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We carry out Monte Carlo simulations of physical Lennard-Jones and water clusters and show that
the number of physical clusters in vapor is directly related to the virial equation of state. This
relation holds at temperatures clearly below the critical temperatures, in other words, as long as the
cluster-cluster interactions can be neglected—a typical assumption used in theories of nucleation.
Above a certain threshold cluster size depending on temperature and interaction potential, the
change in cluster work of formation can be calculated analytically with the recently proposed
scaling law. The breakdown of the scaling law below the threshold sizes is accurately modeled with
the low order virial coefficients. Our results indicate that high order virial coefficients can be
analytically calculated from the lower order coefficients when the scaling law for cluster work of
formation is valid. The scaling law also allows the calculation of the surface tension and equilibrium
vapor density with computationally efficient simulations of physical clusters. Our calculated values
are in good agreement with those obtained with other methods. We also present our results for the
curvature dependent surface tension of water clusters. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2766719�

I. INTRODUCTION

Understanding the molecular association in vapor is of
essential importance to a variety of scientific fields ranging
from nanotechnology to climatology. The controlled produc-
tion of nanoparticles has a large potential for medical and
technological applications, and it requires detailed informa-
tion of the energetics of small molecular clusters. This infor-
mation is also vital for predicting the formation of atmo-
spheric particles, which can act as cloud condensation nuclei
and thus cool the climate. Yet, it is not known how to calcu-
late the nanoscale particle energetics governing the stability
and number distribution of small molecular clusters.

Here, we study the connection between energetics of
small clusters and the virial equation of state of a nonideal
vapor, described by the series

PvV

kT
= 1 + �

n=1

�
Bn

Vn , �1�

where Pv is the pressure of the vapor in volume V and tem-
perature T, and k is the Boltzmann constant. Mayer,1 who
first showed how to calculate the unknown coefficients Bn

from statistical mechanics, noted that these coefficients are
connected to the number density Ncn of mathematical n-mer
clusters in the vapor in such a way that Ncn is a function of
the lowest virial coefficients up to i, Nci= f�B1 ,B2 , . . . ,Bi�.

The connection between the virial coefficients and the
equilibrium constants describing the relative pressures ex-
erted by monomers and n-mer clusters was first presented by
Woolley.2 These relations have been used to calculate the

number density of clusters in the vapor.3,4 The mathematical
clusters described by the virial approach are, however, rather
abstract objects; the molecules in one cluster do not need to
be close to each other. On the other hand, physical clusters
represent clear density fluctuations in the vapor. Lockett5 de-
veloped a modified Mayer theory to describe the physical
clusters in the vapor. The most widely used description of
physical clusters is, however, based on the noninteractive
cluster theories by Frenkel6 and Band.7,8 In these theories,
the cluster-cluster interactions are neglected in order to sim-
plify the partition function of the system. As discussed by
Saltz,9 the mathematical clusters by Mayer describe physical
clusters by Frenkel and Band in the limit when the cluster-
cluster interactions can be considered negligible. The as-
sumption of noninteracting clusters is valid in systems where
the intermolecular interactions are of short range and the
vapor density is rather low; it is also intrinsically used in the
classical nucleation theory �CNT�, which describes the birth
rate of small liquid or solid embryos in a supersaturated va-
por. The comparison between the number densities of math-
ematical Mayer clusters and physical clusters as calculated
with CNT, or its expansions, has not been successful;10 this
mismatch is only expected since CNT completely neglects
the fine structure of molecular clusters, making its use unre-
liable for the smallest clusters. However, lately we showed
that down to very small cluster sizes CNT accurately de-
scribes the work of adding a monomer to a cluster,11 but the
error made by CNT in modeling the smallest clusters results
in an erroneous absolute value for the cluster work of forma-
tion throughout the size range. Hence, the McGraw-
Laaksonen scaling law,12,13 stating that at a constant tempera-
ture the nucleation barrier height given by CNT is offseta�Electronic mail: joonas.merikanto@helsinki.fi
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from the simulated barrier height by a value independent of
the saturation ratio, is valid as long as the critical clusters are
larger than some threshold cluster size. The threshold cluster
size ranges from only a few to some tens of molecules de-
pending on the temperature and the interaction potential be-
tween the cluster molecules. The purpose of this paper is to
show that the work of formation of the smallest clusters is
accurately described by the virial equation of state in a low
density vapor where the assumption of noninteracting physi-
cal clusters is justified. The virial coefficients, when obtain-
able from experiments, can be used for calculating energetics
and densities of smallest physical clusters in the vapor. Vice
versa, calculations with physical noninteracting clusters can
provide the coefficients for the virial series. We will also
discuss how the planar surface tension and the equilibrium
vapor pressure can be calculated with Monte Carlo simula-
tions of relatively small physical clusters.

