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We have calculated the critical cluster sizes and homogeneous nucleation rates of water at
temperatures and vapor densities corresponding to experiments lkyawb Strey{J. Phys. Chem

B 105, 11683(2001)]. The calculations have been done with an expanded version of a Monte Carlo
method originally developed by Vehkakiaand Ford[J. Chem. Phys112 4193 (2000]. Their

method calculates the statistical growth and decay probabilities of molecular clusters. We have
derived a connection between these probabilities and kinetic condensation and evaporation rates,
and introduce a new way for the calculation of the work of formation of clusters. Three different
interaction potential models of water have been used in the simulations. These include the
unpolarizable SPC/E). Phys. ChenB1, 6269(1987] and TIP4HJ. Chem. Physr9, 926(1983]

models and a polarizable model by Guillot and GuisgdniChem. Physl114, 6720(2001)]. We

show that TIP4P produces critical cluster sizes and a temperature and vapor density dependence for
the nucleation rate that agree well with the experimental data, although the magnitude of nucleation
rate is constantly overestimated by a factor of 20*. Guissani and Guillot's model is somewhat

less successful, but both the TIP4P and Guillot and Guissani models are able to reproduce a much
better experimental temperature dependency of the nucleation rate than the classical nucleation
theory. Using SPC/E results in dramatically too small critical clusters and high nucleation rates. The
water models give different average binding energies for clusters. We show that stronger binding
between cluster molecules suppresses the decay probability of a cluster, while the growth
probability is not affected. This explains the differences in results from different water models.
© 2004 American Institute of Physic§DOI: 10.1063/1.1740754

I. INTRODUCTION size. As the density of the clusters in any real physical situ-

- . . ation is low, we can normally consider that acquisitions of
Vapor—liquid nucleation processes play an Importanty e - onomers dominate in the condensation process.

role in t_he f_ormation of atmospheric aerosols. HomOgeneouﬁvaporation is also believed to occur mainly through the
n_ucleat|on L atmosphe_re, where Iow_vapor pressure SIO‘é'scape of single monomers. The cluster formation mecha-
cies form new aerosol particles, is a multicomponent ProcesSic ' is then described as a chain of reactions

which is considered to occur mainly via the ternary sulphuric

acid—water—ammonia route and at low temperatures, possi- BN-1
bly via binary sulphuric acid—water routeAlso heteroge- (D+(N=1) = (N), (1)
neous nucleation of water and organic vapors on the surface N

of nonsoluble aerosol particles has lately been under intensgnere the condensation rate const@nt , is smaller than

res_earch, a_llt_hough currently it seems that organic_vaporﬁ1e evaporation rate constand, when N, the number of
mainly participate in the growth of newly formed particfes. qjecyles in the cluster, is small. The critical clugit is a

A good desgription of complex atmospheric nuclr—;ationduster for whichBys 1= ays . Only few clusters manage to
processes requires a thorough knowledge of the simplegt,ch the critical size and are able to grow indefinitely. The

form of nucleation such as unary homogeneous nucleationae 4t which the critical clusters appear in a unit volume of
However, there are still severe discrepancies between the%\por is called the nucleation rate

retical predictions and laboratory measurements of unary ho- * 15 gate the most widely used theory describing the
mogeneous nucleation rates. These problems are considerggcieation phenomenon is called the “classical nucleation
in the present study. _ theory” (CNT). It was developed by Volmer and Weber,
Nucleation occurs through the birth of small moleculargocker and Bing# and Zeldovick It is based on approxi-
clusters that form in sequential molecular collisions. Up 10 gnte analytical solutions of kinetic equations describing the

certain size known as the critical size, the clusters are ””growth and decay of clusters in a metastable state. Impor-
stable and tend to evaporate. The instability makes the equfzyy it relies on a number of approximations, most signifi-

librium cluster distribution fall steeply with the increasing cantly on the “capillarity approximation” which means the

use of bulk properties of liquid to describe clusters having
dElectronic mail: joonas.merikanto@helsinki.fi only a small number of molecules. Although in many cases
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CNT works reasonably well, it often fails to predict the right tion with the classical nucleation theory to predict the nucle-
temperature dependence for the experimental nucleation ratation rate.
For many substances such as n-norfaganol’ methanof In the next section we review the theoretical background
i-propanol® and watel® the theoretical homogeneous nucle- to the simulation technique and introduce a new way of cal-
ation rates are too low at low temperatures and too high atulating the work of cluster formation. The computational
high temperatures. To improve the situation, extensions tdetails are described in Sec. Ill. Section IV gives a sensitivity
classical nucleation theory have been introduced by Lothanalysis for the calculation of the work of formation with
and Pound! Oxtoby and Evan¥ and Dillmann and respect to the applied nearest neighbor distance in the defi-
Meier® among others, but nucleation phenomenon still re-nition of the cluster. The Sec. V describes the applicability of
mains poorly understood. three different water model§1P4P, SPC/E, and an interac-
There is a growing interest to study nucleation on a modion potential recently developed by Guillot and Guis$ani
lecular level. As there are no experiments that could directlyour type of nucleation simulation and presents the calculated
observe the molecular processes and the full mathematicaritical cluster sizes and nucleation rates. Finally, the conclu-
solutions are too complicated, this has been done with the ai@ions are given in Sec. VI.
of molecular computer simulations. Since the pioneering
Monte Carlo (MC) simulation by Lee, Barker, and
A_braharﬁ4 on argon clusters, nuclea_ltion has been exten) THEORETICAL BACKGROUND
sively studied by molecular dynamics and Monte CarloTo THE SIMULATION TECHNIQUE
simulations'®~?2As the validity of interaction potentials for
small clusters with complex molecules is often questionable, The probability density for a system to be in a state with
argon is still frequently used as a model substance in nucléN indistinguishable particles having coordinafeg in a vol-
ation simulations. However, nucleation experiments are difumeV is given by°
ficult to carry out with argon, and a comparison between an N
experiments and simulations has only been done by Garcig(l\I (r})= 1A exp(uN/(kT))éin exp{_UN({ri})}
and Torroja® U N! kT |
Aside from argon, water presents another popular choice 2
for r_1uc|eat|on simulations. Experimental _nucleatlon rate; ar(\e/vhereri is the position of particlé and Uy({r;}) is the
available for water, but the only comparison between simu- / : :
lations and experiments, so far, has been done by Hale ar%tateractmn energy of thé particle system, which depends
on the configuratiofr;}. The curly brackets represent the set

