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Reversible work of the formation of a layer of a new phase
on a spherical charged conductor within a uniform multicomponent
macroscopic mother phase
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Department of Physical Sciences, P.O. Box 64, FIN-00014 University of Helsinki, Finland
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A thermodynamically consistent formalism is applied to calculate the reversible work needed to
form a small layer of a new phase~embryo! around a charged insoluble conducting sphere within
a uniform macroscopic mother phase. To treat the embryos of arbitrary size which are not the critical
nuclei ~i.e., which are not fragments that are in unstable equilibrium with the mother phase!, a
constraint in the form of an external field is introduced. When a critical nucleus is of primary
interest, the specification of this constraint is not required. The results that are obtained for a critical
cluster do not depend on which path approaches a critical state. However, the properties of
noncritical clusters depend on the external constraining field and this effect is discussed in detail.
The obtained new expression for the work of embryo formation differs from the one commonly used
in the nucleation literature. The conditions of its extrema yield the correct conditions of equilibrium
between the critical nucleus and the mother phase. Expressions are derived that are suitable for
practical calculations of the size and composition of a critical nucleus. ©2003 American Institute
of Physics. @DOI: 10.1063/1.1620499#
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I. INTRODUCTION

The reversible work of the formation of a small fragme
of a new phase is of primary interest in the field of nuc
ation. A critical nucleus is a fragment of a new phase, wh
is in unstable equilibrium with the mother phase. The reve
ible work of a critical nucleus represents the free ene
barrier that a metastable system must surmount in pas
from a local to a global minimum for the system free ener
In a fully molecular theory the initial stages of this proce
would involve the formation of some appropriate molecu
cluster that later develops into a recognizable piece of
new phase. However, such molecular theories are not ge
ally available for practically relevant systems, and one
forced to rely on quasiphenomenological theories in wh
the initial fragment is treated as though it were a piece o
stable phase with an appropriate allowance of surface effe
e.g., a droplet in vapor–liquid phase transition. To estim
the free energy change involved in the formation of a pie
of the stable phase purely thermodynamic methods can
used.

Gibbs1 considered only a critical nucleus. Nishioka a
Kusaka2 extended Gibbs’ interfacial thermodynamics to no
critical ~arbitrarily sized! liquid clusters in the vapor of mul
ticomponent systems. Their aim was to clarify the unc
tainty over whether or not the size and compositi
dependence of interfacial tension must be taken into acc
in taking the extremity condition of the reversible work of
noncritical cluster formation, when deriving the size and
composition of a critical nucleus. The extension of interfac
thermodynamics was done under an additional constraint
10730021-9606/2003/119(20)/10733/12/$20.00
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maintained the number of molecules contained in a clus
Debenedetti and Reiss3 also extended Gibbs’ interfacial the
modynamics to noncritical clusters of a general system, o
stepping the limits of the system of a liquid cluster in
mother vapor phase. Their main interest was to get a ther
dynamically consistent and rigorous expression for the
versible work of the formation of a noncritical cluster, fro
which the work of the formation of the critical nucleus fo
lows as an extremum condition. In this context they focus
on explicit consideration of the constraint that prevents
free transfer of matter between the embryo and the mo
phase but did not pay attention to the effect that constr
exerts on the properties of a noncritical cluster. This eff
was not essential for their task since on approaching a crit
nucleus~the unstable equilibrium state for which a constra
is not required! the effect disappears. The difference betwe
the thermodynamic potential values of the initial and fin
states of a thermodynamic system~the metastable and un
stable equilibrium states in the present case! does not depend
on a path connecting these states. Different paths define
different constraints can be used to connect the initial a
final states of a thermodynamic system. Both Nishioka a
Kusaka2 and Debenedetti and Reiss3 obtained expression
for the reversible work of the formation of a noncritical clu
ter that differ from the one commonly used in the nucleat
literature.

Djikaev et al.4 extended the method of using constrain
by Debenedetti and Reiss3 to the case of the formation o
multicomponent liquid droplets on solid, soluble or insolub
particles and obtained a rigorous and thermodynamic
consistent expression for the reversible work of the form
3 © 2003 American Institute of Physics
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tion of an arbitrary droplet~which may not be in equilibrium
with the vapor phase!. They indicate that considering a non
equilibrium droplet as an equilibrium one without imposin
the necessary virtual constraints can lead to the depend
of the calculated free energy of embryo formation of the p
of embryo formation. As an example, Djikaevet al.4 consid-
ered the condensation of a single-component vapor on a s
soluble particle~consisting of a single species!. They used an
integro-differential method within the framework of th
common capillarity approximation~the presence of con
straints is disregarded!, and calculated the free energy of th
formation of a droplet on two different paths in the plane
the two variables of the state of the droplet. The obtain
values of free energy were different. In the present case
our opinion, the example is not convincing, because the
son of divergence may not be the application of the comm
capillarity approximation, but the thermodynamic incons
tency of the modeling expression of the disjoining press
used in the calculation. It is possible to connect the ini
and final states, given as the critical droplets of different s
with two different paths consisting of the sequences of cr
cal droplets of different size and composition. Integrati
along these paths that are close with the paths by Djik
et al.4 should also give different values as this integrati
will lead to integrals over disjoining pressure that are sim
to the corresponding integrals by Djikaevet al.4 and close to
them by value, but in the present case the paths consist o
sequences of unstable equilibrium states~no constraints are
needed!. Like Debenedetti and Reiss,3 Djikaev et al.4 did not
pay attention to effect the constraint exerts on the proper
of a noncritical cluster.

In this paper we consider heterogeneous nucleation o
charged core or on ions of multicomponent systems.5–8 We
extend the approach by Rusanov and Kuni,6 who considered
a critical nucleus formed on a charged conductive sphere
the arbitrarily sized clusters with the aim of obtaining t
expression for the reversible work of the formation of a no
critical cluster. Following Debenedetti and Reiss,3 we intro-
duce explicitly a constraint as an external field that preve
the free transfer of matter between the noncritical cluster
the mother phase. Differently from Debenedetti and Rei3

who imposed an external field to act on the transition zo
between the adjacent phases and a portion of the hom
neous interior of the droplet, we impose an external field
act in the environment of a cluster just outside of it and
transition zone. A constraint is not needed for a cluster
critical size. Enclosing of the cluster within an external fie
when the state of environment is changed keeps the sta
the cluster and its transition zone unchanged. They rema
equilibrium and, therefore, there is no need for an exter
field to act on the whole transition zone. When a critic
nucleus is of primary interest the specification of the parti
lar constraint is not required, but this is not so for a noncr
cal nucleus provided that the thermodynamic quantit
which are the equilibrium concepts, can be applied w
some accuracy also to a nonequilibrium system. For
stance, if the evaporation rate of a noncritical cluster is e
mated by considering ‘‘the equilibrium constants
evaporation–condensation reaction,’’ these constants
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evaluated on the basis of the reversible work of a noncrit
cluster. Therefore, the effect of a constraining field on
properties of a noncritical cluster is discussed in detail.