II. THEORY

The pressure Pv of a system consisting of N identical
molecules in volume V and at temperature T is given in
terms of the Helmholtz free energy F as

Pv = − � �F

�V
�

T
. �2�

The Helmholtz free energy F is given by

F = − kT ln Q , �3�

where k is the Boltzmann constant and Q is the classical
partition function of the system given by

Q = �3NQN/N!. �4�

In the above equation, � is the thermal de Broglie wave-
length and QN is the classical configuration integral taken
over the whole volume of the system,

QN =
1

N!
�

V

¯� exp	− U�r1, . . . ,rN�
kT


dr1 ¯ drN. �5�

If the potential energy U of the system is zero, Eqs. �2�–�5�
result in the ideal gas law, PvV=NkT. If there exists some
interaction between the particles, the system deviates from
the ideal in a complex manner. In the late 1930s, Mayer1

showed that the configuration integral in the above equation
can be developed into a series, which results in14

PvV

kT
= ln	1 + �

N�1
QNzN
 = �

i�1
Vbiz

i, �6�

where z=�−3 exp�� /kT� is the fugacity of a vapor with
chemical potential �, and bn is called the cluster integral.
Indeed, Mayer interpreted the above equation to describe the
number of clusters in the vapor with their number density
given by

Nc,tot = Nc1 + Nc2 + Nc3 + ¯ = �
n=1

�

bnzn, �7�

where Ncn is the number density of n-mer clusters. It is im-
portant to note that these clusters are not “physical,” in the

sense that they do not have any boundaries. Rather, they are
mathematical objects, since a mathematical cluster integral
bn contains contributions from all sets of n molecules that
can be found in the system; one is not able to distinguish the
Mayer clusters from a snapshot of vapor. As the first integral
b1=1, the fugacity z can be identified with the number den-
sity of monomers Nc1 in the system. The Mayer expansion is
exact, since it does not make any approximations concerning
the partition function of the system.

Shortly after Mayer developed his theory of mathemati-
cal clusters, Frenkel6 and Band7,8 independently formulated
an expression for the distribution of clusters in vapor; in
these approaches, the molecules in the same cluster are in
close vicinity of each other. It should be noted that Frenkel
and Band both considered their theories simplifications of
the more rigorous Mayer theory. If the vapor is considered to
consist of physical clusters, the total energy can be written
as15

U = �
�

U��r1�
, . . . ,rn�

�

+ �
���

U���r1�
, . . . ,rn�

,r1�
, . . . ,rn�

� , �8�

where U� describes the interactions between the molecules in
the same cluster and U�� describes interactions between
molecules in different clusters. The corresponding configu-
rational integral is

Qc = �
Nn

1

�nNn!
�

V

¯� exp�− U/kT��
�=1

N� dr�,1 ¯ dr�,n�

n�!
,

�9�

where Nn is the number of n-mers in volume V. Further-
more, if the interactions between the clusters are considered
negligibly small, the second term in Eq. �8� vanishes and the
configuration integral can be written in a simple form,

Qc = �
Nn

�
n

�q�n��Nn

Nn!
, �10�

where q�n� is the configuration integral of a physical cluster
of n molecules,

q�n� =
1

n!
�

cluster
¯� exp	− Un�r1,r2, . . . ,rn�

kT

dr1 ¯ drn.