. . 20 . . h
DiMattio,” who achieved the experimental temperature deof N particle positionsé;,, is the internal partition function of

pendency of the nucleation rate with a scaled expression fo(;ne moleculeT is the temperaturés is the Boltzmann con-

o T e e g e i he chemical potenal and = /(27
' the thermal de Broglie wavelength of the particles. Haris

H : 16
v(\:/azlor ;:rr:julla]'flc;ntsh, KL\'/S?ka;[ ?]l' fhavﬁ”:rise:q gi]etriiptciﬁf ¢ the mass of the particle ardis Planck’s constant. The clas-
ater model for the evaluation ot equ u SHIbUton O i) grand canonical partition functidd of a system ofN

water clusters anq Gget al?® applied SPC/E to study the indistinguishable molecules is given by

effect of an electric field on homogeneous nucleation. Ya-

suoka and Matsumotbhave carried out a direct molecular- i

dynamics simulation of the nucleation of water with TIP4P. BE= 2 [ '
In our present work we apply the MC technique devel- N=0 N!

oped by Vehkarki and Ford®*?’ to calculate the critical N —uydrh

cluster sizes and nucleation rates of water at the temperatures X H dr; exp{L” . 3

and vapor densities corresponding to the experiments by vi=i KT

Wolk and Strey!® We have studied three different water

models, namely two rigid and nonpolarizable models SPC/

and TIP4P and a rigid and polarizable model developed by

Guillot and Guissan?® Our MC technique has been previ- y=A"3exp(u/(KT))&, . (4)

ously used for cases of new phase nucleation in the Ising

model of interacting spifé and Lennard-Jones atorffs. For the simulation purposes the upper limit for the number

With this method, we allow a fixed number of water mol- particles is usually set tdl,, and Nya—N noninteracting

ecules, forming a single cluster, to evolve in a canonical MOdistinguishable ghost particles are inserted at random

simulation. We deduce the stability of the cluster by calcu-positions®® Then, the grand canonical partition function is

lating the average grand canonical growth and decay prob- N N N
-~ ﬁ“dr' 4 ox —Un({ri})
'WNmax NN KT '

1|

AN exp(uN/(KT)) €

t is convenient to combine de Broglie wavelength, chemical
otential and internal partition function in one parameter

abilities from attempted creations and annihilations of single
molecules. The critical cluster is a cluster whose growth and o Jviza
decay probabilities are equal. Here, we also introduce a new

method to calculate of the work of formation of the critical The probability density for the system to be in a state Wth
cluster directly from the growth and decay probabilities ofparticles having coordinatds;}, andN,,,,—N noninteract-
clusters from monomers upward. We use the work of formaing particles at arbitrary positions, can then be identified as

I
I

®)
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1 N where é,, is zero if the molecule created would not be part
PINANp == v exp{ KT (6)  of the cluster according to the cluster definition, afig,
= Vima ENI =1 when the cluster criterion is satisfied by the creation

In the algorithm for grand canonical simulation presented bynove. Note that the creation probability depends on both the
Yao et al,* along with nontrivial creation and annihilation Cluster configuratiofr;} and the configuration of the nonin-
of attempts, the conventional Metropolis moVeare also ~ teracting particlegryj. o

present. In what follows the notatiofr;}@r, stands for a For the canonical ensemble containing kfmolecule
cluster configuratior{r;} where a particle is added to posi- cluster andNpya—N noninteracting distinguishable mol-
tion r,, and the notatior{r;}©r; stands for a cluster con- ecules the average value of arbitrary varia¥les given by

04 —Un({rih)

figuration {r;} where a particle from positiom; is taken Nimax —uydrh
’ . . N i
away.{r;}, rj—r; denotes configuratiofr;} where a par- M= H driY5C,uexp{T ,
ticle from positionr; moves to position; . QnV 7 ma T Jvi=1
The probability that one particle is created at positipn (12)
is given by mifil,C(N,{r;}@r,)]1,°>** where where Qy is the configuration integral of th&l-molecule
cluster defined as
C(Nritery N
_U I
_P(N+1{rijery QN=f I1 driéduexp{# . (13
P(N,{ri}) Vit
Then, the canonical partition function of thé-molecule
W[ =[Unadrien) —Undrd] e g
= ex , (7)  Cclusteris
N+1 kT NN N
ATNELQ exd —Nu/(KT)
and the probability that a particle at positionis annihilated ZN= N _ Y L= Nl ]QN. (14

is minLA(N,{r;}©r;)]1, whereA(N,{r;}Sr;) is given by N! N!

Vehkami and Ford??’ assumed that when canonical en-
P(N_l,{ri}er]‘)

A(N,{r}or)) = TCrEy semEIe averages for decay and growth rates
Dn=(Dn) (15
:lexp{_[UN1({ri}9"j)_UN({ri})]] and
wW kT ' _
®) Gn=(Gn), (16)
The probability that a particle at positian moves to posi- are e_q_ual the cluster is said to be critical. The critical cluster
tion r]-' is mir[l,M(N,{ri},r]-—wj’)], where condition can formally be written as

©) whereN* is the number of molecules in the critical cluster.

