attainable for molecules. By such an effect, this part of

the field can be taken as “a rigid partition” standing at the
radiusr 7?. The volume of this region is considered negli-
gible. If an external field acts only as “a rigid partition” with

zero thickness, then the pressure changes stepwise at the f&

diusr”? and Eq.(15) (in the notationa should be replaced
by 7, n by g andr, by r7?) gives usy,=0. The Laplace
equation(19) is not satisfied and the dividing surface of the
radiusr 7# is not the surface of tension. If an external field
causes the tangential component of the pressure tggpsor
be higher tharmp{ inward of the dividing surface of the ra-
diusr7#, then, as it follows from Eq(15), the surface ten-
sion atr 7% will be negative. In the opposite case it will be
positive. In general, the dividing surface of the radidi is

wherepy; is the partial pressure of théh component in the
absence of electric field at the same values of the temperature
and chemical potentials. A change in the density of the phase
due to electric field is proportional to the square of electric
field strength and, therefore, should not be taken into account
in the differentials of Eq(25) as this will depart from the
validity range of the used linear relationstip= eexE. The
densities in Eq(25) are the densities that correspond to the
absence of electric field. According to the Debye equalion,

de Pai

dpoi | i 3eokp T’

(26)

not the surface of tension. Suppose now that the part of th&here «; and p,; are the polarizability and the permanent

external field that correspond to “a rigid partition” is shifted

dipole moment of the molecules of th#h component, re-

towards the larger value of the radius, and around the radiuspectively, andk, is the Boltzmann constant. Taking into
r78 the external field causes a well for the values of theaccount that for gas phase, dielectric permittivity is close to

tangential componeni; of the pressure tensdsee Fig. 2
Suppose also that the tangential compongnbf the pres-

one, e~1, applying Eq.(25) separately for each component,
and using the ideal gas law we obtain
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r 1 rs I’” J—
Poi(r)~Poyi €XP —J 5 5 fr,(m—p{‘“)%ﬂzdﬁﬁ (pi—p4mradr=N"",
rr . S
ka+ q a; + pEI } (31)
260r4 3€0ka
wherem andn denote the phasesnE vy, e« andn, n=«, 7
degi(r) and B). The total number of thégh component molecules in
X—gydr | (27)  the phasey andB, NY andN?, respectively, are the known

values. The number of moIecuIeN,-mh, in a hypothetical
system where the bulk properties remain the same up to the
wherepy,; is the partial pressure of tith component in the d@v@d?ng surfaces, can b_e calculqted W_he.n the radiuses of the
inner part of the phase at the radius’ where the potential d|v_|d|ng surfaces are given. Taking this into account we re-
4i(r') has a constant value, which is taken zero. For molWrite the surface excess numbed§"™ (mn={ya,7p}) for
ecules with a permanent dipole moment, the Debye equatiof® interfaces between the phageand y, and between the
is valid for the interaction energies of electric field and aPhasesy andg, in another way
dipolle sm_aller than thermall enerdgyT. Accor.dingly, Eq. . ﬁimn:(ﬁimn_(Nim_ N™")+ (N™— Nimh):ﬁlmrﬁim,
(27) is valid only at such radius values for which this condi- (32
tion is fulfilled. At these radius values, the term with the
polarizability «; and the permanent dipole momemy; can
be omitted in the exponent of ER7) compared withk, T,
and Eq. (27) reduces to the barometric formulpg;(r)
= Po,i eXP(=#i(r)/k,T). The chemical potential of théth
component is given by the equatiqn ="+ ;(r) (De-
benedetti and Reids where u|™ is the intrinsic chemical
potential in the region of an external field. Substituting Eq.
(13), where the pressum,==;poi, into Eq.(15) gives an Introducing the excess quantities in the above way, we
expression for the calculation of the excess quantigt the  obtain from Eqgs(7) to (9) the fundamental equations for a
radiusr,=r7#. Thus, various values for surface tension asspherical interface in the field of a central charge,
an excess quantity of the dividing surface of the raditfé M o eemn MmN eamn
can be obtained depending on an external figld) applied SUTI=ToSTH yThoA

to constrain a noncritical cluster. _ _ Emngq
+Z ,u,iméNim-l—Z ui N — o (33
i [ 0

where two symbols on the right-hand side of Eg2) are
introduced to denote the parenthesized terms in the middle of
Eq. (32, respectively. For the interface between the phases
and » such patrtition is not unique and not requisite.