�11�

The most probable set of values Nn is the one that maxi-
mizes the term in the summation of Eq. �10� subject to con-
straint

�
n

nNn = N . �12�

This leads to the law of mass action,15

Nn

q�n�
= 	 N

q�1�
n

. �13�

Taking into account that q�1�=V, Eq. �13� can be rewritten
as a cluster distribution,
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Nn

N1
= exp�−

�Wn

kT
� , �14�

where �Wn is the cluster work of formation �also referred to
as the internal work of formation16� given by

�Wn = − kT ln	q�n�
V

Nc1e
n−1
 − �n − 1�kT ln S , �15�

where the saturation ratio is defined as S=Nc1 /Nc1e and Nc1e

is the saturated number density of monomers. Using Eqs.
�14� and �15� we can write the equation for the total density
of clusters in the same form as Eq. �7�,

Nc,tot = Nc1 + Nc2 + Nc3 + ¯ = Nc1�
n

exp�−
�Wn

kT
� .

�16�

So far we have derived all the above equations purely by
using statistical mechanics. An expression for the homoge-
neous nucleation rate obtained through kinetic treatment is
given by

J = �n*ZN1 exp�− �Wn/�kT�� , �17�

where �n* is the collision rate of monomers with the critical
cluster containing n* molecules, and Z is the Zeldovich18

nonequilibrium factor. It can easily be shown17 that the total
contribution of �n*N1Z is proportional to S2, and thus Eq.
�15� for �Wn satisfies the nucleation theorem16,19,20 for the
homogeneous nucleation rate J,

� � ln J

� ln S
�

T

= n* + 1. �18�

On the other hand, the derivative of the work of formation
�Eq. �15��,

� ��Wn*

� ln S
�

T

= n* − 1, �19�

now represents the excess number of molecules in the critical
cluster with respect to the monomer. The calculation of �Wn

with the liquid drop �LD� model leads to the CNT. However,
when Eq. �16� is applied with CNT, a prefactor of 1 /S �S
being the saturation ratio� should be included on the right
hand side of the equation. This prefactor, dating back to
Courtney,21 arises from the internal consistency requirement
of CNT. Here, we will include this factor to the exponential
by writing

�Wn,LD = An 	� − �n − 1�kT ln S , �20�

where An is the equimolar surface area of the cluster and 	�

is the planar surface tension. Including 1/S in the exponent
retains the similarity of forms of Eqs. �16� and �20�. Also, the
functional forms of �Wn,sim obtained from Monte Carlo
simulations �Eq. �23�� and �Wn,LD of Eq. �20� are then iden-
tical.

The expressions given by the Mayer cluster approach
and the physical cluster approach should be identical in equi-
librium vapor when the clusters are noninteracting,9 U�,�

=0, and the excluded volume22,23 occupied by the clusters
can be considered negligibly small. Then, the coefficients Bi

are related to the equilibrium constants

Kn =
Pn

P1
i =

exp�− �Wn/kT�
P1

n−1 , �21�

where Pn is the total pressure of n-mers, by

B2 = − K2RT ,

B3 = �4K2
2 − 2K3��RT�2,

B4 = �− 20K2
3 + 18K2K3 − 3K4��RT3� , �22�

B5 = �112K2
4 + 18K3

2 − 144K3K2
2 + 32K2K4 − 4K5��RT�4,

B6 = �− 672K2
5 + 1120K2

3K3 − 315K2K3
2 − 280K2

2K4

+ 60K3K4 + 50K2K5 − 5K6��RT�5,

where R is the universal gas constant. The description for
obtaining the above expressions has been given by Woolley.2

There are several essentially equal methods to calculate
the work of formation of noninteracting clusters24 with
Monte Carlo simulations. Lately,11,25 we have presented a
method where �Wn is calculated as

�Wn,sim = − kT �
n�=2

n

ln� Ḡn�−1�T,S = 1�

D̄n��T,S = 1�
� − �n − 1�kT ln S .