) . We show that this assumption corresponds to defining the
andAUy is the energy difference between new and old convyitical cluster as the location of the free energy maximum.

figurations. In order to produce a series of configurations  Eq the grand canonical Metropolis scheme, assuming
represe'r)t.atlve of the grand caﬂonlcal ensemble,' the relatlv(gc: ap, the following detailed balance equation is vaitd:
probabilities of attempted creatioa¢ , and destructiongp , )

have to be equal. The probability of a translational maye ~ P(N.{ri}) aumin[1,C(N {ri}@r)]

, AUN EN* = SN* ’ (17)
M(N,{ri},rjﬂrj)=eX[{— F}

is independent okc anday . =P(N+14r;,r}) g Xmin[LAN+1{r; ,r }Or
Starting from these formulas Vehkakiaand Ford?®?’ ( Arird) daty [LAC Arrdenol,
introduced growth and decay rates for the given configura- (18)

tion of the cluster. For configuratiofr;} the decay rate, that where creation and annihilation probabiliti€(N,{r;,r})
is, the total probability for any molecule to be annihilated in gnd A(N+1{r;,rJer,) are given by Eqgs(7) and (8), re-

a Monte Carlo step, is given by spectively, and the probability density for a configuration
N {r;} with N particlesP(N,{r;}) is given by Eq.(6). Let us
o . . . .
D)= WDjzl Saumin[ LA(N,{r}or))], (10) multiply both sides of the detailed balance equation by
B NmaX
where &, sets the probability to zero if the annihilation [T dr;, (19

would result in splitting the cluster, ané,,=1 when the =t

annihilation move satisfies the cluster criterion. The growthand integrate over all coordinates. All configurations, where

rate for a configuratiodr;} reads cluster particles are at the same positions and the ghost mol-
NipaN ecules only exchange their positions between each other,
@c ; equally contribute to the integral. It allows us to group con-
Gn{riH)=—— SguMIN[LC(N{ri}@r )], . ) .
N(rib) Nma— N &4 U [LC(NAri}@nd] figurations such way that we can insert E¢B0)) and (11)

(1) into the integration in both sides obtaining
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1 Nmax e(Nmax) ¢(Nmax C(Nmax)
— | LI driP(N{rih)Gu({ri}) [—P(N,{rmGN({ri})]
cJvi=1 ri=c(1) rg=c(1) rer=c(1) | &c
1 Nmax C(Nmax S(NmayY C(Nmay
=— | 11 driP(N+1{ri})Dnsa({ri}). (20) = 2> [—P(N+1,{ri})
ag Jvi=1 ri=c(1) rg=c(l) re=c(1l) ( &p
It is more visual to illustrate this procedure representing X DN+1({ri})J, (23

integration as a summation. Let us assume that the system

space is divided t®l, pointlike cellsc;, j=1,...Nyax€ach where the factorials and\(+ 1) have disappeared since the
of which can contain only onéreal or ghost particle. (In ~ summations over,, andr, correspond to Nma—N)! iden-
principle, N« can be less than number of cells; we keeptical terms on the left-hand side an {,,—N—1)!(N+1) on
them to be equal in order to make illustration simpldiis  the right-hand side. Note thaBy({r;}) is in this context

is done in the spirit of counting density of states, and theuniquely defined for a certain cluster configuratior, be-
space is considered fully packed when each of the cells cortause we have choséy,,, and the cells so that the ghosts
tain one particle. We distribut®l real particles andN,,,,  fill the space entirely, and the configuration of the ghosts is
—N particles to these cells, and sum equati@B) over all  unique for a given cluster configuration. The last equation is
possible configurations. In the summation eaclirea), r, @ discrete analog of continuous HGO).

(ghost on the left-hand side and real on the right-hand)side ~ Further transformation of Eq(20) is straightforward
andr;, (ghos} goes through all the cells, but two particles arewhen ac=ap . We multiply left-hand side by the ratio of
not allowed in the same cell. configuration integral®Qy /Qy and the right-hand side simi-
larly by (Qn:1)/(Qn+1), then taking into account the ex-
plicit form of P(N,{r;}) [Eq. (6)] and definitiong4), (12)—
(16), we observe that the integration in E@O0) actually
represents canonical averaging, producing the following re-

C(Nmax) S(Nmay) C(Npmay
> (PN} dgumin[L,C(N{ri}@r ]}

ri=c(1) rg=c(1) rr=c(1)

lation:
C(Nmax) ©(Nmax) C(Nmax) Z E
= > 2 X {P(N+1{r}H N2 exp( /K T) = — 24
ri=c(1) r=c(1) rr=c(1) I ZN F(,u, ) DN+1 ( )

At this point we see that the method originally proposed by
Vehkami and Ford®?’ for evaluating the critical cluster in
nucleation theory can also be used for computing free energy
We first sum left-hand side over ghost particle positions difference between two clusters of adjacent sizes. Using the
Performing the sum over the positions of all ghost particlessonventional definition for Helmholtz free energy,
k' #k just leads to a factor ofN,.—N—1)!, since the sum-
mand is independent of where thi {,,—N—1) ghost par-
ticlesk’ #k are. The sum over the position of ghost particle
k gives (Nyax—N)/ac-Gy({ri}) according to Eq(11). On the
right-hand side summing over ghost partickésgives also a

X gy MIN[LA(NA+1{r;,r }or1}. (21

FN:_kTInZN, (25)

we can rewrite Eq(24) as

factor of (Nhax—N—1)!, summing over now &eal particlek
gives N+1)/ap-Dyy1({ri}©ry) using Eq.(10). Now we
are left with sums only over positions of real particlesnd
the detailed balance equations turns into

Nm Nmax_ N)!
S [gpm.{rmem{n})]

ri=c(1) ac

e r(NmaX— N—1)!(N+1)
= P(N+1r})
ri=c(1) ap
XDN+1({ri})]- (22

If we want to return to sums over positions of l},,x
particles we get

Fuii—Fy=p—KTIn——. (26)
N+1

The majority of homogeneous nucleation theories con-
sider imperfect gas as a mixture of ideal gases, each gas
containing clusters of a certain size. Thus, the equilibrium
cluster distribution is given by the mass action &

Ny ( N1>N

ZN - Zl ’ (27)
where NV is the number oN-molecule clusters. According
to Eq. (27) clusters are in equilibrium with monomers. The
same is the case for the grand canonical Monte Carlo
method. The simulated cluster is in equilibrium with ideal
gas molecules. Hence, the input chemical potential is the
chemical potential of the ideal gas and corresponds to the
chemical potential of the monomer gas, which in turn is a
component of the imperfect gas. For an ideal gas the chemi-
cal potential is given b
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KTI (ABNl) KTI <A3 ) (29)
= n = nf—n,|,
H éinV gin Y

where n,=N;/V is the monomer number density. Using

Egs. (14), (25), (28), and the Stirling approximation IN;!
=N, InN;—N; Eq. (27) can be rewritten as

Ny= AP 29
N=€X «T (29
whereAFy=Fy—N,. Rewriting Eq.(26) as
Gy
AFN+1=AFN—|(T|I’1 y (30)