D. Fundamental equations for a spherical interface

C. Surface polarization and the surface excess

number of molecules —
mn

The excess surface polarization is related to the excesgg™'=TS""+ ™A™+ > LN+ > NP - q’
strength of an electric field. Consider the last term in &g ! ! €0
According to Egs(1), (4), and(6) this term was originally (34)
©48q. Its excess quantity, with taking E¢p) into account, i __ _ _ q SpmMn

. ) SMMST+AMEy ™M+ DT NS+ >, NN ou!— —=0.

(Sqfr (E—E“)dr+5qfr (E—E")dr, (29) ' ' °

r’ ren (35)

where the integration is carried out over the whole thicknes4! IS assumed that chemical potentials for all the species of

of the surface layer between the phaseand 7. Applying  the conductor are uniform throughout, i.e., the value of a
the formulas of electrostatic®=e,E+P and D=D«  chemical potential does not depend on the position of a mol-

ecule in the conductor. In case of the interface between the
phasesr and 7 the termN;* + N”(ui*= 1) must be taken, as
;:ff ”(P_Pa)dwff (P—P7)dr. (29  indicated by Eq(32), asN{*”.
r’ ren When the thickness of the layer of the phasds so
The state of polarization depends on an external electrigMall that the properties of the phasedo not reach their
field. There is a possibility that a spontaneous polarizatioPUlk values, then the excess quantities for the two boundary

exists in the surface layer, which should be taken into acSurfaces of the phase cannot be uniquely separated and
count. Thus in the absence of electric fi@@¢=D7=0, p  they should be considered as forming one united excess

=D7, Eq.(28) can be represented aséqP/e,, where

=P7=0, Eq.(29) reduces to quantity.
— rH
Po= f o Podr. B9 v, THE WORK OF FORMATION
wherePy, is the spontaneous polarizatidgeleo is the elec- Using the excess quantities introduced above, we can

trical potential difference between adjacent phases across thewrite Eq.(8) for the internal energy of a noncritical cluster
interface[see Eqs(28) and(29)]. Surface excess number of around a spherical charged conductor. We do this in portions.
molecules is defined as For the second term we obtain
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R s vanya LU where V¥* is the volume of the conductor inside the sur-
_47Tf0 prrodr=—V7p7+y7A _4”era PTIodr face of tension of 7, p? is the isotropic pressure in the
(B volume of the conductor, andA™"=47x(r™?2(mn
+7“”A“”—4wfa” pir2dr ={ya,an;nB}). Integration by parts, where Eg&l1) and
' (13) andr?dr=d(r®3) are used, allows Ed36) to be ex-
+ y”BA”B—4wﬁnﬁp$r2dr, (36)  pressed as

R 9 (1 9’
—477f prr2dr=—V79pY*+ yY AT — pE(V*T— V%) — —— — | + Y TA* T —pJ (VTP -\ *7) —
0 8mege® \ 17" re7 8mege”
X ! + yIBATE— pB(\/ -\ 7F) o ( t 1 (37)
rem b ’ Po 8megef \r”P R ’

where V™ is the volume inside the surface of tension of whereU, S {N;} represent the values for the entire system
r™"(mn={ya,an;nB}), andV is the volume of the sys- (numbers{N;} do not contain values for the species of the

tem. conducting sphepe
The last term of Eq(8) can be rewritten as Indicating values for the state of a homogeneous pjgase
containing a conducting charged sphere with supersgipt
R qua 2 ( 1 1 ) we obtain from the above equation, where R9) is substi-
f ED4mr?dr=— —— tuted that
0 € Admege® \r?* 7