�23�

In the above equation, Ḡn and D̄n are, respectively, the aver-
age grand canonical growth and decay probabilities for the n
cluster, for which the set of configurations is generated with
canonical Metropolis Monte Carlo simulations. The cluster
distribution is obtained by inserting the above expression
into Eq. �16�.

III. RESULTS

The first six virial coefficients have been recently calcu-
lated for Lennard-Jones �LJ� vapor for reduced temperatures
above 0.625 and for SPC/E model water vapor for tempera-
tures above 373 K with Mayer sampling,4,26 based on Monte
Carlo calculations using importance sampling. Here, we cal-
culate the work of cluster formation with Monte Carlo simu-
lations of physical noninteracting LJ and SPC/E water clus-
ters. We then compare our results to Mayer sampling
calculations using Eqs. �21�–�23�.

Unambiguous definition of a noninteracting physical
cluster, separated with boundaries from the rest of the vapor,
is not straightforward. It appears that a proper definition of a
physical cluster requires coupling of the cluster to the
vapor.27,28 However, the boundaries of the noninteracting
clusters have usually been selected rather arbitrarily, either
based on the insensitivity of the cluster formation work with
respect to the boundary location29,30 or to the radial distribu-
tion function of the molecules in bulk liquid.31 Here we de-
fine the noninteracting clusters with the Stillinger cluster
definition, which describes the physical cluster as a con-
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nected network of molecules separated no further than rS

from their nearest neighbors belonging to the same cluster.
This cluster definition is commonly used in simulations of
physical clusters, but it is important to realize how the selec-
tion of a specific value for rS affects the cluster formation
work. If the boundaries of the cluster are tight, the repulsion
from overlapping of molecules makes their formation diffi-
cult and the number of clusters in the vapor is small. On the
other hand, loose clusters are formed more easily, and at the
limit of a physical noninteracting cluster with no boundaries
the work of cluster formation approaches zero. In between,
the formation work of clusters is only mildly sensitive to the
selected value of rS, as shown in Fig. 1 for LJ clusters at
T*=0.625. At this temperature, the equilibrium vapor density
of LJ vapor is relatively low and the average free space
around the clusters is large. We can therefore estimate, with
calculations similar to the ones presented by Oh and Zeng,23

that the excluded volume work or the cluster-cluster interac-
tions do not play a significant role. Figure 1 shows that the
works of formation of Mayer clusters equal those for physi-
cal clusters with a unique value of rS. For LJ clusters this
value is rS=1.39
, where 
 is the LJ distance parameter.
This value is slightly lower than the usual value of rS

=1.5
 applied for LJ clusters. Agreement with the Mayer
approach is obtained with rS=3.8 Å for SPC/E water clusters
at T=373 K, where rS refers to the distance between two
oxygen atoms.

Using the above values of rS, we carry out Monte Carlo
simulations at reduced temperatures of 0.625, 0.75, and 1.0
with LJ clusters and at temperatures between 273 and 600 K
with SPC/E water clusters. The work of adding a monomer
to the mathematical Mayer clusters and physical clusters at a
constant vapor pressure and temperature,

��Wn = �Wn�Pv,T� − �Wn−1�Pv,T� , �24�

is shown in Fig. 2�a� and 2�b� for LJ and SPC/E water va-
pors, respectively, as a function of n2/3− �n−1�2/3 describing
the change in surface area of the cluster. The curves are
shown at equilibrium vapor pressures; however, similar cor-
respondence is found at all pressures. Simulations at T*

=0.625 for physical LJ clusters match the results for math-
ematical LJ clusters very accurately, but there is a slight
deviation between the values for the dimer at T*=0.75. The

total hexamer formation works in equilibrium vapor are for
Mayer clusters and noninteracting �NI� clusters
�W6,Mayer�T*=0.625�=19.35kT and �W6,NI�T*=0.625�
=19.35kT, and �W6,Mayer�T*=0.75�=13.27kT and
�W6,NI�T*=0.75�=13.04kT. For water clusters, the corre-
spondence in ��Wn is good between 373 and 500 K; the
total formation works of hexamers are �W6,Mayer�373 K�
=11.84kT and �W6,NI�373 K�=11.90kT, and
�W6,Mayer�500 K�=5.89kT and �W6,NI�500 K�=5.85kT.