N+1

we can see that assumptiéi) of Vehkami and Ford®?’

correspond to critical size, being defined as the location of

the energy maximum with accuracyl molecule. Equations

(26) and(30) also describe a new method for calculating the

cluster Helmholtz free energy. Indeed, starting frémwe

can subsequently calculate the Helmholtz free energies

any size clusters.
We rewrite Eq.(29) as

AWy
NN:NleX[{—F , (31)
whereAW) is defined as
AWp=AF+KTIn(N). (32

The valueAW, is usually called the reversible work of for-

mation of anN-molecule cluste?* Using Eqgs.(30) and (32)
we can expresaW, as

A
AWp=AF,+KTIn(N;) kT, In——=
=2

(33
i
Thus by using Egs.(14) and (25 we obtain AF;
=—kTIn(\V;) reducing Eq(33) to
N _

Gi_
AWy=—kTS =22,

=2 Dj

(34

and the equilibrium cluster distributigB81) can be expressed

as
Gj_1
D;

N
Ny= Nlj[[z (39

The last equation looks very natural if considering gran
canonical growth and decay as a type of kinetic process. |
the kinetic approach the detailed balance condition leads t

equilibrium cluster distribution that is given b3

Bj-1

a;j

N
Ny= Nljll (36)

Merikanto, Vehkamaki, and Zapadinsky

lowing one to estimate the work of formation of clusters or
the equilibrium cluster distribution. Although our method
uses canonical averaging, it can be considered as an extreme
case of the grand canonical Monte Carlo method developed
by Kusakaet all® for the estimation of equilibrium cluster
distribution. They proposed to simulate the cluster distribu-
tion inside certain intervals of the cluster sizes, say between
Nmin @nd N .- The narrower this interval is, the better the
accuracy that can be reached. Thus, Oh and ¥ehgve
usedNpax— Nmin=3. In our caseN.x—Nmin IS equal to 1,
which indicates the best possible accuracy for this type of
simulation.

There are different Monte Carlo approaches to simulat-
ing vapor nucleation. They can be divided in two types. The
irst one is direct simulation of vapor to observe
clustering'”?139The second type, similar to the method pre-
sented here, is the simulation of an isolated cluster to calcu-
late the cluster free enerdf®18At the first sight the direct

imulation seems to be more rigorous than the simulation of
an isolated cluster. However, all cited methods of the first
type assume validity of Eq31). From statistical mechanics
we know that if equilibrium cluster distribution exists, then
the cluster concentration can be calculated using the cluster
partition function[Eq. (27)]. Then, the only more general
feature of direct vapor simulation is taking the cluster—
monomer and cluster—cluster interactions into account. As
was shown by Oh and Zefftytheir contributions are negli-
gible for water. This gives us the equivalence of two types of
vapor simulations. Simulations of the isolated cluster are
much less time consuming since there are much less mol-
ecules in the simulated system. Our estimations have shown
that the method presented here seems to be as computation-
ally efficient as other methods of the second type. The ad-
vantage of our method lies in the fact that the canonical
average of grand canonical growth and decay rates, as was
shown above, can be related to the rate constants in Becker
and Daing kinetic approach. It allows us to get a deeper
insight into the nucleation process.

. COMPUTATIONAL DETAILS

Our simulation is a semigrand canonical Metroptlis
Monte Carlo simulation that evaluates the grand canonical

dgrowth and decay probabilities in a canonical ensemble con-

ﬁ|sting of a single cluster. One cluster size is studied at a
gme, and no track is kept of vapor or noninteracting mol-
ecules. The cluster—vapor interaction is neglected since it has
been shown to be vanishingly sm#liTwo parameters that
enter the simulation are temperatufeand the monomer
number densityn, related to the chemical potential accord-
ing to Eq. (28). During MC moves we keep the cluster’s

where g; and «; are the condensation and evaporation ratecenter-of-mass at the center of a spherical cavity with vol-

constants appearing in E@l). The fractionG;_,/D; can
then be identified ag; 1/q; .

umeV, which is large enough to assure that the cluster edges
are always far from the cavity boundaries. We define the

In this section we have justified the method proposed bycluster according to the Stilling®r cluster definition as a
Vehkami and Ford’ for a quick estimation of the size of network of connected neighbors, where the distance to the
critical cluster. Based on their idea we have developed a toalearest neighbor is less theg,g= 3.8 A. The cluster is cre-
for the calculation of Helmholtz free energy of clusters, al-ated by grand canonical insertions of molecules around the
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origin. We then let it relax in a sequence of18 canonical 1 3\ e
Monte Carlo moves, wherdl denotes the number of mol- IBN:WHU 6k
ecules in the cluster. LN
_ Thg growth probabi!ity foi a specific molecular configu—. y 1 N i 1/2[(N )34 232 (38)
ration is calculated by inserting molecules at random posi- Nm, m; U1 vy 1

tions around the cluster. The creation probability is calcu-

lated for every insertion and its average gives the growtywherem, is the molecular mass ang; is the molecular
probability for the given configuration. The densiti){,, Vvolume of the pure bulk liquid. We can now replaeg/By
—N)/V of the inserted molecules wag2(p, is the liquid by Dy/Gy. The expression for nucleation rate then becomes
density for small clusters (2n=<12) and 1-1.p, for - —— - =

larger clusters. The dimer creation probabilities were calcu- —1_ 1 E+ D2Ds i D2Ds i n
lated by inserting molecules with a density ofaparound Bin, G, G,G; G,G3 -G
the monomer located at the origin. In Ed1), (Nya—N) (39

accounts for the total amount of attempted insertions in vol-
umeV, but according to the Stillinger cluster definition only
molecules that are inserted in the volunw=4xr'%/3
closer tharm ' =r s I neign tO the origin can even in prin-
ciple be connected to the cluster ,es:iS the distance of the
furthest molecule from the originThus we save computer
time by actually attempting creation only in volurk@, but
scaling the number of attempts B/V’' when calculating J=Kp+ expl—AW*/(kT)), (40
(Nmax—N) in Eq. (12).