II. EQUATIONS FOR CONSTRAINED DROPLET
IN VAPOR

Consider a spherically symmetric multicomponent s
tem in the center of which is a charged particleg creating
electric field ~see Fig. 1!. Suppose that this is a small con
ducting sphere with a charge distributed uniformly on
surface surrounded by dielectric fluidsa, h, b. The phasea
is in equilibrium ~unstable! with the phaseh. Preliminarily,
the radiusr ah in Fig. 1 approximately indicates the positio
of the transition zone between the phasesa andh. The radius
r hb in Fig. 1 indicates the location of an external field th
prevents the free transfer of matter between the phasesh and
b. The phaseh, which is in unstable equilibrium with a drop
of the phasea, differs from the phaseb only by the compo-
sition and pressure, not by the aggregate state. Follow
Rusanov and Kuni,6 the fundamental equations for such
system can be obtained if a conductor with its charged co
ponents is included into the system. The whole system m
then be considered as without an external electric field,
ordinary thermodynamic equations may be applied. Fo
conical part of the system within the solid anglev, it follows
from the first and second laws of thermodynamics for
open system,

FIG. 1. Thermodynamic system of a constrained noncritical layer of t
phasesa and h around a charged conducting sphereg surrounded by the
phaseb. The interface between a conducting sphereg and a layer of dielec-
tric fluid a is indicated by the radius of the surface of tensionr ga. The
spherical layers of dielectric fluids,a and h, are in equilibrium with each
other. The radius of the surface of tensionr ah gives the position of their
interface. The phasesa andh are constrained by an external field preventin
mass transfer between the phasesb and h. The field operates in a narrow
zone between the phasesh andb at radiusr hb. The field does not influence
the transition zone between the phasesa andh.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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dU5TdS2dvE
0

R

pTr 2dr2pN~R!vR2dR

1(
i

m i
adNi

ah1(
i

m i
bdNi

b1(
j

m̃ j
gdNj

g , ~1!

whereU is the energy;T is the temperature;S is the entropy;
pT and pN are the tangential and normal components of
pressure tensor, respectively;R is the radius of an infinitely
distant boundary of the system~r is the radial coordinate!;
m i

a is the chemical potential of theith component of the
dielectric phasesa andh; m i

b is the chemical potential of the
ith component of the dielectric phaseb; m̃ j

g is the electro-
chemical potential of thejth component of the spherical con
ductor g, Ni

ah is the total number of molecules of theith
component of the dielectric phasesa andh; Ni

b is the num-
ber of molecules of theith component of the dielectric phas
b, andNj

g is the number of molecules of thejth component
of the conductor. The first term on the right-hand side of E
~1! is connected to the transfer of heat between the sys
and its environment; the fourth, fifth, and sixth terms a
connected with the transfer of mass. The second and t
terms describe the work of deformation. Using Euler’s the
rem and integrating Eq.~1! from v50 to a certain valuev,
while keeping the values of the intensive variables const
we get

U5TS2vE
0

R

pTr 2dr1(
i

m i
aNi

ah

1(
i

m i
bNi

b1(
j

m̃ j
gNj

g . ~2!

Taking the differential of Eq.~2! and comparing the resu
with Eq. ~1!, we get the Gibbs–Duhem relation,

SdT2vd bE
0

R

pTr 2dr c1pN~R!vR2dR

1(
i

Ni
ahdm i

a1(
i

Ni
bdm i

b1(
j

Nj
gdm̃ j

g50. ~3!

For electrochemical potentials we use the standard exp
sion

m̃ j
g5m j

g1ejw, ~4!

whereej is the charge of ionj, andw is the electrical poten-
tial of the conductor. If the conductor contains also neu
components, their electrochemical potentials will be co
verted into chemical potentials automatically with Eq.~4!
and, therefore, no separate terms need to be written for t
in Eqs.~1!–~3!. We use also the relationships

(
j

Nj
gej5q5D4pr 2, ~5!

w5E
0

R

Edr, ~6!

where q is the charge of the conductor;D and E are the
electric flux density and the electric field strength, resp
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tively ~directions from the center of the system are cons
ered to be positive;D andE become zero inside the condu
tor!.

Substitution of Eqs.~4!–~6! into Eqs. ~1!–~3! leads to
the following equations~we now set v54p for a full
sphere!,

dU5TdS2pN~R!4pR2dR1(
i

m i
adNi

ah1(
i

m i
bdNi

b

1(
j

m j
gdNj

g1E
0

R

~dD4pr 2!Edr, ~7!

U5TS24pE
0

R

pTr 2dr1(
i

m i
aNi

ah1(
i

m i
bNi

b

1(
j

m j
gNj

g1E
0

R

ED4pr 2dr, ~8!

SdT24pdS E
0

R

pTr 2dr D 1pN~R!4pR2dR1(
i

Ni
ahdm i

a

1(
i

Ni
bdm i

b1(
j

Nj
gdm j

g1E
0

R

~dE!D4pr 2dr50.

~9!

These equations refer to the whole conductor-dielectric s
tem. However, since the quantitiesEdD, ED, DdE possess
a local meaning, Eqs.~7!–~9! are applicable also to an
spherical part of the system. By writing each equation
two values ofR (r 8 and r 9) and subtracting one from th
other, a corresponding equation for the bulk phase of
dielectric can be obtained. For a spherical layer of the b
phase of the dielectric, we thus obtain equation

SdT24pS E
r 8

r 9
~dpT!r 2dr D 1(

i
Nidm i

1E
r 8

r 9
~dE!D4pr 2dr50, ~10!

wherer 8 andr 9 are kept fixed in the taking of variations. Fo
a thin spherical layer we obtain

dpT5svdT1(
i

r idm i1DdE, ~11!

wheresv is the entropy density, andr i is the number density
of the componenti. The variation ofR in Eq. ~9! at a given
physical state gives

pT2pN5ED. ~12!

In the case of a homogeneous and isotropic dielectric
have a linear relationshipD5ee0E and the integration of
Eq. ~11! at constantT andm i gives

pT5p01
ee0E2

2
5p01

D2

2ee0
, ~13!

where p0 is the pressure in the absence of electric fieldE
50 at the same values of the temperature and chemical
tentials;e is the dielectric constant ande0 is the permittivity
of vacuum. From Eqs.~12! and ~13! it follows
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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pN5p02
ee0E2

2
5p02

D2

2ee0
. ~14!