When we approach the critical temperatures Tc the
��Wn curves begin to diverge, as shown in Fig. 3 for LJ

FIG. 1. The work of formation, �Wn, of physical Lennard-Jones clusters as
a function of the Stillinger radius rS defining the cluster boundaries. The
number of molecules in the cluster is indicated above each line. Correspond-
ing �Wn for Mayer clusters are marked with circles.

FIG. 2. The work of adding a monomer to the cluster, ��Wn, with respect to
the change in spherical surface area of the cluster, n2/3− �n−1�2/3, for our
simulated noninteracting �NI� clusters and for Mayer mathematical clusters:
�A� for LJ clusters and �B� for SPC/E water clusters. The top horizontal axis
describes the cluster size n.

FIG. 3. The works of adding a monomer to the cluster for noninteracting
�NI� cluster simulations and Mayer mathematical clusters for LJ vapor at
T*=1.0 and SPC/E water vapor at T=600 K. The lower horizontal axis
describes the change in spherical surface area of the cluster; the top hori-
zontal axis gives the corresponding cluster sizes n. Results are shown at
arbitrary pressures of 0.023 for LJ vapor and at 50 Pa for SPC/E water.
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clusters at T*=1.0 �Tc
*=1.30 �Ref. 32�� and water clusters at

T=600 K �Tc=638.6 K �Ref. 33��. At high temperatures the
results with noninteracting physical clusters and mathemati-
cal clusters cannot be matched merely by selecting a differ-
ent value for rS. The cluster-cluster interactions begin to play
a significant role for LJ clusters around T*=0.75 and for
SPC/E water clusters at temperatures above 500 K. The
virial coefficients for SPC/E water obtained from our calcu-
lations are compared to those obtained from the Mayer clus-
ter simulations in Table I. Although a perfect one-to-one cor-
respondence cannot be claimed, the physical cluster
simulations can provide the magnitudes of virial coefficients
with reasonable accuracy.

Recently, we showed11 that the following scaling law
holds for clusters larger than some threshold size nthr:

�Wn�n � nthr� = �Wn,LD − D�T� , �25�

where �Wn,LD is given by Eq. �20� and D�T� is a constant
independent of the cluster size. This law is observed as the
linearization of ��Wn curves at larger cluster sizes as shown
in Figs. 2�a� and 2�b�; for clusters larger than nthr, ��Wn

resulting from simulations is accurately given by ��Wn,LD.
This law is equivalent with the scaling law proposed by
McGraw and Laaksonen,12,13 which is given by

�Wn
* = �Wn,LD

* − D�T� , �26�

where �Wn
* is the work of formation of a critical cluster,

representing a cluster in an unstable equilibrium with the
supersaturated vapor. Our expression given by Eq. �25� states
that this law applies to all clusters above nthr, and not only to
the critical cluster. Due to equivalence of the properties and
number densities of physical clusters and Mayer clusters, Eq.
�25� suggests that the higher order virial coefficients Bn are
functions of lower order coefficients for clusters larger than
nthr. One can also apply the above law to calculate the higher
order virial coefficients in cases where cluster surface area
An and planar surface tension 	� are not known. Using the
property of linearization of ��Wn curves, Eq. �25� can be
written in a general form as �see the Appendix�

��Wn+1�n � nthr� = f�n����Wn − ��Wn−1� + ��Wn,

�27�

where f�n� is a function of n only. The high order coeffi-
cients can be calculated by using the above expression to-
gether with Eqs. �21� and �22� as long as we know the for-
mation work for one cluster size above the threshold value.

These scaling properties can also be used to accurately
calculate the values for planar surface tension 	�, saturated
vapor density of monomers 
1

eq, and the saturated vapor pres-
sure of monomers P1

eq, as well as the corresponding values
for the full vapor with contributions from all cluster sizes, 
v

eq

and Pv
eq. The calculation details are given in the Appendix.