LikewiSE, the decay probabiiity for a given Configuration where the work of formation of the critical clust&w* is
is the average of annihilation probabilities of each moleculecalculated from Eq(34). The prefactorKy« contains the
Oniy annihiiations Wh|Ch do not Spiit the remaining Ciuster CO||iSi0n rate Of monomers W|th a Single Cl’itical C|USteI’ in a
into two parts are accounted for. The average growth anéaturated vapor and the Zeldovich nonequilibrium factor
decay probabilities are canonical ensemble averages @& - It can be expressed as
single configuration probabilities. The canonical simulation

The summation in Eq(39) converges rapidly wheis>N*,

but around half of the contribution comes from sizes larger
than the critical size, and we have to extend our simulations
to sizes of around I9* to use this equation. If the critical
cluster size is large, it is more convenient to calculate the
nucleation rate from the familiar classical expression

13
consists of 3 10® Monte Carlo moves where every 150th \r = B NS 120w = B Psat [T 2v
configuration is sampled. The maximum displacement was N N KT VKT gmn+2)
adjusted to achieve the 50% acceptance ratio, the average (41

shift being around 0.3 A, depending on the cluster size. A
random rotation angle between 0° and 17° around a ran
domly oriented axis was combined with the translational dis-
placement. After each move, the center-of-mass of the clust
was moved to the origin. Several vapor densities were stu
ied simultaneously, as the vapor density only affegtin
Egs.(7) and(8), energiedJ being independent af,, .

For small clusters the decay probability is greater than ~ Aw=Ags—NKTInS, (42)
the growth probability, but an increase in size causes the
molecules to become more tightly bound to the cluster anavhereA s the surface area of the cluster calculated assuming
hence the cluster is less likely to decay. In the simulation thédulk liquid density and a spherical droplet. The classical
critical cluster sizeN* at a givenn, andT is found when the ~ critical cluster size is
averages of growth probabilitgy« —, and decay probability 3
Dy« are equal. If we calculat&y and Dy for each cluster N* = ?’ZL (43)
size from monomer upward, we can solve the nucleation 3p|2(kTIn S)®
rate. This can be done in two ways. If the critical cluster size
is small (N*<10) we can use the exact summation for the

wherev is the molecular volume of liquid wate§ is the
saturation ratio andr is the bulk surface tension. In this

aper we have used E@L0) instead of Eq(39) in all calcu-
ations of the nucleation rate. The classical formation energy,
which we compare our simulated formation energy with, is
given by

The saturation vapor pressufe surface tensiol? and

1
nucleation rate given By density"* are given by
Do T)=eXp(77.344 912 96 7235.424 65— 8.2 In T
. +0.0057113T) [Pd), (44)
an
) ﬁln 1+§ r\i_=Iz _N)i @7 5(T)=93.6635 0.009133T—0.000 275T2 [mN/m],
(45)
1 1049.572-0.1763T
where for a cluster containirly molecules vy is the evapo-  pi(T)= = m [1/m?], (46)

ration rate constant, and the condensation rate congfargt v

given by kinetic gas theory as wherem,, is the mass of a water molecule.
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" " ; V. RESULTS AND DISCUSSION

We now use the theoretical tools presented above for
simulations of the nucleation of water. The simulation results
for critical cluster sizes and nucleation rates are compared
with experimental data by Wio and Strey® and with classi-
cal nucleation theoryCNT). Our simulations are run with
three different water models at constant temperaiuend
monomer densityr, . The tested models include two widely
used stiff and unpolarizable potential models SP¢#nd
TIP4P? and a fairly recent stiff but polarizable potential

Work of Formation (kT)
&

% s w . 70 model developed by Guillot and Guiss&hicalled GG

Cluster Size model in this paper.

FIG. 1. The work of formation as a function of cluster size for three differ- The method was first tested with SPC/E. This model has
ent limiting neighbor distances at 300 K amgd=6.82<10 °nm ° for  peen used in the calculations of work of formation of small
TIP4P potential model. The critical size is marked with a filled diamond in water droplet also by Kusalet al’® We ran our simulations
each case. at the conditions used by Kusakaal,® T=298.15K and
n,=10 3nm 2 with SPC/E potential, and were able to ex-
actly reproduce the free energy curve in their Fig. 8.
IV. THE EFFECT OF CLUSTER DEFINITION Wolk and Strey? have measured the homogeneous
nucleation rates at five different temperatufieby varying
The correct identification of a physical cluster is essenype vapor pressureg,. To compare our simulations with
tial to molecular theories of nucleation. We shall not go intoheir data we need to relate our input parametetto p, .
details here, but one should note that there are several coffere are two ways to do this. The first way is to input into
peting ways to identify a physical cluster, and the appliedsimy|ation some value; and calculate the resulting cluster
cluster definition is often chosen according to simulationgistripution ny by using Eq.(31). Assuming that imperfect
method. A good description of a variety of cluster definitionsgas is a mixture of ideal gases corresponding to each cluster

can be found in a paper by Reigsal*? size,p, can be then be solved from
One common cluster definition is presented by Lee,