III. EXCESS QUANTITIES FOR AN INTERFACE

The system under consideration has four phases~the
conductorg, the fluid phasesa, h, andb! and two interfaces.
Between the phasesh andb, at the radiusr hb, an external
field is applied that prevents free transfer between the pha
We use the Gibbs’ concept of a dividing surface for the
terfaces and, also, for the region of an external field. T
Gibbs dividing surface is a mathematical construct wh
contour conforms to that of the physical transition zo
within which the properties of one phase continuou
change into those of the contiguous phase. The positio
this dividing surface along the local normal to the physi
contour can be chosen arbitrarily. Having made a choice,
treats the inhomogeneous system formally as though
various properties in the coexisting bulk phases remain
same as in the bulk phases up to the dividing surface.
accounting of the total amounts of the various extens
properties in the system, on this basis, will then be in er
For a given extensive quantity, the difference between
actual total amount and the ‘‘spurious’’ amount of the hyp
thetical system, where the bulk properties continue up to
dividing surface is defined as the surface excess. Prope
of the bulk phases are chosen to coincide with the prope
of the actual system off the transition zones of the interfac
In our case, the temperature and the chemical potential
ues of the hypothetical bulk system that are equal to
corresponding quantities of the actual system uniquely de
the state of bulk phases, provided that a bulk state with th
values exists. Hence, even if the properties of the real sys
do not reach their bulk values off the transition zone,
properties of hypothetical bulk system are well defined.

A. Surface of tension and surface tension

Let us consider a quantity* pTdV, wheredV is the vol-
ume of a portion of a system that is under the tangen
componentpT of the pressure tensor and integration exten
over the whole volume of the system. Due to the elec
field, the pressure is not uniform even in the bulk parts of
system. The quantitydv* pTdV is the work of deformation,
when the size of a conical system~see Fig. 1! is increased by
a solid angledv. Consider a layer containing the contiguo
phasesa andh and the interface between them. Suppose t
one spherical boundary of the radiusr 8 of the layer lies in
the phasea and another boundary of the radiusr 9 lies in the
phaseh, where these phases have bulk properties, i.e.,
properties of bulk matter at the same temperature and ch
cal potentials of the components as the actual system
The Gibbs dividing surface of the radiusr x is chosen to lie in
the interfacial region. The surface excess for the quan

* r 8
r 9pT4pr 2dr is prescribed by

E
r 8

r 9
pT4pr 2dr2E

r 8

r x
pT

a4pr 2dr2E
r x

r 9
pT

h4pr 2dr

524pr x
2gx . ~15!
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Practically, the integration in Eq.~15! is made over the in-
terfacial zone, wherepT substantially differs from the tan
gential components of the pressure tensor of the bulk pha
pT

a and pT
h . Equation~15! gives the one-to-one relationshi

between the radius of the dividing surfacer x and the quantity
gx , which is also called a surface tension.9 Following
Rusanov,10 the form of this relationship can be obtained b
differentiating Eq.~15! with respect tor x and keeping the
physical state of the system unchanged~this constancy is
denoted by* !,

S dgx

drx
D *

52
2gx

r x
1pT

a~r x!2pT
h~r x!. ~16!

According to Eqs.~5! and ~13!,

pT
a~r x!2pT

h~r x!5p0
a2p0

h1
q2

32p2e0r x
4 S 1

ea
2

1

ehD . ~17!

Substitution of this equation into Eq.~16! and the solution of
the resulting differential equation gives

gx5
K

r x
2

1
1

3
~p0

a2p0
h!r x2

q2

32p2e0r x
3 S 1

ea
2

1

ehD , ~18!

whereK is the integration constant. The value ofK is deter-
mined by the behavior of the tangential component of
pressure tensorpT(r ) in the transition zone. For a system
consisting of two bulk fluid phasesa and h separated by a
spherical membrane of the radiusr s with the uniform tension
g and zero thickness, the condition of mechanical equi
rium leads to the formula,9,10

pN
a~r s!2pN

h~r s!5
2g

r s
. ~19!

Due to electric field, the pressurespN
a andpN

h depend on the
radiusr. Equations~18! and~19! determine uniquely the val
ues of the radiusr s and the surface tensiong. By a mechani-
cal effect~by acting forces! the interfacial zone can be mod
eled as a membrane of the tensiong located at the radiusr s .
By Gibbs11 the dividing surface with this radiusr s that sat-
isfies Eq.~19! is called the surface of tension. The followin
relations connect the pressure differencep0

a2p0
h and the in-

tegration constantK with the parameters of the surface
tension,

p0
a2p0

h5
2g

r s
1

q2

32p2e0r s
4 S 1

ea
2

1

ehD , ~20!

K5
1

3
gr s

21
q2

48p2e0r s
S 1

ea
2

1

ehD . ~21!

In the absence of electric field the derivative with respec
the radiusr x at the left-hand side of Eq.~16! is zero at the
surface of tension,9 i.e., the surface of tension and the respe
tive surface tension correspond to the minimum point of
functiongx(r x) of Eq. ~18!. This is not the case for a charge
droplet.10 Using Eq.~14!, the Laplace equation~19! may be
presented as
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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g

r s
5

g0

r 0s
1

1

32p2e0
S 1

eh
2

1

eaD q2

r s
4

. ~22!

In the following, the surfaces of tension are chosen as
dividing surfaces for the interfaces between the phasesg
and a, and a and h. Rusanov and Kuni6 have presented a
more detailed discussion of interface properties, also con
ering the dependencies of these properties on the size
charge of the critical nucleus. This discussion is also ap
cable to the interfaces between the phases ofg anda, anda
and h. Between the phasesh and b, at the radiusr hb, an
external field is applied that prevents free transfer of m
ecules between the phases. The external field acts the in
of the dividing surface of the radiusr hb but, differently from
Debenedetty and Reiss,3 does not reach the transition zon
between the phasesa andh. As the external field is suppose
to prevent free transfer of molecules between the phases~be-
tweenh andb, h is in equilibrium witha!, there should exist
a region next to the radiusr hb that the molecules canno
reach, i.e., where an energy barrier exists with energy va
not attainable for molecules. By such an effect, this part
the field can be taken as ‘‘a rigid partition’’ standing at t
radius r hb. The volume of this region is considered neg
gible. If an external field acts only as ‘‘a rigid partition’’ with
zero thickness, then the pressure changes stepwise at th
dius r hb and Eq.~15! ~in the notationa should be replaced
by h, h by b and r x by r hb) gives usgx50. The Laplace
equation~19! is not satisfied and the dividing surface of th
radiusr hb is not the surface of tension. If an external fie
causes the tangential component of the pressure tensorpT to
be higher thanpT

h inward of the dividing surface of the ra
dius r hb, then, as it follows from Eq.~15!, the surface ten-
sion atr hb will be negative. In the opposite case it will b
positive. In general, the dividing surface of the radiusr hb is
not the surface of tension. Suppose now that the part of
external field that correspond to ‘‘a rigid partition’’ is shifte
towards the larger value of the radius, and around the ra
r hb the external field causes a well for the values of
tangential componentpT of the pressure tensor~see Fig. 2!.
Suppose also that the tangential componentpT of the pres-