Since these values are calculated with simulations of small
physical clusters, there is no need to truncate the interaction
potential. The equilibrium vapor pressure can be found by
locating the monomer pressure for which ��Wn approaches
zero as n→�.11 Generally, the ��Wn curve crosses the hori-
zontal axis at the critical cluster size, which depends on the
vapor density; for equilibrium vapor this size is infinite. Our
calculated values are compared against values obtained with
other simulation methods in Table II, together with the ob-
served values for the threshold sizes. For the calculation of
	� we need to know the equimolar surface of the cluster, An,
which can be calculated from the literature values for the
bulk liquid density also shown in Table II. Our calculated
values for equilibrium vapor properties and surface tension
agree well with the literature data.

We also wish to highlight a potentially significant aspect
related to the comparisons between the theoretical and ex-
perimentally measured nucleation rates. The saturation ratio
used in the theoretical nucleation calculations always corre-
sponds to the saturation ratio of monomers,9,34 S=
1 /
1

eq

= P1 / P1
eq, and not to the full vapor values SP= Pv / Pv

eq or S


=
v /
v
eq, from which S
 deviates from the true value of S

more than SP. The deviations become larger at higher satu-
ration ratios and lead to errors in calculating S when a sig-
nificant proportion of molecules is bound to clusters larger
than monomers. For example, at saturation ratio S=2 for
SPC/E water, S
=2.15, and for S=3, S
=3.63. The value
normally measured in nucleation rate experiments is 
v and

TABLE I. Virial coefficients for SPC/E water. The units for the coefficients are �L/mol� for B2, �L/mol�2 for B2, �L/mol�3 for B3, �L/mol�4, for B4, �L/mol�5

for B5, and �L/mol�6 for B6.

T �K�

273 298 323 350 373 400 423 450 473 500

B2 −21.827 −9.6126 −4.9386 −2.7083 −1.7837 −1.1807 −0.8734 −0.645 2 −0.5167 −0.407 2
Lita −1.8049 −0.8865 −0.652 88 −0.5189 −0.408 19
B3 −13 776 −1388 −210.7 −37.86 −11.02 −2.935 −1.080 −0.348 −0.132 −0.037
Lit.a −10.29 −1.045 −0.347 906 −0.1373 −0.041 058
B4 −8.90�107 −1.40�106 −48 232 −2163 −230 −22.43 −3.454 −0.406 4 −0.0142 −0.022 6
Lit.a −243 −2.85 −0.255 9 0.0335 0.049 757
B5 −3.22�1010 −1.13�108 −7.80�105 −1069 621 80.90 14.34 2.355 0.5166 0.108 4
Lit.a 577 15.17 2.243 4 0.524 0.095 4
B6 3.01�1012 9.26�109 6.51�107 5.68�105 17 800 507 26.5 0.110 −0.241 −0.083 9
Lit.a 15 000 16.7 −0.464 −0.472 −0.102

aResults obtained with Mayer sampling �Refs. 4 and 26�.
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should be corrected to 
1, which requires B2 and, preferably,
even higher virial coefficients of the vapor to be known.
Since both the dimer work of formation and the slope of
��Wn are higher at lower temperatures, the effect is less
significant at low temperatures.

Finally, we study the size dependence of the equimolar
surface tension 	n of clusters by calculating, as in our earlier
paper,11

	n =
�Wn

eq

An
, �28�

where An is the equimolar surface area and �Wn
eq is the work

of cluster formation in equilibrium vapor. Our results for
mathematical and physical water clusters are shown in Fig.
4, together with the McGraw-Laaksonen expression13