Barker, and Abraharlf; where the molecules belong to the -
same cluster if they can be included in a sphere of fixed p\,=kTNZl N (47)
volume v, whose origin is at the center-of-mass of these
molecules. The volume is defined so that the thermody- In practice the summation only extends to some limiting size
namic properties of the cluster are nearly independent of iV, and larger clusters are artificially taken away from the
over a wide range of. This cluster is usually called an LBA systent* Therefore,N can be safely set to a size slightly
cluster. In our simulation we have chosen to use anothegreater than the critical size, as long as the critical size is
common cluster definition presented by Stillind®mhere fairly large. Another way is to calculate the monomer partial
the cluster is defined as a group of molecules for which eachressure contribution to the experimental valugopf This
member is connected to at least one other member within @an be done using a virial expansion with its first term cor-
minimum distancer ,¢jgn. The cluster is then defined as a responding to the monomer gas.
connected network of neighboring molecules. When apply-  The choice of method does not matter as long as the
ing the Stillinger cluster definition, the choice ofgq,is ~ contribution of nonmonomer gases to vapor pressure is
somewhat arbitrary. For bulk liquid water the natural choicerather small. By carrying out the virial expansion one can
of I neigh Would be the first minimum of the oxygen—oxygen indeed verify that during the experiments of Wand Strey
radial distribution function. For small clusters the density atthe clusters give a negligible contribution pg. But as we
the edge of the cluster is less than the bulk liquid density. Ashall see later, the SPC/E model produces very small critical
in the LBA cluster, it is then natural to allow molecules to be cluster sizes, and the choicefbecomes difficult. Thus, for
more loosely bonded than in bulk liquid. For our simulationsSPC/E, the calculation gb, from Eq. (47) becomes ques-
we ChoSer jejgri=3.8 A, corresponding to the distance be- tionable. For this reason we have chosen to represent all the
tween the first minimum and the second maximum in theresults in terms oh;.
oxygen—oxygen radial distribution function of bulk liquid Figure 2 shows simulation results for the reversible work
water. of cluster formation as a function of cluster size at 259.9 K
Figure 1 shows how the work of formation curve is af- andn;=4.61x 10 *nm2 for all three potential models and
fected ifrign is varied. The curves correspondrt@;g,dis-  the classical value calculated with Ed2). At this tempera-
tances of 3.25 Afirst minimum of O—O radial distribution ture and vapor density the classical nucleation theory agrees
functior), 3.8 A (simulation, and 4.2 A(second maximum quite well with the experimental data by aand Strey and
of O—0 radial distribution function It can be seen, that not the classical work of formation curve can be used as a ref-
only the height of energy barrier is affected but the criticalerence for the experimental free energy barrier. The figure
cluster size can also vary. However, the differences are namphasizes how dramatically the resulting work of forma-
very significant. tion depends on the choice of model potential. Compared to
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Work of Formation (kT)

Mean Potenttial Energy (kJ/imol)

10 [ »
Cluster Size

Cluster Size

FIG. 2. The reversible work of cluster formation against cluster size at 259.&|G' 3. The mean poterltLaI eflgrgy of the clusters agams_t_gluster size at
259.9 K andn,=4.61x10 “ nm™°. Note that the cluster definition affects

K and n;=4.61x 104 nm~2 for TIP4P, SPC/E, and GG models of water. h il in the ¢l
Also the classical nucleation theory prediction is shown since the experiln® Mmean potential energy in the clusters.
mental nucleation barrier height is close to the classical one at these condi-
tions.
ent models are comparable. It is striking to see that the evo-

lution and magnitude of the growth probability is nearly

the classical curve, SPC/E especially seems to produce dgdentical in all models. The difference is seen mainly in the
energy barrier and a critical cluster size that are clearly toglecay probability. Again, the dip in the decay probability for
low. TIP4P produces a work of formation curve that agreest cluster containing four molecules can be clearly seen in all
best with classical nucleation theory. We can also note thaiodels. It probably results from a favorable geometry of a
the critical cluster size with TIP4P is close to the one pre-water cluster containing four molecules compared to adja-
dicted by CNT. The GG model, that is the only polarizablecent cluster sizes.

water model, does not perform as well as TIP4P. Interest- For the comparison with experiments, we calculated the
ingly, all the water potentials produce a jump in the work of full work of formation curves up to the critical cluster sizes
formation when the cluster has four molecules. This impliesit temperature$218.9, 229.5, 239.6, 249.7, and 259.9 K
the existence of a magic number, representing a fairly stabl@nd monomer densities corresponding to experiments by
tetramer structure. Wolk and Strey'° Figure 5 shows the simulated critical clus-

The fact that all models produce too low work of forma- ter sizes, along with the experimental predictions obtained by
tion curves must lie in the properties of the potential modelsfitting a function InJ[T,In(9] to the experimental data of
The models that we study here are relatively simple repreWolk and Strey, and using the nucleation theotém
sentations of the water molecule. They have been con- [ 5|n3
structed to represent a set of some of the bulk properties of 7S
water while failing to accurately represent others. To this day
there exists no universal water model that could accuratelfhe form of the chosen fitting function affects the results. We
describe all the properties simultaneously with a reasonablgave tried several functional forms loosely based on the clas-
accuracy, and even the growing complexity of the modelssical expression for nucleation rate, and indicate by error
has not improved the situation significantly. In a nucleationbars the uncertainty due to the arbitrary choice. The dramatic
simulation one would like to use a water model capable olariation in the critical cluster sizes gained from different
describing the interaction between molecules not only in the
bulk liquid phase, but also inside the nucleating clusters con-
taining only a few molecules. Indeed, if we look at binding 107
energies of clusters produced by different modélg. 3),
we notice that the stronger binding corresponds to lower
work of formation. Kathmanet al*® have shown that TIP4P wt
potential results in too much binding between cluster mol-
ecules compared to real water. This in turn decreases the
work of formation of clusters. It is then understandable that
GG and SPC/E results give a worse agreement with the ref- .
erence work of formation in Fig. 2, as they produse even wp 87
more strongly bound clusters than TIP4P.

Stronger binding suppresses the decay rate of the clus-
ters. This can be seen from Fig. 4, where we show the di- o e Y Cstersiee C 2™
mensionless grand canonical probabiliti€s and D; of _
growth and decay of clusters for each model and cluster siz&'C 4 Grand canonical average growth and decay probabilities as a func-

[ . ion of cluster size at 259.9 K amil,=4.61x 10 “ nm™* for a simulation
The probabilities have been calculated for clusters in &pnere of 5 nm radius. All growth probabilities overlap. The units of prob-
spherical cavity of 5 nm radius, so that the results for differ-ability are arbitrary.

) =N*+1. (48)
.

Probability
3
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FIG. 7. Nucleation rate as a function of monomer density. We show the
@imulation results using the TIP4P and GG models at five temperatures.
xperimental results of Wk and Strey and classical theory nucleation rates

are also shown.

FIG. 5. Critical cluster sizes as a function of monomer density at five dif-
ferent temperatures. We show the simulation results for TIP4P, GG, an
SPC/E models. Critical sizes deduced from experiments bik\alud Strey
and classical results are also shown.