FIG. 2. ‘‘A well’’ of a tangential component of pressure caused by a c
straining external field in the phaseh.
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sure tensor reaches the value of the bulk phaseb at the
position of ‘‘a rigid partition.’’ In the inward direction from
r hb the componentpT reaches the value of the bulk phaseh.
If the depth and width of the well are chosen such that
surface tension calculated by Eq.~15! gives a value that sat
isfies Eq.~19! ~in the notationa should be replaced byh, h
by b andr s or r x by r hb), then the dividing surface~a math-
ematical construct! with the radiusr hb is the surface of ten-
sion.

B. Illustrative case: An excess quantity of an external
field acting in an ideal gas

Let us consider, for the purpose of illustration, the effe
of external field more detailed, when the phasesh and b
behave as an ideal gas. It follows from the mechanical eq
librium that

¹•P&52(
i

r i¹c i~r !, ~23!

whereP& is the pressure tensor andc i(r ) is the potential of an
external field acting on a molecule of theith component
@Debenedetti and Reiss3 used the notationc i f (r )]. In case of
spherical symmetry Eq.~23! reduces to10,12

dpN

dr
1

2

r
~pN2pT!52(

i
r i

d

dr
c i~r !. ~24!

We suppose that the phaseh remains gaseous in the regio
of an external field. Substituting Eqs.~13! and ~14! ~these
equations remain valid also in the presence of an exte
field! into Eq. ~24! we obtain

(
i

dp0i

dr
1

q2

2e2e0r 4 (i

de

dr0i

dr0i

dr
52(

i
r0i

d

dr
c i~r !,

~25!

wherep0i is the partial pressure of theith component in the
absence of electric field at the same values of the tempera
and chemical potentials. A change in the density of the ph
h due to electric field is proportional to the square of elect
field strength and, therefore, should not be taken into acco
in the differentials of Eq.~25! as this will depart from the
validity range of the used linear relationshipD5ee0E. The
densities in Eq.~25! are the densities that correspond to t
absence of electric field. According to the Debye equation13

de

dr0i
5a i1

pei
2

3e0kbT
, ~26!

where a i and pei are the polarizability and the permane
dipole moment of the molecules of theith component, re-
spectively, andkb is the Boltzmann constant. Taking int
account that for gas phase, dielectric permittivity is close
one,e'1, applying Eq.~25! separately for each componen
and using the ideal gas law we obtain

-
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p0i~r !'p0h i expS 2E
r 8

r 1

kbT1
q2

2e0r 4 Fa i1
pei

2

3e0kbTG
3

dc i~r !

dr
drD , ~27!

wherep0h i is the partial pressure of theith component in the
inner part of the phaseh at the radiusr 8 where the potentia
c i(r 8) has a constant value, which is taken zero. For m
ecules with a permanent dipole moment, the Debye equa
is valid for the interaction energies of electric field and
dipole smaller than thermal energykbT. Accordingly, Eq.
~27! is valid only at such radius values for which this cond
tion is fulfilled. At these radius values, the term with th
polarizability a i and the permanent dipole momentpei can
be omitted in the exponent of Eq.~27! compared withkbT,
and Eq. ~27! reduces to the barometric formulap0i(r )
5p0h i exp(2ci(r)/kbT). The chemical potential of theith
component is given by the equationm i5m i

intr1c i(r ) ~De-
benedetti and Reiss3!, wherem i

intr is the intrinsic chemical
potential in the region of an external field. Substituting E
~13!, where the pressurep05( i p0i , into Eq. ~15! gives an
expression for the calculation of the excess quantityg at the
radius r x5r hb. Thus, various values for surface tension
an excess quantity of the dividing surface of the radiusr hb

can be obtained depending on an external fieldc i(r ) applied
to constrain a noncritical cluster.

C. Surface polarization and the surface excess
number of molecules

The excess surface polarization is related to the exc
strength of an electric field. Consider the last term in Eq.~7!.
According to Eqs.~1!, ~4!, and ~6! this term was originally
wdq. Its excess quantity, with taking Eq.~6! into account, is6

dqE
r 8

r ah

~E2Ea!dr1dqE
r ah

r 9
~E2Eh!dr, ~28!

where the integration is carried out over the whole thickn
of the surface layer between the phasesa and h. Applying
the formulas of electrostaticsD5e0E1P and D5Da

5Dh, Eq. ~28! can be represented as2dqP̄/e0 , where

P̄5E
r 8

r ah

~P2Pa!dr1E
r ah

r 9
~P2Ph!dr. ~29!

The state of polarization depends on an external elec
field. There is a possibility that a spontaneous polarizat
exists in the surface layer, which should be taken into
count. Thus in the absence of electric fieldDa5Dh50, Pa

5Ph50, Eq. ~29! reduces to

P̄05E
r 8

r 9
P0dr, ~30!

whereP0 is the spontaneous polarization.P̄0 /e0 is the elec-
trical potential difference between adjacent phases acros
interface@see Eqs.~28! and~29!#. Surface excess number o
molecules is defined as
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r 8

r s
~r i2r i

m!4pr 2dr1E
r s

r 9
~r i2r i

n!4pr 2dr5N̄i
mn ,

~31!

wherem andn denote the phases (m5g, a andh, n5a, h
andb!. The total number of theith component molecules in
the phasesg andb, Ni

g andNi
b , respectively, are the known

values. The number of molecules,Ni
mh , in a hypothetical

system where the bulk properties remain the same up to
dividing surfaces, can be calculated when the radiuses of
dividing surfaces are given. Taking this into account we
write the surface excess numbersN̄mn (mn5$ga,hb%) for
the interfaces between the phasesa andg, and between the
phasesh andb, in another way

N̄i
mn5~N̄i

mn2~Ni
m2Ni

mh!!1~Ni
m2Ni

mh!5N̄i
n1N̄i

m ,
~32!

where two symbols on the right-hand side of Eq.~32! are
introduced to denote the parenthesized terms in the middl
Eq. ~32!, respectively. For the interface between the phasea
andh such partition is not unique and not requisite.