	n = 	� −
D�T�

An
, �29�

where our calculated values for

D�T� = A1	� − �
n�=2

nthr

���Wn,LD − ��Wn,sim� �30�

are D�373 K�=5.2kT�A1	� and D�500 K�=−0.1kT. At
373 K, the largest contribution to ��W4 comes from the en-
ergetically favorable four-ring structure, and the summation
in Eq. �30� results a value close to zero as different terms
cancel each other �Fig. 2�b��. In contrast, at 500 K, a more
important contribution to ��W4 comes from other than four-
ring configurations, so that the terms in Eq. �30� are monoto-
nous and the summation results a value slightly exceeding
the A1	� term. Therefore, D�500 K� becomes negative and a
very different surface tension size dependence is observed at
the two temperatures: the surface tension of clusters at 373 K
gradually grows toward the planar surface value, but at
500 K the surface tension exceeds the planar surface value
for clusters larger than 8 molecules. We observed a similar
change in the value of D�T� when the water clusters were
simulated with the TIP4P water model. The results from our
simulations are again nearly identical with the results ob-
tained for Mayer clusters, and agree with the results of
McGraw-Laaksonen expression when n�nthr. Distinctively,
the surface tension obtained from calculations with physical
or mathematical clusters becomes zero for a monomer
cluster.

IV. CONCLUSION

We have examined the statistical mechanics treatment of
the clusters in vapor and discussed the essential identity of
the number of mathematical Mayer clusters and physical
clusters of Frenkel and Band in a vapor where the cluster-
cluster interactions can be neglected. We verify this identity
for the first time for Lennard-Jones and water vapors by
comparing our results with Monte Carlo simulations of
physical clusters, defined according to the Stillinger cluster
definition, to the results obtained with previously calculated

TABLE II. The thermodynamic parameters for equilibrium Lennard-Jones �LJ� and SPC/E water vapors ob-
tained from the physical clusters simulations. The LJ values are in reduced units. The parameters for SPC/E
water are monomer vapor pressure P1 �bar�, total vapor pressure Pv �bar�, monomer vapor density 
1 �g/cm3�,
total vapor density 
v �g/cm3�, bulk liquid density 
l �g/cm3�, and planar surface tension 	� �10−3 N/m�.

Model T nthr P1
eq Pv

eq 
1
eq 
v

eq 
l
eq 	�

LJ 0.625 40 0.000 438 0.000 441 0.000 700 0.000 712 1.285
Lit. 0.000 48a 0.873b 1.266a

LJ 0.75 48 .002 573 0.002 664 0.003 43 0.003 683 1.025
Lit. 0.002 558c 0.002 86a 0.003 41c 0.003 67c 0.8213c 1.058,c 1.060a

SPC/E 373 8 40.0 41.0 0.000 232 0.000 245 55.0
Lit. 43d 0.000 24d 0.945d 58,e 57,f 51g

SPC/E 500 14 13.95 16.78 0.006 045 0.009 214 23.2
Lit. 16.25,h 7.0g 0.0088,h 0.010g 0.794h 31,e 25,f 25.9g

aReference 35 �Pv
eq using fit Pv

eq=exp�0.0341−6.6674/T��20.065�.
bEstimated from Ref. 36 and experimental temperature dependence of density of liquid argon from Ref. 37
cReference 36.
dReference 38.
eReference 39.
fReference 40.
gReference 41.
hReference 42.

FIG. 4. The size dependence of the equimolar surface tension for SPC/E
water obtained from the work of formation of physical clusters and Mayer
clusters. The lines corresponding to McGraw-Laaksonen expression are also
shown.
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virial coefficients. The connection holds at temperatures
clearly below the critical temperature and breaks down at
high density vapors where cluster-cluster interactions be-
come significant. Our results indicate that at moderate tem-
peratures the nonideality of vapor is directly related to the
formation of physical clusters. Therefore, there is a direct
relationship between the virial equation of state and the work
of cluster formation.

The calculation of virial coefficients with cluster inte-
grals is a tedious task even with the recently presented
Monte Carlo methods. The physical cluster simulations pro-
vide an efficient tool for extending the calculations to higher
order coefficients. Besides, they predict the existence of a
threshold size nthr above which the higher order virial coef-
ficients can be analytically solved from the lower order co-
efficients. This threshold size depends both on the interaction
potential and on the temperature. For water, the threshold
cluster contains only 8 molecules at temperatures at 373 K
and 14 molecules at 500 K.