H’ligh. But TIP4P particularly gives a correct dependency on

potential models is clearly seen. The best fit is gained wit = densit dqt ‘ Y h .
TIP4P for which the magnitude and monomer density depen- € monomer density and temperature. Fowever, the magni-

dency is fairly close to experimental results. The agreementylOIe |Cs;Gconst:nltIy O\f/erestugated bﬁ/ a f?cto_r o|f>Qh]Z)4. .
for GG is less satisfactory, and SPC/E produces critical cIus’-A‘ SO model performs better than classical t eory in
ters sizes which are clearly too small. Figure 6 shows thderms of temperature dependency, although the magnitude is

classical theory results for critical cluster size calculatewOWTzonStantly overestimated byda factor of>1d.’lx)9 " q

from Eq.(43) with the experimental results and TIP4P simu- € correct tlemf)erature.anF. mgnorr;}er ehnsny elper:j-
lation results at 259.9 and 218.9 K. Classical nucleatiof' €€ IS More ciearly seen in ig. o, w ere_t e simulate
theory still gives a better fit with the experiments than thenucleatlon rates are divided with factors mentioned above to

simulations. However, given that TIP4P produces the wron oin_cide with the experimental data. TIP4P simulations es-

magnitude for the work of formation, the agreement betwee _e_C|aIIy match the experimental Va"%es almqst perfectly. The

the simulated and experimental critical sizes is quite remark,—It in the temperature depenfjency W'.th .GG simulation results

able. is also better than the classical predictions, but the monomer
The insertion of the calculated values for the work ofdenSIty dependency is not quite as good.

formation into Eq.(40) with the classical prefactdEq. (41)] lati Earliear, Halg andh D:l\|/|a|1tti§’ :JSE‘fd a Monte Cd%rlo simu- f
gives us the nucleation rates at a giveandn, . The simy-  'auon to determine the Helmnholtz free energy differences o

lation results for TIP4P and GG are shown in Fig. 7, alongsmaII clusters at 260, 280, and 300 K using TIP4P. Based on

with the experimental data and classical nucleation theor)tlh_ _
results. The classical theory agrees well in magnitude witifition rate that gives a correct temperature dependency for the
the experimental data in this temperature region. It also has
the right dependency on the monomer density, but a wrong

temperature dependency. Due to underestimation of the work [T e I
of formation, simulations give nucleation rates which are too "fg " a4
P o |
10* ] .
[
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FIG. 6. Critical cluster sizes as a function of monomer density at two dif-FIG. 8. Nucleation rates from the simulations divided with constant factors.
ferent temperatures for TIP4P model with experimental predictions and clasResults of the TIP4Ffactor 2.2< 10%) and GG(factor 1.3< 10°) models are

sical theory results. Error bars indicating the uncertainty in experimentashown against monomer density at five different temperatures. Experimental
results are also shown. and classical nucleation theory results are also shown.
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FIG. 9. Nucleation rate as a function of critical cluster size. From left to FIG. 10. Nucleation rate as a function of saturation ratio. Note that the
right the lines correspond to temperatures 218.9, 229.5, 239.6, 249.7, arfdmperatures are in a different order than previously.
259.9 K.

either. We note that for SPC/E, the critical cluster sizes
would grow and nucleation rates drop since the SPC/E satu-

nucleation rate. They also argued that this scaling also ap- .. . :
ration vapor pressures are only fractions of true saturation

plies to a wider temperature range, but didn’t carry out simu- .
lations outside the 260—300 K temperature interval. Our rgPressUres at the studied temperatures.
sults verify that TIP4P produces the correct temperatur
dependency also in the 220-260 K interval. %l' CONCLUSION
Figure 9 shows a plot of critical cluster sizes against the ~ We have studied homogeneous nucleation of water with
nucleation rate for TIP4P in logarithmic scale. We see neara semigrand canonical Monte Carlo method that was origi-
linear curves that shift gradually toward larger critical clusternally introduced by Vehkarié and Ford?? This method is
sizes with increasing temperature. According to classicabased on the calculation of average grand canonical growth
theory the curves are not exactly linear, but curve towards and decay probabilities of molecular clusters in a canonical
higher nucleation rate with the increasing critical cluster sizeensemble. In this paper, we have showed how it can be used
The slopes in all the curves are fairly similar, and the sepain calculations of the work of formation of molecular clus-
ration between the simulated lines is closer to experimentatrs. Furthermore, we have derived a connection between the
separation than the lines given by the classical theory. growth and decay probabilities and kinetic condensation and
In this paper we have studied nucleation in terms ofevaporation rates. This connection opens up new possibilities
temperature and monomer density. Another possibility als@o study cluster properties. It can also be used in the sensi-
exists, arising from the incomplete description of real watettivity analysis of the nucleation process.
properties by simple potential models. The models do not Here we have used the extended method for calculations
give an accurate description of the binodal of water. Thus thef critical cluster size, cluster work of formation and the
saturation pressures for the models are different from reahucleation rate of water. In the simulations clusters were de-
water. Because of this, comparisons of experimental anfined by applying the Stillinger cluster definition. We
simulated nucleation rate and critical cluster size at the samehecked that the results are not very sensitive to the chosen
temperature and saturation ratio give different results thamearest neighbor distance of the cluster definition. The simu-
comparisons at the same temperature and monomer densitgtions were run at temperatures and monomer densities cor-
Calculation of the binodal for different water models at responding to experiments by kand Strey*° Calculations
the studied temperatures is beyond the scope of this papevere carried out with three stiff potential models, namely
However, Dr. Bin Chen has kindly provided us the saturationwith the unpolarizable TIP42and SPC/E* models and with
pressures for TIP4P close to our simulation temperattiresa polarizable model developed by Guillot and Guis$ni,
gained from Gibbs Ensemble Monte Carlo simulations: 22Ccalled GG model in this paper. Comparisons with experimen-
K; 6.2 (0.4) Pa, 230 K; 17.50.9 Pa, 240 K; 55.1(1.8) Pa  tal data show that our simulations with TIP4P reproduce the
and 260 K; 32812) Pa. Numbers quoted in the brackets aresize of the critical cluster fairly accurately. TIP4P also pro-
the standard error of mean analyzed from five independerduces a correct temperature and monomer density depen-
simulations and each has a length of 200000 Monte Carldency of nucleation rate, but the magnitude is overestimated
cycles. 500 molecules were used in these simulations. by a constant factor of 2:210%. With GG we get nucleation
Figure 10 shows how results for TIP4P in Fig. 7 changerates which are too high by a factor of X30°, but again
if the input monomer density is calculated from the modelthe temperature and monomer density dependencies of the
saturation vapor pressure. As one can see, the agreement Ipeicleation rates and critical cluster sizes agree fairly well
tween simulations and experiment does not improve. Simuwith the experimental data. The results of the TIP4P and GG
lated nucleation rates become considerably higher, becauseodels are encouraging since the major drawback of classi-
the saturation pressures and hence the input monomer densal nucleation theory is the wrong temperature dependence
ties are about 1.4 times higher than in the previous case. Thef the nucleation rate. Simulations with SPC/E resulted in far
temperature dependence of nucleation rate is not as goddo small critical cluster sizes and high nucleation rates.