D. Fundamental equations for a spherical interface

Introducing the excess quantities in the above way,
obtain from Eqs.~7! to ~9! the fundamental equations for
spherical interface in the field of a central charge,

dŪmn5TdS̄mn1gmndAmn

1(
i

m i
mdN̄i

m1(
i

m i
ndN̄i

n2
P̄mndq

e0
, ~33!

Ūmn5TS̄mn1gmnAmn1(
i

m i
mN̄i

m1(
i

m i
nN̄i

n2
P̄mnq

e0
,

~34!

S̄mndT1Amndgmn1(
i

N̄i
mdm i

m1(
i

N̄i
ndm i

n2
qd P̄mn

e0
50.

~35!

It is assumed that chemical potentials for all the species
the conductor are uniform throughout, i.e., the value o
chemical potential does not depend on the position of a m
ecule in the conductor. In case of the interface between
phasesa andh the termN̄i

a1N̄i
h(m i

a5m i
h) must be taken, as

indicated by Eq.~32!, asN̄i
ah .

When the thickness of the layer of the phasea is so
small that the properties of the phasea do not reach their
bulk values, then the excess quantities for the two bound
surfaces of the phasea cannot be uniquely separated an
they should be considered as forming one united exc
quantity.

IV. THE WORK OF FORMATION

Using the excess quantities introduced above, we
rewrite Eq.~8! for the internal energy of a noncritical cluste
around a spherical charged conductor. We do this in portio
For the second term we obtain
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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24pE
0

R

pTr 2dr52Vgapg1ggaAga24pE
r ga

r ah

pT
ar 2dr

1gahAah24pE
r ah

r hb

pT
hr 2dr

1ghbAhb24pE
r hb

R

pT
br 2dr, ~36!
of
-

a

a

iu

is
y

s
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where Vga is the volume of the conductor inside the su
face of tension ofr ga, pg is the isotropic pressure in th
volume of the conductor, andAmn54p(r mn)2 (mn
5$ga,ah;nb%). Integration by parts, where Eqs.~11! and
~13! and r 2dr5d(r 3/3) are used, allows Eq.~36! to be ex-
pressed as
24pE
0

R

pTr 2dr52Vgapga1ggaAga2p0
a~Vah2Vga!2

q2

8pe0ea S 1

r ga
2

1

r ahD 1gahAah2p0
h~Vhb2Vah!2

q2

8pe0eh

3S 1

r ah
2

1

r hbD 1ghbAhb2p0
b~V2Vhb!2

q2

8pe0eb S 1

r hb
2

1

RD , ~37!
m
he

e
t

cov-
where Vmn is the volume inside the surface of tension
r mn (mn5$ga,ah;nb%), and V is the volume of the sys
tem.

The last term of Eq.~8! can be rewritten as

E
0

R

ED4pr 2dr52
qP̄ga

e0
1

q2

4pe0ea S 1

r ga
2

1

r ahD
2

qP̄ah

e0
1

q2

4pe0eh S 1

r ah
2

1

r hbD
2

qP̄hb

e0
1

q2

4pe0eb S 1

r hb
2

1

RD . ~38!

For a spherical charged conductor surrounded with the ph
b of dielectric fluid Eq.~8! can be rewritten as

Ub5TSb2Vgbpgb1ggbAgb2p0
b~V2Vgb!

1
q2

8pe0eb S 1

r gb
2

1

RD
1(

i
m i

bNi
b1(

j
m j

gbNj
g2

qP̄gb

e0
. ~39!

Let us derive the formula for the reversible work to form
noncritical cluster constrained to contain$Ni

ah ,i 51,2,...,n%
molecules. We consider a multicomponent system of rad
R in which T and $m i

b ,i 51,2,...,n% ~hereafter the simplified
notation$m i

b% is used! are kept constant. The temperature
uniform throughout the system. For this open boundary s
tem ~the system is closed with respect to the component
the conducting sphere!, reversible work~we apply here the
approach used by Nishioka and Kusaka,2 but the derivation
by Debenedetti and Reiss3 can be applied as well! is given by
a change of the following thermodynamic potential,2,14

L5U2TS2(
i

m i
bNi , ~40!
se

s

s-
of

whereU, S, $Ni% represent the values for the entire syste
~numbers$Ni% do not contain values for the species of t
conducting sphere!.

Indicating values for the state of a homogeneous phasb
containing a conducting charged sphere with superscripb
we obtain from the above equation, where Eq.~39! is substi-
tuted that

Lb5Ub2TSb2(
i

m i
bNi

b

52Vgbpgb1ggbAgb2p0
b~V2Vgb!

1
q2

8pe0eb S 1

r gb
2

1

RD
1(

j
m j

gbNj
g2

qP̄gb

e0
. ~41!

For the state of the system, where a conducting sphere,
ered with a two-phase layer of$Ni

ah% molecules~phasesa
andh are in equilibrium!, exists together with the phaseb, L
can be obtained by substituting Eqs.~8!, ~37!, and~38! into
Eq. ~40!, resulting in

L5G1Ḡ1A1Ā1H1H̄1B2(
i

m i
bNi

ah , ~42!

where

G52Vgapga1(
j

m j
gaNj

gh , ~42a!

Ḡ5ggaAga1(
j

m j
gaN̄j

g1(
i

m i
aN̄i

a2
qP̄ga

e0
, ~42b!
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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A524pE
r ga

r ah

pT
ar 2dr1(

i
m i

aNi
ah14pE

r ga

r ah

DEar 2dr

52p0
a~Vah2Vga!

1
q2

8pe0ea S 1

r ga
2

1

r ahD 1(
i

m i
aNi

ah , ~42c!

Ā5gahAah1(
i

m i
aN̄i

ah2
qP̄ah

e0
, ~42d!

H524pE
r ah

r hb

pT
hr 2dr1(

i
m i

aNi
hh14pE

r ah

r hb

DEhr 2dr

52p0
h~Vhb2Vah!1

q2

8pe0eh S 1

r ah
2

1

r hbD
1(

i
m i

aNi
hh , ~42e!

H̄5ghbAhb1(
i

m i
aN̄i

h1(
i

m i
bN̄i

b2
qP̄hb

e0
, ~42f!