For clusters larger than the threshold size, the McGraw
and Laaksonen scaling law holds and the change in cluster
work of formation, with respect to its size, is accurately
given by the liquid drop model. This law is observed as the
linear relation between the work of monomer addition and
the corresponding change in spherical surface area of the
cluster. By plotting this curve for different values of satura-
tion ratio, one can accurately calculate the equilibrium vapor
density from the curve which approaches the origin. Simi-
larly, the bulk surface tension can be calculated from the
slope of the linear part of the curve once the equilibrium bulk
liquid density and, hence, the equimolar surface area of the
drop are known. The calculations are both computationally
economic and accurate—there is no need to truncate the in-
teraction potential or to calculate a tail correction to the sur-
face tension. One does not need to study all cluster sizes for
the calculation of these values; one only need locate the
threshold size and obtain the slope of the ��Wn curve from
simulations with clusters somewhat larger than the threshold
size. Also the equilibrium density of liquid can be obtained
from the core density of the reasonably large droplet.31 How-
ever, the McGraw-Laaksonen scaling law becomes valid be-
fore the droplets can be assumed to possess a liquidlike core.

In multicomponent cases, similar connections should be
expected between the cross virial coefficients and the forma-
tion of clusters containing different species. Therefore, labo-
ratory measurements of the cross virial coefficients can re-
veal new insight about the significance of different chemical
species participating in atmospheric nucleation or about the
possible carrier gas effect in nucleation experiments.43,44

Finally, we conclude that the picture of the cluster ener-
getics in a low density equilibrium vapor, as gained from our
simulations, is the following: the work of formation on the
smallest clusters is directly related to the virial coefficients
and, after a threshold size, the liquid drop model accurately
describes the work of adding a monomer to the cluster. In
CNT it is assumed that the steady state nucleation rate in a
nonequilibrium vapor can be calculated with the means of
the equilibrium distribution of clusters.45 However, we stress
that our results do not provide answers about the possible

nonequilibrium effects in a supersaturated vapor where
nucleation occurs, such as the effects of nucleation on cluster
configurations.46
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APPENDIX: CALCULATION OF THE EQUILIBRIUM
VAPOR PRESSURE AND THE SURFACE
TENSION

Above the threshold size �n�nthr� the work of adding a
monomer to the cluster is accurately given by the liquid drop
model,

��Wn,sim = ��Wn,LD = �Wn,LD − �Wn−1,LD

= A1	��n2/3 − �n − 1�2/3� − kT ln S

= �x�n� + � , �A1�

where

x�n� = n2/3 − �n − 1�2/3, �A2�

and � is a constant independent of n,

� = A1	� =
��Wn1

− ��Wn2

x�n1� − x�n2�
, �A3�

where n2�n1 are arbitrary cluster sizes larger or equal to
nthr. Also � is a constant independent of n,

� = − kT ln S = ��Wn1
− �x�n1� . �A4�

From the above equations, the surface energy element A1	�

and the saturation ratio S=Nc1 /Nc1
eq can be solved when �

and � are known from plots like the ones shown in Figs. 2�a�
and 2�b�. The simulations are carried out at the monomer
number density Nc1, which is related to the chemical poten-
tial � as Nc1=exp�� /kT� /�3. The number density of n-mers
is given by Ncn=Nc1 exp��Wn,sim/kT�. Each n-mer popula-
tion is considered to form an ideal gas of its own, so that
Pn=NcnkT, and the total pressure is given by the Dalton law
Pv=�nPn. In a supersaturated vapor, ��Wn given by Eq.
�A1� becomes zero at the critical cluster size.

Calculating Eq. �A1� for ��Wn+1 by substituting n1=n
and n2= �n−1� and using Eqs. �A2�–�A4� results in

��Wn+1 = �x�n + 1� + �

=
��Wn − ��Wn−1

x�n� − x�n − 1�
x�n + 1� + ��Wn

−
��Wn − ��Wn−1

x�n� − x�n − 1�
x�n�

= ���Wn − ��Wn−1�f�n� + ��Wn, �A5�

where

f�n� =
�n + 1�2/3 − 2�n�2/3 + �n − 1�2/3

n2/3 − 2�n − 1�2/3 + �n − 2�2/3 . �A6�
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