Downloaded 15 Jul 2004 to 128.214.205.4. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



924 J. Chem. Phys., Vol. 121, No. 2, 8 July 2004

Merikanto, Vehkamaki, and Zapadinsky

The water models generally do not reproduce the satura?k. Oh and X. Zeng, J. Chem. PhyklQ, 4471(1999.
tion vapor pressure behavior of real water correctly. BecausgB- N. Hale and R. Ward, J. Stat. Phy28, 487 (1982.
of this, we also compared the TIP4P results with experiments B- N- Hale, Aust. J. Physi9, 425(1996.

at the same saturation ratios rather than monomer densities
This did not improve the agreement between simulations and

experiments.

9B. Hale and D. DiMattio, inProceedings of the 15th International Con-

ference on Nucleation and Atmospheric Aeroselited by B. Hale and
M. Kulmala (American Institute of Physics, 200Qop. 31-34.
21B. Chen, J. I. Siepmann, K. J. Oh, and M. L. Klein, J. Chem. Phys,

Overall, the results reflect the high sensitivity of the 10903(2001.
nucleation process. The resulting critical cluster sizes an@H. Vehkaniki and I. J. Ford, J. Chem. Phy%12, 4193(2000.

nucleation rates are highly affected by the choice of molecu?W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L.
lar interaction potential model. Small variations in the aver-
age potential energies of clusters between the models hav

Klein, J. Chem. Phys79, 926 (1983.
24H. J. C. Berendsen, J. R. Grigera, and T. P. Straatsma, J. Phys. Ghem.

€ &269(1987.

strong effect on the stability of the clusters. A stronger aversg 1 gao, k. J. Oh, and X. C. Zeng, J. Chem. PHy0, 2533 (1998.
age binding between the molecules in a cluster is reflected @s. vasuoka and M. Matsumoto, J. Chem. Phyg9, 8463(1998.

a reduced decay probability, while the growth probability iS?"H. Vehkani&i and 1. Ford, Phys. Rev. B9, 6483(1999.

not significantly affected. Thus, the overall stability of clus- *°B. Guillot and Y. Guissani, J. Chem. Phyid4, 6720(200D.

ters increases with stronger binding. This in turn lowers the’L: D- Landau and E. M. LifshitsStatistical Physics, Part 1Pergamon,

critical cluster size and boosts the nucleation rate.

IM. Kulmala, L. Pirjola, and J. M. Mikela Nature (London 404, 66
(2000.
2S. Gao, A. Hegg, G. Frickt al, J. Geophys. Red.06, 27619(2001).

3M. Volmer and A. Weber, Z. Phys. Chem., Stoechiom. Verwandtschaftsl ;3

119 277(1925.

“R. Becker and W. Dng, Ann. Phys(Leipzig) 24, 719 (1935.

5J. Zeldovich, Sov. Phys. JETE2, 525 (1942.

8C. Hung, M. J. Krasnopoler, and J. L. Katz, J. Chem. Pl9@.1856
(1989.

7J. L. Schmitt, G. W. Adams, and R. A. Zalabsky, J. Chem. Pfys2089
(1982.

8R. Strey, T. Schmelling, and P. E. Wagner, J. Chem. PBgs.6192
(1986.

9A. Kacker and R. H. Heist, J. Chem. Phy2, 2734(1985.

103, wdk and R. Strey, J. Phys. Chem. 5, 11683(2001).

1], Lothe and G. M. Pound, J. Chem. Phgs, 2080(1962.

2p, W. Oxtoby and R. Evans, J. Chem. Phg8, 7521(1988.

BBA. Dillmann and G. E. A. Meier, J. Chem. Phy&4, 3872(1991).

143, K. Lee, J. A. Barker, and F. F. Abraham, J. Chem. Pg5.3166
(1973.

15N, Garcia and J. M. Soler Torroja, Phys. Rev. L&, 186 (1981).

16|, Kusaka, Z.-G. Wang, and J. H. Seinfeld, J. Chem. PHy@8 3416
(1998.

Oxford, 1969.

303, Yao, R. Greenkorn, and C. Chao, Mol. Ph¥8, 587 (1982.

3IN. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E.
Teller, J. Chem. Phy<1, 1087(1953.

32D, Heermann,Computer Simulation Methods in Theoretical Physics

(Springer-Verlag, Berlin Heidelberg, 1986

D. Frenkel and B. SmitUnderstanding Molecular Simulatior2nd ed.

(Academic, New York, 2002

34F. F. AbrahamHomogeneous Nucleation Theo@cademic, New York
and London, 1974

357, Frenkel Kinetic Theory of LiquidgOxford University Press, London,
1946.

363, M. Kathmann, G. K. Schenter, and B. C. Garrett, J. Chem. FHs.
5046 (2002.

STH. Vehkami and 1. J. Ford, J. Chem. Phys13 3261(2000.

38K. J. Oh and X. C. Zeng, J. Chem. Phyd.2, 294 (2000.

3P, R. ten Wolde and D. Frenkel, J. Chem. PH\G9, 9901 (1998.

0F, H. stillinger, J. Chem. Phy&8, 1486(1963.

410. Preining, P. E. Wagner, F. G. Pohl, and W. Szymariskierogeneous
Nucleation and Droplet GrowtklUniversity of Vienna, Institute of Experi-
mental Physics, Vienna, Austria, 1981

42H. Reiss, A. Tabazadeh, and J. Talbot, J. Chem. P3%s1266(1990.

4D, W. Oxtoby and D. Kashchiev, J. Chem. Ph80, 7665(1994).

44B. Chen, private correspondence.

Downloaded 15 Jul 2004 to 128.214.205.4. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