B524pE
r hb

R

pT
br 2dr14pE

r hb

R

DEbr 2dr

52p0
b~V2Vhb!1

q2

8pe0eb S 1

r hb
2

1

RD , ~42g!

Ni
ah5N̄i

a1Ni
ah1N̄i

ah1Ni
hh1N̄i

h . ~42h!

In Eqs. ~42! capital letters indicate the bulk phasesg, a, h,
andb, respectively, and capital letters with bars indicate
interfaces between them.

Thus the reversible workWrev,g to form a general-size
cluster is given by

Wrev,g5L2Lb

5Wn2~p0
a2p0

b!Vah1(
i

~m i
a2m i

b!Ni
ah

1gahAah2
q2

8pe0
S 1

ea
2

1

ebD 1

r ah

2
qP̄ah

e0
2~p0

h2p0
b!~Vhb2Vah!1ghbAhb

2
q2

8pe0
S 1

eh
2

1

ebD S 1

r hb
2

1

r ahD 2
qP̄hb

e0
, ~43!

where we have used the notation,

Wn52Vgapga1Vgbpgb1(
j

~m j
ga2m j

gb!Nj
g

1ggaAga2ggbAgb1~p0
aVga2p0

bVgb!

1
q2

8pe0
S 1

ear ga
2

1

ebr gbD 2
qP̄ga

e0
1

qP̄gb

e0
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e

5(
j

~m j
ga2m j

gb!Nj
g1

ggaAga

3
2

ggbAgb

3

1
q2

6pe0
S 1

ear ga
2

1

ebr gbD 2
qP̄ga

e0
1

qP̄gb

e0
. ~44!

Equations~5!, ~13!, ~14!, and ~19! have been used to trans
form the left-hand side of Eq.~44! into the right-hand side.
Quantity Wn is the total work of the transfer of a charge
particle from the phaseb into the phasea at the given tem-
perature and chemical potentials in the phasesa andb.6 For
example, if the particle is a single ion, the phasea is a liquid,
and the phaseb is a gas, thenWn is the solvation work. The
quantity is not associated with the nucleus of a new ph
and can be measured in an independent experiment.

If the volume of the phasea is remarkably larger than
the volume of the interface,Vah2Vga@Vhb2Vah, and,
therefore, we can taker ah'r hb, or say that the phasea is a
liquid phase and the phasesh andb are the vapor phases@the
difference in the number densities of molecules in the liq
and vapor phases is typically 3–4 orders of magnitude
allows to neglect the seventh and ninth terms on the rig
hand side of Eq.~43!#, then the above equation can be sim
plified,

Wrev,g5Wn2~p0
a2p0

b!Vah1(
i

~m i
a2m i

b!Ni
ah

1~gah1ghb!Aah1
q2

8pe0
S 1

eb
2

1

eaD 1

r ah

2
q~ P̄ah1 P̄hb!

e0
. ~45!

In the absence of a charged conductor (q50, Wn50) this
equation reduces, as it should, to the equation by Nishi
and Kusaka2 and Debenedetti and Reiss.3 The result of Nish-
ioka and Kusaka2 is obtained if a constraining external fiel
acts as a rigid partition positioned in the homogeneous va
phase just outside the cluster, and a liquid cluster in vapo
considered. In this case the term (p0

h2p0
b)(Vah2Vga) in

Eq. ~43! is numerically negligible compared with other term
and ghb50. As long asgah@ghb, P̄ah@ P̄hb and the ex-
cess number of molecules for the diving surface of the rad
r ah, uN̄i

ahu@uN̄i
hbu1(r i

h2r i
b)(Vhb2Vah), the effect of

constraint on the properties of a noncritical cluster is n
essential.

If the bulk phasea is incompressible, then the integra
tion of Eq. ~11! at E50, the temperature,T, and the compo-
sition of the phase are kept invariant and thereafter the m
tiplication with Vah2Vga gives

~p0
a2p0

b!~Vah2Vga!5(
i

Ni
ah~m i

a~p0
a!2m i

a~p0
b!!,

~46!

where Ni
ah5(Vah2Vga)r i and m i

a(p0
a,b) is the chemical

potential of the componenti in the phasea at the pressure
p0

a,b in the absence of electric field, respectively. Substi
tion of this equation into Eq.~45! yields
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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Wrev,g5Wn2~p0
a2p0

b!Vga1(
i

Ni
ah~m i

a~p0
b!2m i

b!

1(
i

~m i
a~p0

a!2m i
b!~Ni

ah2Ni
ah!1~gah

1ghb!Aah1
q2

8pe0
S 1

eb
2

1

eaD 1

r ah

2
q~ P̄ah1 P̄hb!

e0
. ~47!

If to take that the work of the solvation of an ion is

Wn5~p0
a2p0

b!Vga1
q2

8pe0
S 1

ea
2

1

ebD 1

r ga
, ~48!

which corresponds to the work required to carry~the surface
effects on the sphere are ignored! a charged sphere with th
radiusr ga and volumeVga from the phaseb at the pressure
p0

b ~far away from the charged sphere! into the phasea at the
pressurep0

a , then Eq.~47! reduces to

Wrev,g51(
i

Ni
ah~m i

a~p0
b!2m i

b!1(
i

~m i
a~p0

a!2m i
b!

3~Ni
ah2Ni

ah!1gahAah1
q2

8pe0
S 1

eb
2

1

eaD
3S 1

r ah
2

1

r gaD 2
qP̄ah

e0
, ~49!
h

e

b
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where it is assumed that for a given constraintghb50 and

P̄hb50. This equation, if we ignore the second and, fr
quently also, the last term, is usually applied in papers
ion-induced nucleation in gas phase~Yue and Chan,5 Raes
and Janssens,7 White and Kassner,15 to mention some!.

V. THE CONDITION OF A CRITICAL NUCLEUS

The condition that a cluster formed be a critical nucle
is given by the extremity condition of Eq.~43! under con-
stant values forT, $m i

b% andV. We keep fixed also the radiu
r hb, denoting the position of the external field. Taking t
differential of Eq.~43!, it follows that

dWrev,g5dG1dḠ1dA1dĀ1dH1dH̄2(
i

m i
bdNi

ah

50. ~50!