_qE“”+ q° (1 1)

ran r’?ﬁ A'B:UB_TSB_EI IU’IBNIﬁ

€0 4ege”

P78 2 1 — /B VB4 A YBAYB_ B\ —\/ 7B
_qe L@ B( S e pYP+y P5( )
0 4mmege” \ 1 N q? ( 1 1
For a spherical charged conductor surrounded with the phase 8mepe” \17F R
B of dielectric fluid Eq.(8) can be rewritten as quB
+2 w)PNY - : (42)
UP=TSP—\V7Bp7B+ 4 YEpYE— pg(V—VV'B) i €0
> [1 1 .
~— Al 5 R For the state of the system, where a conducting sphere, cov-
8mege” \ T ered with a two-phase layer ¢N{*”} molecules(phasesa

quﬁ and are in equilibrium, exists together with the phage A
+2 uPNE+ D PNy - . (39)  can be obtained by substituting Eq8), (37), and(38) into
! ] 0 Eq. (40), resulting in

Let us derive the formula for the reversible work to form a
noncritical cluster constrained to contgiN{”7,i=1,2,...n}
molecules. We consider a multicomponent system of radius
Rin which T and{u?,i=1,2,...n} (hereafter the simplified
notation{ u”} is used are kept constant. The temperature is
uniform throughout the system. For this open boundary syswhere

tem (the system is closed with respect to the components of

the conducting spherereversible Worlé(we apply here the

approach used by Nishioka and Kusakaut the derivation — _\ranya yapn yh

by Debenedetti and Refssan be applied as wglis given by F=-vrprs 2 AN (429
a change of the following thermodynamic potenfiaf,

A=T+T+A+A+H+H+B- >, ulNe7, (42)
I

— _ _ pre
A=U—Ts—§i) ubN;, (40) I= y7“A7“+§j: MJ—V“NJVJrZ ,ui“Ni“—q . (42b

€0
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an an
A=—477er psr2dr+ M$N3“+4wﬁy DE“r2dr
rve i rve

== p(VeT—V)

2
q 1 1 h
— |+ aneh 420
877606“(r7" r"”) EI Hi 429
— . Eon]
A=y TN DT NS — qe : (420
i 0

78 7B
H=—47Tjr pIr2dr+ >, M?Ni”“+4wfr DE”r?dr
ren i ren

211)

q

8mege”

— —n(\IB_\an
pO(V V )+ ra"/ rﬂﬁ

2 N, (429

_ _ —, qP"

H=y"PA7+ > utNI+ ,uiBNiB—G—, (42f)
i [ 0

R R
B=—47-rf p?rzdr+4ﬂ-f DEPr2dr
¢ 7B ¢ 7B

2

Noppel, Vehkamaki, and Kulmala

YYEAYY oy YBAYR
— a_YB —
=2 (u]"=p]PINJ+ 3 3
2 Dy _B
1 1 P pY
AR L
6meg\ earve BB € €

Equations(5), (13), (14), and(19) have been used to trans-
form the left-hand side of Eq44) into the right-hand side.
Quantity W,, is the total work of the transfer of a charged
particle from the phasg into the phaser at the given tem-
perature and chemical potentials in the phasesid 3.° For
example, if the particle is a single ion, the phasis a liquid,

and the phasg@ is a gas, theiW, is the solvation work. The
quantity is not associated with the nucleus of a new phase
and can be measured in an independent experiment.