The differentialdB50 as the state of the phaseb is kept

constant. We consider in detail the termsdA anddĀ. Other
terms can be dealt with analogically. For the termdA we
obtain
dA5dS 24pE
r ga

r ah

pT
ar 2dr1(

i
m i

aNi
ah14pE

r ga

r ah

DEar 2dr D
5@2pT

a~r ah!1qEa~r ah!/Aah#Aahdrah1@pT
a~r ga!2qEa~r ga!/Aga#Agadrga

1(
i

m i
adNi

ah24pE
r ga

r ah

~dpT
a!r 2dr1(

i
Ni

ahdm i
a14pE

r ga

r ah

D~dEa!r 2dr. ~51!
lly
The last three terms of Eq.~51! vanish due to the Gibbs–
Duhem relation, Eq.~10!. Terms in square brackets, whic
are the collections of differentials ofA with respect tor ah

andr ga, respectively, are the normal components of the pr
sure tensor. It follows that

dĀ5
2gah

r ag
Aahdrah1(

i
m i

adN̄i
ah1Aahdgah

1(
i

N̄i
ahdm i

a2
qdP̄ah

e0
, ~52!

where the last three terms vanish because of the Gib
Duhem relation for the interface, Eq.~35!. The first term on
the right-hand side of Eq.~51! ~in square brackets! together
with the corresponding term ofdH and the first term of Eq.
s-

s–

~52! vanish due to the Laplace Eq.~19!. The application of
the Gibbs–Duhem relations, Eqs.~10! and ~35!, and the
Laplace equation to all terms in Eq.~50! gives

dWrev,g5(
i

m i
a~dN̄i

a1dNi
ah1dN̄i

ah1dNi
hh1dN̄i

h!

2(
i

m i
bdNi

ah50. ~53!

It follows from Eq. ~53! that the condition for a critical
nucleus is

m i
a5m i

b , i 51,2,...,n. ~54!

In nucleation literature the extremity conditions are usua
taken with respect to the number of moleculesNi

ah in a
cluster. Therefore, let us consider molecule numbers$Ni

ah%
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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as independent variables and show that the extremity co
tions with respect to these variables result in Eq.~54!. Thus
the state of the system of a noncritical cluster in the phasb
are determined by variables (T,$Ni

ah%,$m i
b%). The state of

the system containing a critical cluster does not depend o
to

bs

m

e

e

f

rt
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i-

a

path by which it is approached. By applying the extrem
condition for simplicity to Eq.~49! @in the case of incom-
pressibility of the phasea the following reasoning gives the
same result also for Eq.~43!# underT, $m i

b%, r ga kept invari-
ant, we obtain
dWrev,g

dNi
ah

5(
k

~mk
a~p0

b!2mk
b!

dNk
ah

dNi
ah

1(
i

Ni
ah

dm i
a~p0

b!

dNi
ah

1(
k

~mk
a~p0

a!2mk
b!

d~Nk
ah2Nk

ah!

dNi
ah

1gah
dAah

dNi
ah

1(
k

dmk
a~p0

a!

dNi
ah ~Nk

ah2Nk
ah!1

dgah

dNi
ah

Aah2
q

e0

dP̄ah

dNi
ah

2
q2

8pe0
S 1

eb
2

1

eaD 1

~r ah!2

drah

dNi
ah

1
q2

8pe0
S 1

r ah
2

1

r gaD 1

~ea!2

dea

dNi
ah

50. ~55!
t
al

c-

s,

ni-

w

uni-
In Eq. ~55! the fifth, sixth, and seventh terms vanish due
the Gibbs–Duhem Eq.~35!. It is assumed thatNi

ah>Ni
ah

1N̄i
ah . The second term cancels because of the Gib

Duhem equation for the bulk phase@Eq. ~10!, whereD50
and dT5dp0

b50]. Next, we transform the Gibbs–Duhe
Eq. ~10! and then apply it to cancel the last term in Eq.~55!.
Expressing the pressurepT in Eqs.~10!–~13! and, thereafter,
replacing dp0 with (r idm i (p0

a ,q50) @the result of Eq.
~11!, whereD50 anddT50] in the obtained expression, w
get

2(
i

Ni
ahdm i

a~p0
a ,q50!2

q2

8pe0~ea!2 S 1

r ga
2

1

r ahD
3dea1(

i
Ni

ahdm i
a~p0

a ,q!50. ~56!

Hence, if to takedm i
a(p0

a ,q50)5dm i
a(p0

a ,q) ~the variation
of chemical potentials is carried out so that their chang
values remain the same throughout the bulk phasea!, then
de50 and the last term of Eq.~55! vanishes. The first term o
Eq. ~55! can be transformed as follows:

(
k

~mk
a~p0

b!2mk
b!

dNk
ah

dNi
ah

5(
k

~mk
a~p0

a!2mk
b!

dNk
ah

dNi
ah

2(
k

~mk
a~p0

a!2mk
a~p0

b!!
dNk

ah

dNi
ah

. ~57!

The second term on the right-hand side of Eq.~57! can be
converted, according to Eq.~46!, into 2(p0

a2p0
b)d(Vah

2Vga)/dNi
ah . It follows from geometrical rela-

tions that d(Vah2Vga)/dNi
ah54p(r ah)2drah/dNi

ah and
dAah/dNi

ah58pr ahdrah/dNi
ah . Substitution of the first of

these relations into Eq.~57! and then Eq.~57! into Eq. ~55!,
in which the second geometrical relation is used in the fou
–

d

h

term, result in Eq.~54! because of the Laplace equation~19!
@in the notation of Eq.~19! h should be replaced byb#.

Let us now express the chemical potentialm i
a(p0

a) of the
componenti in the phasea in the field of a central charge a
the pressurep0

a far away from the charge and at the electric
field q/(4peae0r 2) through the chemical potentialm i

a(p0
b)

of the same phase, but at the far away pressurep0
b and at the

electrical fieldq/(4pebe0r 2), i.e., at the pressure and ele
trical field strength values of the phaseb. In both cases the
phase a is in equilibrium and the chemical potential
m i

a(p0
a) and m i

a(p0
b), do not depend on the radiusr from

central charge.
Consider at first an incompressible bulk phase in a u

form electric field. Variation of Eq.~12! and substitution of it
into Eq. ~10!, and then differentiation of Eq.~10! with re-
spect toNi , yield

v isvdT2v idpN1dm i2v iEdD50, ~58!

where v i5(]V/]Ni)uNkÞ i ,T,D,pN
is the partial volume per

molecule of the componenti, andV is the volume of a sys-
tem containing$Ni% molecules. Let us consider a narro
spherical layer of the phasea at some radiusr from the
central charge where the electric field can be considered
form and integrate Eq.~58! with dT5dD50 from p0

b

2q2/(32p2ebe0r 4) to p0
a2q2/(32p2eae0r 4) ~normal com-

ponents of pressure tensor!. We obtain

m i
a~pN

a ,D !2m i
a~pN

b ,D !5m i
a~p0

a!2m i
a~p0

b ,q,r !