If the volume of the phase is remarkably larger than
the volume of the interfacey®”—\V?*>V7f—V*7  and,
therefore, we can take*”~r 7, or say that the phaseis a
liquid phase and the phasesind 3 are the vapor phasé¢the
difference in the number densities of molecules in the liquid
and vapor phases is typically 3—4 orders of magnitude that
allows to neglect the seventh and ninth terms on the right-
hand side of Eq(43)], then the above equation can be sim-
plified,

Wrevd—\ — (pg— pg)V“”-i— zl (mi'— :U«iﬁ)NiM}

=— pﬁ(V—V”B)+ q i_ i (429
° 8mepe? \ 178 R)’ g2 [1 1)1
_ _ _ +(y* T+ y P AT+ 8 % ol Tan
N®7= N+ N+ N@7+ N7+ N7 . (42h) Teo\ e etfre?
In Egs. (42) capital letters indicate the bulk phasgsa, 7, _a(P*7+P7F) (45
and B, respectively, and capital letters with bars indicate the € '

interfaces between them.
Thus the reversible workV"®9 to form a general-size
cluster is given by

Wrevo=A — AP

=wn—(pa'—p€>v”+2i (= u)NF7

2 (1 1

€* €P

1

re7

q

4oy anpen_
Y 8meg

an

_ (po _ pg)(V”ﬁ—V‘”’) + ,yrlBArlB

€0
@ (1 1\[1 1)\ qP” 42
8meg\ 7 B\ B pam € 43

where we have used the notation,
W, = —\V7epre+\7Eprh4 2 (Mjw_ﬂjyﬁ)NJy
]
+ yY AT — yYBATB 4 ( paVYe— ng"ﬁ)

q2(1 1

8meg | earve  PryvB

pra P8
)_ QP d

€0 €0

In the absence of a charged conductq=Q, W,,=0) this
equation reduces, as it should, to the equation by Nishioka
and Kusak&aand Debenedetti and Rei$3he result of Nish-
ioka and Kusakais obtained if a constraining external field
acts as a rigid partition positioned in the homogeneous vapor
phase just outside the cluster, and a liquid cluster in vapor is
considered. In this case the termJc p5)(Ve7—V7%) in

Eqg. (43) is numerically negligible compared with other terms
and y7?=0. As long asy*7>y7#, P*7>P7# and the ex-
cess number of molecules for the diving surface of the radius
re?, IN®7|> NP+ (p7— pP) (V7P —Vve7), the effect of
constraint on the properties of a noncritical cluster is not
essential.

If the bulk phasex is incompressible, then the integra-
tion of Eq.(11) at E=0, the temperaturdl, and the compo-
sition of the phase are kept invariant and thereafter the mul-
tiplication with V¢7—V7% gives

(PG —PE)(V7= V%)= 2 Ni™(ui'(pg) = 1" (PE)),
(46)
where N®"'= (V*7— V) p; and w(pg*) is the chemical
potential of the componeritin the phasex at the pressure

pg'ﬁ in the absence of electric field, respectively. Substitu-
tion of this equation into Eq45) yields
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where it is assumed that for a given constrayif=0 and
P7A=0. This equation, if we ignore the second and, fre-
quently also, the last term, is usually applied in papers on
e « « a ion-i leation in gas phaéfue and Chan, Raes
0 ((pS) — P (N7 =N+ (27 ion-induced nuc gas p ,
i o e ' and Jansserfsyhite and Kassnéer to mention some

WI= W, = (PG~ POV 2 NI (uf(pg) — puf)

2
@ (1 1)1
4 IBYAXT [ P
YA 87T60<Eﬁ e/ ran
_ AP+ P77 (477 V- THE CONDITION OF A CRITICAL NUCLEUS
€0
If to take that the work of the solvation of an ion is The condition that a cluster formed be a critical nucleus
, is given by the extremity condition of Eq43) under con-
W= (p%— pB)V7e+ Q- (1 1} 1 48) stant values fofl, { "} andV. We keep fixed also the radius
n—iro o 8meg | @ B rre’ r78, denoting the position of the external field. Taking the

which corresponds to the work required to cafttye surface differential of Eq.(43), it follows that

effects on the sphere are ignoyexdcharged sphere with the
radiusr 7* and volumeV?* from the phase at the pressure
pg (far away from the charged sphgreto the phaser at the

pressurepg, then Eq.(47) reduces to dwev'g:dF+dF+dA+dA+dH+dH—Z AN
Wrera=+ 3 NI (p6) — )+ 2 (wi'(p5) — maf) =0. (50
N&7 Nah anpan q2 . .
X(NFT=N) +y + 8meg | f e The differentialdB=0 as the state of the phagkis kept
o constant. We consider in detail the terch& anddA. Other
1 1) gpP¥ 49 terms can be dealt with analogically. For the tedA we
ram  pre € ' 49 obtain

ren ran
dAzd( —4wﬁw p$r2dr+2i M3N$h+4wfrm DE“err)
=[—p§(rem +qE*(rem/A*TIA“Tdr 7+ [ pF(r ) — qE*(r )/ A7 ]AYdr 7

an an
+> Mdefh—wﬁ (dp9r2dr+ >, thdﬂfv+4wf'y D(dE®)r2dr. (51)
i e i rye

The last three terms of E¢51) vanish due to the Gibbs— (52) vanish due to the Laplace E(L9). The application of
Duhem relation, Eq(10). Terms in square brackets, which the Gibbs—Duhem relations, Eg&l0) and (35), and the
are the collections of differentials @& with respect tor *7 Laplace equation to all terms in E(0) gives

andr”¢, respectively, are the normal components of the pres-

sure tensor. It follows that dwreve=> Miﬂf(dﬁi"‘+de‘h+dﬁi"”+dNi’7h+ dﬁi”)
i
dK— 2'}/“77Aa,7dr077+2 adﬁa”'f‘AEHId an B
e = ST 4 -2 pfdN7=0. (53)
—m qu””’ It follows from Eq. (53) that the condition for a critical
+Ei Ni*7dui’= o (52 nucleus is
wi=pul, i=12,..n. (54)

where the last three terms vanish because of the Gibbs—
Duhem relation for the interface, E(B5). The first term on  In nucleation literature the extremity conditions are usually
the right-hand side of Eq51) (in square bracketdogether taken with respect to the number of molecul§” in a
with the corresponding term afH and the first term of Eq. cluster. Therefore, let us consider molecule numK&rs”}
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as independent variables and show that the extremity condpath by which it is approached. By applying the extremity
tions with respect to these variables result in Egf). Thus  condition for simplicity to Eq.(49) [in the case of incom-
the state of the system of a noncritical cluster in the phase pressibility of the phase the following reasoning gives the
are determined by variable§ (N*7},{u?}). The state of same result also for Eg43)] underT, {«}, r 7 kept invari-
the system containing a critical cluster does not depend on ant, we obtain

dwes dNg" dui'(pg) dNg7=Ng™ — dA”
=20 (B(PE) — )~ + 2N+ D (g (pg) — ) + 7
dNe? - X dNe” T dNe? dN&” dN&”
dug(pg) - dy*” qdP*” g [1 1\ 1 dre”
Y (NN + e AT — | S
k le K le K €0 le 7 TEQ \ € fa (I’m]) le 7

(55

> [1 1| 1 de*
—— =0.
8meg ()2 dN*7

remn rre

In Eqg. (55) the fifth, sixth, and seventh terms vanish due toterm, result in Eq(54) because of the Laplace equatidr®)
the Gibbs—Duhem Eq(35). It is assumed thaN*7=N"  [in the notation of Eq(19) 7 should be replaced bg].
+N{7. The second term cancels because of the Gibbs— Let us now express the chemical potenig( pg) of the
Duhem equation for the bulk pha$Eg. (10), whereD=0  component in the phasex in the field of a central charge at
and §T= 5pg=0], Next, we transform the Gibbs—Duhem the pressur@g far away from the charge and at the electrical
Eq. (10) and then apply it to cancel the last term in E55).  field g/ (4me®eor?) through the chemical potential{(p5)
Expressing the pressups in Egs.(10)—(13) and, thereafter, of the same phase, but at the far away presp§rand at the
replacing 8p, with =p;du; (p§,q=0) [the result of Eq. electrical fieldg/(4mePegr?), i.e., at the pressure and elec-
(11), whereD =0 andéT=0] in the obtained expression, we trical field strength values of the phage In both cases the
get phase « is in equilibrium and the chemical potentials,
©i(pg) and ,ui“(pg), do not depend on the radiusfrom
q° 1 1 central charge.
8reg(e®)?\r7® rem Consider at first an incompressible bulk phase in a uni-
form electric field. Variation of Eq(12) and substitution of it
into Eq. (10), and then differentiation of Eq10) with re-
spect toN;, yield

_Z N out(pg,q=0)—

X&e“—i—Z N Suf(pg,q)=0. (56)

Hence, if to takedu"(pg .q=0)= du{*(pg ,q) (the variation
of chemical potentials is carried out so that their changed viS, 6T —v;dpny+ dui—viESD=0, (58)
values remain the same throughout the bulk phasdehen

8e=0 and the last term of E@55) vanishes. The first term of

Eq. (55) can be transformed as follows: where v;=(dV/iNi)|n,,, 7p.p IS the partial volume per

molecule of the componeit andV is the volume of a sys-
dNgh tem containing{N;} molecules. Let us consider a narrow
dNE7 spherical layer of the phase at some radiug from the

! central charge where the electric field can be considered uni-
form and integrate Eq(58) with sT=6D=0 from pg

; (ui(pB) — 1)

ah
= (u& (&) - uf) AN —0%/(32m%€Pegr?) to pg—q?/(32m2e“eor®) (normal com-
K dN*” ponents of pressure tengo¥We obtain
dNah
_ ar -~y _ar K
3 (i)~ wPE) L G0 ui(pf.D)— ' (pf D)= 1" (p§) — 1i'(p§ )

The second term on the right-hand side of E%7) can be =vi[p5— %/ (32m*e“€or*) —pg
converted, according to Eq46), into —(|05“—|.0§)d(VC”7 + (3272l egr )], (59)
=VY)/dN*”. It follows from geometrical rela-

tions that d(Ve7—V?*)/dN*"=47(r*7)?dr*?/dN*" and

dA*7/dN*7=8arr “7dre7/dN®” . Substitution of the first of whereq indicates the central electrical chargg,andp} are
these relations into Eq57) and then Eq(57) into Eq. (55), the pressure values far away from the chaggéVhile the
in which the second geometrical relation is used in the fourttvalue of the chemical potential"(pg) is the same for all
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values of the radius from the chardihe phasex around a YA @ (1 1)1 anrj 92
charge at the far away pressy§ is in the state of equilib- Wre"=T+ 6 (_B_ —a) o ~3
rium), this is not so for the potentigt®(p5,q,r). The de- Teole” € €0 o

1 (r)3 | 8wy (r7)3

parameters by symbol If the values of the chemical poten- —— 3 )
ren

tial u*(p5,q,r) were the same everywhere then, according re 3(rem?
to Eqg. (14), the value of the pressure componeﬁ(r) atr (63)
should be p§—q?/(327%€%er?) (if far away from the

charge the pressure &) but it is pf—q?/(32m2€Pe,r?).
g P o) Po—q°/(32m e"eol ) =W"™(r,) —W'™'(r,). The surface tension in Eq&2) and

The integration of Eq(58) was done ab = const. Therefore, X
in the phasex at the pressurp? the strength of electric field (63) depends on the electric charge of the nucleus. Rusanov
0 and Kunf have discussed this dependence.

around a charged conductor differs from the strength of elec®
tric field around the conductor in the phgB€eTo get the state
of the phasex where the pressure as well as the strength oI CONCLUSIONS

electric field coincide with the c_orrespond?ng quantities of A thermodynamically consistent formalism is applied to
the phases, and where the chemical potential values are thg.gjcylate the reversible work needed to form a small layer of
same everywhere in the phase we integrate Eq(58) at 5 new phaséembryd around a charged insoluble conducting
constant pressure, temperature, and radius along electrighere within a uniform macroscopic mother phase. To treat

pendence of the latter on the radius is indicated in the list of ( 1 1 )
X

P e

The energy barrier for a nucleation process is giver\by

charge fromq to qye®/e”. The result is the embryos of an arbitrary size that are not the critical nu-
clei, a constraint in the form of an external field is intro-
wf(pB,q\e €f)— ut(ph,a,r) duced. The value of the work of the formation of a noncriti-
cal cluster depends on the constraint used. When a critical
5 nucleus is of primary interest, the differences between the
_ v i _ i (60) constrained clusters are not essential. All these constrained
32m2eprt | €f € ' clusters give the same extremity conditions and the same

value for the reversible work of a critical cluster. But the

The value of the chemical potenti,ali"‘(pg,q\/W) is the value of WhICh constrained c_Iuster should be applled, when
same for all values of the radius. and there is no need t'e want, for instance, to estimate the evaporation rate of a
indicate to the chargg/e™/e? ' noncritical cluster? In the classical nucleation theory the

evaporation rate of various size clusters is estimated on the
basis of equilibrium size distribution, which is proportional
to exp(—W*9/k,T). Applying the values of differently con-
strained clusters we obtain different values of evaporation
oy g p o am  Vi2YT rate for these clusters of the same size. The constraint states
#i'(Po) — 1i'(Po G, ") = pan (62) are not equivalent to each other and in this respect we agree
with the conclusion of Kusak that the resulting con-
strained equilibrium states for which the reversible work of
formation are evaluated are relevant to nucleation if and only
if the states approximate closely the ones that have actually
20; %" q° been realized during nucleation.

can - 3272¢ For the vapor—hqwd.phase transition, taking |nto.ac_—

0 count the large density difference between vapor and liquid

( 1 1 ) o and the fact that the liquid properties are rather insensitive to

Using the Laplace equatiqid9) we can rewrite Eq(59)
for the radiusr“7 in the form

Subtracting Eq(60) from Eq. (61), we obtain

i (pg) — ui(ph) =

_ (62) the pressure, it is reasonable to assume that the evaporation
rate of a noncritical cluster coincides with the evaporation
rate of a critical cluster of the same size, i.e., it is reasonable
where ,Lia(pgﬂ) are the chemical potentials with the sameto treat noncritical clusters as critical clusters of the same
value for the whole phase with the pressure valuyag‘*’3 at  size. The latter case corresponds to a noncritical cluster con-
infinity (the indication of the central charge is not needed strained by an external field acting as a rigid partition posi-
Equation(62), where the potentigk{’(pg) is taken equal to tioned in the homogeneous vapor phase just outside the clus-
the potential in phasg, u®(pg) =, represents the set of ter and its interfacial transition zone. This external field does
equations that determine the composition and radius of aot influence the values of excess quantities. The term
critical nucleus. For small values of* and not very high =;(u®— x®)N®7 in Eq. (45) can be interpreted as a revers-
supersaturated vapor there are typically two values of théle work that is needed to carfy{*” molecules of the gas
radius that satisfy the equatiquai“(pg)zuf. The smaller phaseB from a given state to a gas phase state, which is in
value (r,) corresponds to a metastable and the larger valuequilibrium with a cluster of N;*”} molecules.

e.ﬂ e (ran)4’

(r,) to an unstablécritical) cluster. Substitution of Eq62) The new expression obtained in this paper for the work
into Eq.(49) yields the reversible work of a cluster, which is of embryo formation around a charged conducting sphere
in (metastable or unstablequilibrium with vapor, differs from the one commonly used in the nucleation litera-
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