5v i@p0
a2q2/~32p2eae0r 4!2p0

b

1q2/~32p2ebe0r 4!#, ~59!

whereq indicates the central electrical charge,p0
a andp0

b are
the pressure values far away from the chargeq. While the
value of the chemical potentialm i

a(p0
a) is the same for all
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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values of the radius from the charge~the phasea around a
charge at the far away pressurep0

a is in the state of equilib-
rium!, this is not so for the potentialm i

a(p0
b ,q,r ). The de-

pendence of the latter on the radius is indicated in the lis
parameters by symbolr. If the values of the chemical poten
tial m i

a(p0
b ,q,r ) were the same everywhere then, accord

to Eq. ~14!, the value of the pressure componentpN
b(r ) at r

should be p0
b2q2/(32p2eae0r 4) ~if far away from the

charge the pressure isp0
b) but it is p0

b2q2/(32p2ebe0r 4).
The integration of Eq.~58! was done atD5const. Therefore,
in the phasea at the pressurep0

b the strength of electric field
around a charged conductor differs from the strength of e
tric field around the conductor in the phaseb. To get the state
of the phasea where the pressure as well as the strength
electric field coincide with the corresponding quantities
the phaseb, and where the chemical potential values are
same everywhere in the phasea, we integrate Eq.~58! at
constant pressure, temperature, and radius along ele
charge fromq to qAea/eb. The result is

m i
a~p0

b ,qAea/eb!2m i
a~p0

b ,q,r !

5
v iq

2

32p2e0r 4 S 1

eb
2

1

eaD . ~60!

The value of the chemical potentialm i
a(p0

b ,qAea/eb) is the
same for all values of the radius, and there is no need
indicate to the chargeqAea/eb.

Using the Laplace equation~19! we can rewrite Eq.~59!
for the radiusr ah in the form

m i
a~p0

a!2m i
a~p0

b ,q,r ah!5
v i2gah

r ah
. ~61!

Subtracting Eq.~60! from Eq. ~61!, we obtain

m i
a~p0

a!2m i
a~p0

b!5
2v ig

ah

r ah
2

q2

32p2e0

3S 1

eb
2

1

eaD v i

~r ah!4
, ~62!

wherem i
a(p0

a,b) are the chemical potentials with the sam
value for the whole phasea with the pressure valuep0

a,b at
infinity ~the indication of the central charge is not neede!.
Equation~62!, where the potentialm i

a(p0
a) is taken equal to

the potential in phaseb, m i
a(p0

a)5m i
b , represents the set o

equations that determine the composition and radius o
critical nucleus. For small values ofr ga and not very high
supersaturated vapor there are typically two values of
radius that satisfy the equationm i

a(p0
a)5m i

b . The smaller
value (r 1) corresponds to a metastable and the larger va
(r 2) to an unstable~critical! cluster. Substitution of Eq.~62!
into Eq.~49! yields the reversible work of a cluster, which
in ~metastable or unstable! equilibrium with vapor,
Downloaded 12 Nov 2003 to 128.214.205.5. Redistribution subject to A
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e

Wrev5
gahAah

3
1

q2

6pe0
S 1

eb
2

1

eaD 1

r ah
2

qP̄ah

e0
2

q2

8pe0

3S 1

eb
2

1

eaD F 1

r ga
1

~r ga!3

3~r ah!4G1
8pgah

3

~r ga!3

r ah
.

~63!

The energy barrier for a nucleation process is given byDW
5Wrev(r 2)2Wrev(r 1). The surface tension in Eqs.~62! and
~63! depends on the electric charge of the nucleus. Rusa
and Kuni6 have discussed this dependence.

VI. CONCLUSIONS

A thermodynamically consistent formalism is applied
calculate the reversible work needed to form a small laye
a new phase~embryo! around a charged insoluble conductin
sphere within a uniform macroscopic mother phase. To tr
the embryos of an arbitrary size that are not the critical
clei, a constraint in the form of an external field is intr
duced. The value of the work of the formation of a noncri
cal cluster depends on the constraint used. When a cri
nucleus is of primary interest, the differences between
constrained clusters are not essential. All these constra
clusters give the same extremity conditions and the sa
value for the reversible work of a critical cluster. But th
value of which constrained cluster should be applied, wh
we want, for instance, to estimate the evaporation rate o
noncritical cluster? In the classical nucleation theory
evaporation rate of various size clusters is estimated on
basis of equilibrium size distribution, which is proportion
to exp(2Wrev,g/kbT). Applying the values of differently con-
strained clusters we obtain different values of evaporat
rate for these clusters of the same size. The constraint s
are not equivalent to each other and in this respect we a
with the conclusion of Kusaka16 that the resulting con-
strained equilibrium states for which the reversible work
formation are evaluated are relevant to nucleation if and o
if the states approximate closely the ones that have actu
been realized during nucleation.

For the vapor–liquid phase transition, taking into a
count the large density difference between vapor and liq
and the fact that the liquid properties are rather insensitiv
the pressure, it is reasonable to assume that the evapor
rate of a noncritical cluster coincides with the evaporat
rate of a critical cluster of the same size, i.e., it is reasona
to treat noncritical clusters as critical clusters of the sa
size. The latter case corresponds to a noncritical cluster c
strained by an external field acting as a rigid partition po
tioned in the homogeneous vapor phase just outside the c
ter and its interfacial transition zone. This external field do
not influence the values of excess quantities. The te
( i(m i

a2m i
b)Ni

ah in Eq. ~45! can be interpreted as a rever
ible work that is needed to carryNi

ah molecules of the gas
phaseb from a given state to a gas phase state, which is
equilibrium with a cluster of$Ni

ah% molecules.
The new expression obtained in this paper for the w

of embryo formation around a charged conducting sph
differs from the one commonly used in the nucleation lite
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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ture; the expression reduces to the expression by Debene
and Reiss3 and Nishioka and Kusaka2 for uncharged clusters
Its extrema conditions yield the correct conditions of eq
librium between the critical nucleus and the mother pha
The expressions, which are obtained in a thermodynamic
consistent way, form a basis for practical calculations of
size and composition of a critical as well as a noncriti
clusters on a charged core and their reversible work of
mation.
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13C. J. F. Böttcher,Theory of Electrical Polarization~Elsevier, Amsterdam,

1973!, Vol. 1.
14H. Reiss,Methods of Thermodynamics~Blaisdell, New York, 1965!.
15D. R. White and J. L. Kassner, Jr., J. Aerosol Sci.2, 201 ~1971!.
16I. Kusaka, J. Chem. Phys.111, 3771~1999!.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp


