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We have calculated the critical cluster sizes and homogeneous nucleation rates of water at
temperatures and vapor densities corresponding to experiments by Wo¨lk and Strey@J. Phys. Chem
B 105, 11683~2001!#. The calculations have been done with an expanded version of a Monte Carlo
method originally developed by Vehkama¨ki and Ford@J. Chem. Phys.112, 4193 ~2000!#. Their
method calculates the statistical growth and decay probabilities of molecular clusters. We have
derived a connection between these probabilities and kinetic condensation and evaporation rates,
and introduce a new way for the calculation of the work of formation of clusters. Three different
interaction potential models of water have been used in the simulations. These include the
unpolarizable SPC/E@J. Phys. Chem.91, 6269~1987!# and TIP4P@J. Chem. Phys.79, 926~1983!#
models and a polarizable model by Guillot and Guissani@J. Chem. Phys.114, 6720 ~2001!#. We
show that TIP4P produces critical cluster sizes and a temperature and vapor density dependence for
the nucleation rate that agree well with the experimental data, although the magnitude of nucleation
rate is constantly overestimated by a factor of 23104. Guissani and Guillot’s model is somewhat
less successful, but both the TIP4P and Guillot and Guissani models are able to reproduce a much
better experimental temperature dependency of the nucleation rate than the classical nucleation
theory. Using SPC/E results in dramatically too small critical clusters and high nucleation rates. The
water models give different average binding energies for clusters. We show that stronger binding
between cluster molecules suppresses the decay probability of a cluster, while the growth
probability is not affected. This explains the differences in results from different water models.
© 2004 American Institute of Physics.@DOI: 10.1063/1.1740754#

I. INTRODUCTION

Vapor–liquid nucleation processes play an important
role in the formation of atmospheric aerosols. Homogeneous
nucleation in the atmosphere, where low vapor pressure spe-
cies form new aerosol particles, is a multicomponent process
which is considered to occur mainly via the ternary sulphuric
acid–water–ammonia route and at low temperatures, possi-
bly via binary sulphuric acid–water route.1 Also heteroge-
neous nucleation of water and organic vapors on the surface
of nonsoluble aerosol particles has lately been under intense
research, although currently it seems that organic vapors
mainly participate in the growth of newly formed particles.2

A good description of complex atmospheric nucleation
processes requires a thorough knowledge of the simplest
form of nucleation such as unary homogeneous nucleation.
However, there are still severe discrepancies between theo-
retical predictions and laboratory measurements of unary ho-
mogeneous nucleation rates. These problems are considered
in the present study.

Nucleation occurs through the birth of small molecular
clusters that form in sequential molecular collisions. Up to a
certain size known as the critical size, the clusters are un-
stable and tend to evaporate. The instability makes the equi-
librium cluster distribution fall steeply with the increasing

size. As the density of the clusters in any real physical situ-
ation is low, we can normally consider that acquisitions of
free monomers dominate in the condensation process.
Evaporation is also believed to occur mainly through the
escape of single monomers. The cluster formation mecha-
nism is then described as a chain of reactions

~1!1~N21! 

aN

bN21

~N!, ~1!

where the condensation rate constantbN21 is smaller than
the evaporation rate constantaN when N, the number of
molecules in the cluster, is small. The critical clusterN* is a
cluster for whichbN* 215aN* . Only few clusters manage to
reach the critical size and are able to grow indefinitely. The
rate at which the critical clusters appear in a unit volume of
vapor is called the nucleation rate.

To date the most widely used theory describing the
nucleation phenomenon is called the ‘‘classical nucleation
theory’’ ~CNT!. It was developed by Volmer and Weber,3

Becker and Do¨ring,4 and Zeldovich.5 It is based on approxi-
mate analytical solutions of kinetic equations describing the
growth and decay of clusters in a metastable state. Impor-
tantly, it relies on a number of approximations, most signifi-
cantly on the ‘‘capillarity approximation’’ which means the
use of bulk properties of liquid to describe clusters having
only a small number of molecules. Although in many casesa!Electronic mail: joonas.merikanto@helsinki.fi
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CNT works reasonably well, it often fails to predict the right
temperature dependence for the experimental nucleation rate.
For many substances such as n-nonane,6 ethanol,7 methanol,8

i-propanol,9 and water10 the theoretical homogeneous nucle-
ation rates are too low at low temperatures and too high at
high temperatures. To improve the situation, extensions to
classical nucleation theory have been introduced by Lothe
and Pound,11 Oxtoby and Evans,12 and Dillmann and
Meier,13 among others, but nucleation phenomenon still re-
mains poorly understood.

There is a growing interest to study nucleation on a mo-
lecular level. As there are no experiments that could directly
observe the molecular processes and the full mathematical
solutions are too complicated, this has been done with the aid
of molecular computer simulations. Since the pioneering
Monte Carlo ~MC! simulation by Lee, Barker, and
Abraham14 on argon clusters, nucleation has been exten-
sively studied by molecular dynamics and Monte Carlo
simulations.15–22As the validity of interaction potentials for
small clusters with complex molecules is often questionable,
argon is still frequently used as a model substance in nucle-
ation simulations. However, nucleation experiments are dif-
ficult to carry out with argon, and a comparison between
experiments and simulations has only been done by Garcia
and Torroja.15

Aside from argon, water presents another popular choice
for nucleation simulations. Experimental nucleation rates are
available for water, but the only comparison between simu-
lations and experiments, so far, has been done by Hale and
DiMattio,20 who achieved the experimental temperature de-
pendency of the nucleation rate with a scaled expression for
the Helmholtz free energy differences deduced from a simu-
lation with the TIP4P23 water model. In other recent Monte
Carlo simulations, Kusakaet al.16 have used the SPC/E24

water model for the evaluation of equilibrium distribution of
water clusters and Gaoet al.25 applied SPC/E to study the
effect of an electric field on homogeneous nucleation. Ya-
suoka and Matsumoto26 have carried out a direct molecular-
dynamics simulation of the nucleation of water with TIP4P.

In our present work we apply the MC technique devel-
oped by Vehkama¨ki and Ford22,27 to calculate the critical
cluster sizes and nucleation rates of water at the temperatures
and vapor densities corresponding to the experiments by
Wölk and Strey.10 We have studied three different water
models, namely two rigid and nonpolarizable models SPC/E
and TIP4P and a rigid and polarizable model developed by
Guillot and Guissani.28 Our MC technique has been previ-
ously used for cases of new phase nucleation in the Ising
model of interacting spins27 and Lennard-Jones atoms.22

With this method, we allow a fixed number of water mol-
ecules, forming a single cluster, to evolve in a canonical MC
simulation. We deduce the stability of the cluster by calcu-
lating the average grand canonical growth and decay prob-
abilities from attempted creations and annihilations of single
molecules. The critical cluster is a cluster whose growth and
decay probabilities are equal. Here, we also introduce a new
method to calculate of the work of formation of the critical
cluster directly from the growth and decay probabilities of
clusters from monomers upward. We use the work of forma-

tion with the classical nucleation theory to predict the nucle-
ation rate.

In the next section we review the theoretical background
to the simulation technique and introduce a new way of cal-
culating the work of cluster formation. The computational
details are described in Sec. III. Section IV gives a sensitivity
analysis for the calculation of the work of formation with
respect to the applied nearest neighbor distance in the defi-
nition of the cluster. The Sec. V describes the applicability of
three different water models~TIP4P, SPC/E, and an interac-
tion potential recently developed by Guillot and Guissani! to
our type of nucleation simulation and presents the calculated
critical cluster sizes and nucleation rates. Finally, the conclu-
sions are given in Sec. VI.

II. THEORETICAL BACKGROUND
TO THE SIMULATION TECHNIQUE

The probability density for a system to be in a state with
N indistinguishable particles having coordinates$r i% in a vol-
umeV is given by29

P~N,$r i%!5
1

J

L23N exp~mN/~kT!!j in
N

N!
expF2UN~$r i%!

kT G ,
~2!

where r i is the position of particlei and UN($r i%) is the
interaction energy of theN particle system, which depends
on the configuration$r i%. The curly brackets represent the set
of N particle positions,j in is the internal partition function of
one molecule,T is the temperature,k is the Boltzmann con-
stant,m is the chemical potential andL5Ah2/(2pmkT) is
the thermal de Broglie wavelength of the particles. Herem is
the mass of the particle andh is Planck’s constant. The clas-
sical grand canonical partition functionJ of a system ofN
indistinguishable molecules is given by

J5 (
N50

` H L23N exp~mN/~kT!!j in
N

N!

3E
V
)
i 51

N

dr i expF2UN~$r i%!

kT G J . ~3!

It is convenient to combine de Broglie wavelength, chemical
potential and internal partition function in one parameter

g5L23 exp~m/~kT!!j in . ~4!

For the simulation purposes the upper limit for the number
particles is usually set toNmax and Nmax2N noninteracting
distinguishable ghost particles are inserted at random
positions.30 Then, the grand canonical partition function is

J5 (
N50

Nmax E
V
)
i 51

Nmax

dr i

gN

VNmax2NN!
expF2UN~$r i%!

kT G . ~5!

The probability density for the system to be in a state withN
particles having coordinates$r i%, andNmax2N noninteract-
ing particles at arbitrary positions, can then be identified as
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P~N,$r i%!5
1

J

gN

VNmax2NN!
expF2UN~$r i%!

kT G . ~6!

In the algorithm for grand canonical simulation presented by
Yao et al.,30 along with nontrivial creation and annihilation
of attempts, the conventional Metropolis moves31 are also
present. In what follows the notation$r i% % r k stands for a
cluster configuration$r i% where a particle is added to posi-
tion r k , and the notation$r i%*r j stands for a cluster con-
figuration $r i% where a particle from positionr j is taken
away. $r i%, r j→r j8 denotes configuration$r i% where a par-
ticle from positionr j moves to positionr j8 .

The probability that one particle is created at positionr k

is given by min@1,C(N,$r i% % r k)#,30,32 where

C~N,$r i% % r k!

5
P~N11,$r i% % r k!

P~N,$r i%!

5
gV

N11
expH 2@UN11~$r i% % r k!2UN~$r i%!#

kT J , ~7!

and the probability that a particle at positionr j is annihilated
is min@1,A(N,$r i%*r j )#, whereA(N,$r i%*r j ) is given by

A~N,$r i%*r j !5
P~N21,$r i%*r j !

P~N,$r i%!

5
N

gV
expH 2@UN21~$r i%*r j !2UN~$r i%!#

kT J .

~8!

The probability that a particle at positionr j moves to posi-
tion r j8 is min@1,M (N,$r i%,r j→r j8)#, where

M ~N,$r i%,r j→r j8!5expF2
DUN

kT G , ~9!

andDUN is the energy difference between new and old con-
figurations. In order to produce a series of configurations
representative of the grand canonical ensemble, the relative
probabilities of attempted creation,aC , and destruction,aD ,
have to be equal. The probability of a translational moveaT

is independent ofaC andaD .
Starting from these formulas Vehkama¨ki and Ford22,27

introduced growth and decay rates for the given configura-
tion of the cluster. For configuration$r i% the decay rate, that
is, the total probability for any molecule to be annihilated in
a Monte Carlo step, is given by

DN~$r i%!5
aD

N (
j 51

N

dclu min@1,A~N,$r i%*r j !#, ~10!

where dclu sets the probability to zero if the annihilation
would result in splitting the cluster, anddclu51 when the
annihilation move satisfies the cluster criterion. The growth
rate for a configuration$r i% reads

GN~$r i%!5
aC

Nmax2N (
k51

Nmax2N

dclu min@1,C~N,$r i% % r k!#,

~11!

wheredclu is zero if the molecule created would not be part
of the cluster according to the cluster definition, anddclu

51 when the cluster criterion is satisfied by the creation
move. Note that the creation probability depends on both the
cluster configuration$r i% and the configuration of the nonin-
teracting particles$r k%.

For the canonical ensemble containing anN-molecule
cluster and Nmax2N noninteracting distinguishable mol-
ecules the average value of arbitrary variableY is given by

^Y&5
1

QNVNmax2N EV
)
i 51

Nmax

dr iYdclu expF2UN~$r i%!

kT G ,
~12!

where QN is the configuration integral of theN-molecule
cluster defined as

QN5E
V
)
i 51

N

dr idclu expF2UN~$r i%!

kT G . ~13!

Then, the canonical partition function of theN-molecule
cluster is

ZN5
L23Nj in

N QN

N!
5

gN exp@2Nm/~kT!#QN

N!
. ~14!

Vehkamäki and Ford22,27 assumed that when canonical en-
semble averages for decay and growth rates

D̄N[^DN& ~15!

and

ḠN[^GN&, ~16!

are equal the cluster is said to be critical. The critical cluster
condition can formally be written as

ḠN* 5D̄N* , ~17!

whereN* is the number of molecules in the critical cluster.
We show that this assumption corresponds to defining the
critical cluster as the location of the free energy maximum.

For the grand canonical Metropolis scheme, assuming
aC5aD , the following detailed balance equation is valid:33

P~N,$r i%!dclu min@1,C~N,$r i% % r k!#

5P~N11,$r i ,r k%!dclu3min@1,A~N11,$r i ,r k%*r k!#,

~18!

where creation and annihilation probabilitiesC(N,$r i ,r k%)
and A(N11,$r i ,r k%*r k) are given by Eqs.~7! and ~8!, re-
spectively, and the probability density for a configuration
$r i% with N particlesP(N,$r i%) is given by Eq.~6!. Let us
multiply both sides of the detailed balance equation by

)
i 51

Nmax

dri , ~19!

and integrate over all coordinates. All configurations, where
cluster particles are at the same positions and the ghost mol-
ecules only exchange their positions between each other,
equally contribute to the integral. It allows us to group con-
figurations such way that we can insert Eqs.~10! and ~11!
into the integration in both sides obtaining
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1

ac
E

V
)
i 51

Nmax

dri P~N,$r i%!GN~$r i%!

5
1

ad
E

V
)
i 51

Nmax

dri P~N11,$r i%!DN11~$r i%!. ~20!

It is more visual to illustrate this procedure representing
integration as a summation. Let us assume that the system
space is divided toNmax pointlike cellscj , j 51,...,Nmax each
of which can contain only one~real or ghost! particle. ~In
principle, Nmax can be less than number of cells; we keep
them to be equal in order to make illustration simpler!. This
is done in the spirit of counting density of states, and the
space is considered fully packed when each of the cells con-
tain one particle. We distributeN real particles andNmax

2N particles to these cells, and sum equation~18! over all
possible configurations. In the summation eachr i ~real!, r k

~ghost on the left-hand side and real on the right-hand side!
andr k8 ~ghost! goes through all the cells, but two particles are
not allowed in the same cell.

(
r i5c~1!

c~Nmax!

(
rk5c~1!

c~Nmax!

(
rk85c~1!

c~Nmax!

$P~N,$r i%!dclu min@1,C~N,$r i% % r k!#%

5 (
r i5c~1!

c~Nmax!

(
rk5c~1!

c~Nmax!

(
rk85c~1!

c~Nmax!

$P~N11,$r i%!

3dclu min@1,A~N11,$r i ,r k%*r k!#%. ~21!

We first sum left-hand side over ghost particle positions.
Performing the sum over the positions of all ghost particles
k8Þk just leads to a factor of (Nmax2N21)!, since the sum-
mand is independent of where the (Nmax2N21) ghost par-
ticles k8Þk are. The sum over the position of ghost particle
k gives (Nmax2N)/aC•GN($r i%) according to Eq.~11!. On the
right-hand side summing over ghost particlesk8 gives also a
factor of (Nmax2N21)!, summing over now areal particlek
gives (N11)/aD•DN11($r i%*r k) using Eq.~10!. Now we
are left with sums only over positions of real particlesi and
the detailed balance equations turns into

(
r i5c~1!

c~Nmax! H ~Nmax2N!!

aC
P~N,$r i%!GN~$r i%!J

5 (
r i5c~1!

c~Nmax! H ~Nmax2N21!! ~N11!

aD
P~N11,$r i%!

3DN11~$r i%!J . ~22!

If we want to return to sums over positions of allNmax

particles we get

(
r i5c~1!

c~Nmax!

(
rk5c~1!

c~Nmax!

(
rk85c~1!

c~Nmax! H 1

aC
P~N,$r i%!GN~$r i%!J

5 (
r i5c~1!

c~Nmax!

(
rk5c~1!

c~Nmax!

(
rk85c~1!

c~Nmax! H 1

aD
P~N11,$r i%!

3DN11~$r i%!J , ~23!

where the factorials and (N11) have disappeared since the
summations overr k8 and r k correspond to (Nmax2N)! iden-
tical terms on the left-hand side and (Nmax2N21)!(N11) on
the right-hand side. Note thatGN($r i%) is in this context
uniquely defined for a certain cluster configuration$r i%, be-
cause we have chosenNmax and the cells so that the ghosts
fill the space entirely, and the configuration of the ghosts is
unique for a given cluster configuration. The last equation is
a discrete analog of continuous Eq.~20!.

Further transformation of Eq.~20! is straightforward
when aC5aD . We multiply left-hand side by the ratio of
configuration integralsQN /QN and the right-hand side simi-
larly by (QN11)/(QN11), then taking into account the ex-
plicit form of P(N,$r i%) @Eq. ~6!# and definitions~4!, ~12!–
~16!, we observe that the integration in Eq.~20! actually
represents canonical averaging, producing the following re-
lation:

ZN11

ZN
exp~m/kT!5

ḠN

D̄N11

. ~24!

At this point we see that the method originally proposed by
Vehkamäki and Ford22,27 for evaluating the critical cluster in
nucleation theory can also be used for computing free energy
difference between two clusters of adjacent sizes. Using the
conventional definition for Helmholtz free energyFN

FN52kT ln ZN , ~25!

we can rewrite Eq.~24! as

FN112FN5m2kT ln
ḠN

D̄N11

. ~26!

The majority of homogeneous nucleation theories con-
sider imperfect gas as a mixture of ideal gases, each gas
containing clusters of a certain size. Thus, the equilibrium
cluster distribution is given by the mass action law34,35

NN

ZN
5S N1

Z1
D N

, ~27!

whereNN is the number ofN-molecule clusters. According
to Eq. ~27! clusters are in equilibrium with monomers. The
same is the case for the grand canonical Monte Carlo
method. The simulated cluster is in equilibrium with ideal
gas molecules. Hence, the input chemical potential is the
chemical potential of the ideal gas and corresponds to the
chemical potential of the monomer gas, which in turn is a
component of the imperfect gas. For an ideal gas the chemi-
cal potential is given by29
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m5kT lnS L3N1

j inV D5kT lnS L3

j in
nvD , ~28!

where nv5N1 /V is the monomer number density. Using
Eqs. ~14!, ~25!, ~28!, and the Stirling approximation lnN1!
.N1 ln N12N1 Eq. ~27! can be rewritten as

NN5expS 2
DFN

kT D , ~29!

whereDFN5FN2Nm . Rewriting Eq.~26! as

DFN115DFN2kT ln
ḠN

D̄N11

, ~30!

we can see that assumption~17! of Vehkamäki and Ford22,27

correspond to critical size, being defined as the location of
the energy maximum with accuracy61 molecule. Equations
~26! and~30! also describe a new method for calculating the
cluster Helmholtz free energy. Indeed, starting fromF1 we
can subsequently calculate the Helmholtz free energies of
any size clusters.

We rewrite Eq.~29! as

NN5N1 expS 2
DWN

kT D , ~31!

whereDWN is defined as

DWN5DFN1kT ln~N1!. ~32!

The valueDWN is usually called the reversible work of for-
mation of anN-molecule cluster.34 Using Eqs.~30! and~32!
we can expressDWN as

DWN5DF11kT ln~N1!2kT(
j 52

N

ln
Ḡj 21

D̄ j

. ~33!

Thus by using Eqs.~14! and ~25! we obtain DF1

52kT ln(N1) reducing Eq.~33! to

DWN52kT(
j 52

N

ln
Ḡj 21

D̄ j

, ~34!

and the equilibrium cluster distribution~31! can be expressed
as

NN5N1)
j 52

N
Ḡj 21

D̄ j

. ~35!

The last equation looks very natural if considering grand
canonical growth and decay as a type of kinetic process. In
the kinetic approach the detailed balance condition leads to
equilibrium cluster distribution that is given by4,36

NN5N1)
j 52

N
b j 21

a j
, ~36!

whereb j and a j are the condensation and evaporation rate
constants appearing in Eq.~1!. The fractionḠj 21 /D̄ j can
then be identified asb j 21 /a j .

In this section we have justified the method proposed by
Vehkamäki and Ford37 for a quick estimation of the size of
critical cluster. Based on their idea we have developed a tool
for the calculation of Helmholtz free energy of clusters, al-

lowing one to estimate the work of formation of clusters or
the equilibrium cluster distribution. Although our method
uses canonical averaging, it can be considered as an extreme
case of the grand canonical Monte Carlo method developed
by Kusakaet al.16 for the estimation of equilibrium cluster
distribution. They proposed to simulate the cluster distribu-
tion inside certain intervals of the cluster sizes, say between
Nmin and Nmax. The narrower this interval is, the better the
accuracy that can be reached. Thus, Oh and Zeng38 have
usedNmax2Nmin53. In our caseNmax2Nmin is equal to 1,
which indicates the best possible accuracy for this type of
simulation.

There are different Monte Carlo approaches to simulat-
ing vapor nucleation. They can be divided in two types. The
first one is direct simulation of vapor to observe
clustering.17,21,39The second type, similar to the method pre-
sented here, is the simulation of an isolated cluster to calcu-
late the cluster free energy.14,16,18At the first sight the direct
simulation seems to be more rigorous than the simulation of
an isolated cluster. However, all cited methods of the first
type assume validity of Eq.~31!. From statistical mechanics
we know that if equilibrium cluster distribution exists, then
the cluster concentration can be calculated using the cluster
partition function @Eq. ~27!#. Then, the only more general
feature of direct vapor simulation is taking the cluster–
monomer and cluster–cluster interactions into account. As
was shown by Oh and Zeng38 their contributions are negli-
gible for water. This gives us the equivalence of two types of
vapor simulations. Simulations of the isolated cluster are
much less time consuming since there are much less mol-
ecules in the simulated system. Our estimations have shown
that the method presented here seems to be as computation-
ally efficient as other methods of the second type. The ad-
vantage of our method lies in the fact that the canonical
average of grand canonical growth and decay rates, as was
shown above, can be related to the rate constants in Becker
and Döring kinetic approach. It allows us to get a deeper
insight into the nucleation process.

III. COMPUTATIONAL DETAILS

Our simulation is a semigrand canonical Metropolis31

Monte Carlo simulation that evaluates the grand canonical
growth and decay probabilities in a canonical ensemble con-
sisting of a single cluster. One cluster size is studied at a
time, and no track is kept of vapor or noninteracting mol-
ecules. The cluster–vapor interaction is neglected since it has
been shown to be vanishingly small.38 Two parameters that
enter the simulation are temperatureT and the monomer
number densitynv related to the chemical potential accord-
ing to Eq. ~28!. During MC moves we keep the cluster’s
center-of-mass at the center of a spherical cavity with vol-
umeV, which is large enough to assure that the cluster edges
are always far from the cavity boundaries. We define the
cluster according to the Stillinger40 cluster definition as a
network of connected neighbors, where the distance to the
nearest neighbor is less thanr neigh53.8 Å. The cluster is cre-
ated by grand canonical insertions of molecules around the

918 J. Chem. Phys., Vol. 121, No. 2, 8 July 2004 Merikanto, Vehkamäki, and Zapadinsky
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origin. We then let it relax in a sequence of 108
•N canonical

Monte Carlo moves, whereN denotes the number of mol-
ecules in the cluster.

The growth probability for a specific molecular configu-
ration is calculated by inserting molecules at random posi-
tions around the cluster. The creation probability is calcu-
lated for every insertion and its average gives the growth
probability for the given configuration. The density (Nmax

2N)/V of the inserted molecules was 2r l (r l is the liquid
density! for small clusters (2<n<12) and 1 – 1.5r l for
larger clusters. The dimer creation probabilities were calcu-
lated by inserting molecules with a density of 105r l around
the monomer located at the origin. In Eq.~11!, (Nmax2N)
accounts for the total amount of attempted insertions in vol-
umeV, but according to the Stillinger cluster definition only
molecules that are inserted in the volumeV854pr 83/3
closer thanr 85r furthest1r neigh to the origin can even in prin-
ciple be connected to the cluster (r furthestis the distance of the
furthest molecule from the origin!. Thus we save computer
time by actually attempting creation only in volumeV8, but
scaling the number of attempts byV/V8 when calculating
(Nmax2N) in Eq. ~11!.

Likewise, the decay probability for a given configuration
is the average of annihilation probabilities of each molecule.
Only annihilations which do not split the remaining cluster
into two parts are accounted for. The average growth and
decay probabilities are canonical ensemble averages of
single configuration probabilities. The canonical simulation
consists of 33108 Monte Carlo moves where every 150th
configuration is sampled. The maximum displacement was
adjusted to achieve the 50% acceptance ratio, the average
shift being around 0.3 Å, depending on the cluster size. A
random rotation angle between 0° and 17° around a ran-
domly oriented axis was combined with the translational dis-
placement. After each move, the center-of-mass of the cluster
was moved to the origin. Several vapor densities were stud-
ied simultaneously, as the vapor density only affectsg in
Eqs.~7! and ~8!, energiesU being independent ofnv .

For small clusters the decay probability is greater than
the growth probability, but an increase in size causes the
molecules to become more tightly bound to the cluster and
hence the cluster is less likely to decay. In the simulation the
critical cluster sizeN* at a givennv andT is found when the
averages of growth probabilityḠN* 21 and decay probability
D̄N* are equal. If we calculateḠN and D̄N for each cluster
size from monomer upward, we can solve the nucleation
rate. This can be done in two ways. If the critical cluster size
is small (N* <10) we can use the exact summation for the
nucleation rate given by4,36

J215
1

b1nv
F11(

i 52

` S )
N52

i
aN

bN
D G , ~37!

where for a cluster containingN molecules,aN is the evapo-
ration rate constant, and the condensation rate constantbN is
given by kinetic gas theory as

bN5
1

11d1,N
nvA6kTS 3

4p D 1/6

3S 1

Nm1
1

1

m1
D 1/2

@~Nv1!1/31v1
1/3#2, ~38!

where m1 is the molecular mass andv1 is the molecular
volume of the pure bulk liquid. We can now replaceaN /bN

by D̄N /ḠN . The expression for nucleation rate then becomes

J215
1

b1nv
F11

D̄2

Ḡ2

1
D̄2D̄3

Ḡ2Ḡ3

1¯

D̄2D̄3¯D̄ i

Ḡ2Ḡ3¯Ḡi

1¯G .

~39!

The summation in Eq.~39! converges rapidly wheni @N* ,
but around half of the contribution comes from sizes larger
than the critical size, and we have to extend our simulations
to sizes of around 2N* to use this equation. If the critical
cluster size is large, it is more convenient to calculate the
nucleation rate from the familiar classical expression

J5KN* exp~2DW* /~kT!!, ~40!

where the work of formation of the critical clusterDW* is
calculated from Eq.~34!. The prefactorKN* contains the
collision rate of monomers with a single critical cluster in a
saturated vapor and the Zeldovich nonequilibrium factor
ZN* . It can be expressed as

KN* 5bN* nv
S51ZN* 5bN*

psat

kT
A s

kT S 2v

9pN* 2D 1/3

,

~41!

where v is the molecular volume of liquid water,S is the
saturation ratio ands is the bulk surface tension. In this
paper we have used Eq.~40! instead of Eq.~39! in all calcu-
lations of the nucleation rate. The classical formation energy,
which we compare our simulated formation energy with, is
given by

DW5As2NkT ln S, ~42!

whereA is the surface area of the cluster calculated assuming
bulk liquid density and a spherical droplet. The classical
critical cluster size is

N* 5
32ps3

3r l
2~kT ln S!3

. ~43!

The saturation vapor pressure,10 surface tension10 and
density41 are given by

psat~T!5exp~77.344 912 9627235.424 651/T28.2• ln T

10.005 711 3•T! @Pa#, ~44!

s~T!593.663510.009 133•T20.000 275•T2 @mN/m#,
~45!

r l~T!5
1

v
5

1049.57220.1763•T

mw
@1/m3#, ~46!

wheremw is the mass of a water molecule.
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IV. THE EFFECT OF CLUSTER DEFINITION

The correct identification of a physical cluster is essen-
tial to molecular theories of nucleation. We shall not go into
details here, but one should note that there are several com-
peting ways to identify a physical cluster, and the applied
cluster definition is often chosen according to simulation
method. A good description of a variety of cluster definitions
can be found in a paper by Reisset al.42

One common cluster definition is presented by Lee,
Barker, and Abraham,14 where the molecules belong to the
same cluster if they can be included in a sphere of fixed
volume v, whose origin is at the center-of-mass of these
molecules. The volumev is defined so that the thermody-
namic properties of the cluster are nearly independent of it
over a wide range ofv. This cluster is usually called an LBA
cluster. In our simulation we have chosen to use another
common cluster definition presented by Stillinger,40 where
the cluster is defined as a group of molecules for which each
member is connected to at least one other member within a
minimum distancer neigh. The cluster is then defined as a
connected network of neighboring molecules. When apply-
ing the Stillinger cluster definition, the choice ofr neigh is
somewhat arbitrary. For bulk liquid water the natural choice
of r neigh would be the first minimum of the oxygen–oxygen
radial distribution function. For small clusters the density at
the edge of the cluster is less than the bulk liquid density. As
in the LBA cluster, it is then natural to allow molecules to be
more loosely bonded than in bulk liquid. For our simulations
we choser neigh53.8 Å, corresponding to the distance be-
tween the first minimum and the second maximum in the
oxygen–oxygen radial distribution function of bulk liquid
water.

Figure 1 shows how the work of formation curve is af-
fected if r neigh is varied. The curves correspond tor neigh dis-
tances of 3.25 Å~first minimum of O–O radial distribution
function!, 3.8 Å ~simulation!, and 4.2 Å~second maximum
of O–O radial distribution function!. It can be seen, that not
only the height of energy barrier is affected but the critical
cluster size can also vary. However, the differences are not
very significant.

V. RESULTS AND DISCUSSION

We now use the theoretical tools presented above for
simulations of the nucleation of water. The simulation results
for critical cluster sizes and nucleation rates are compared
with experimental data by Wo¨lk and Strey10 and with classi-
cal nucleation theory~CNT!. Our simulations are run with
three different water models at constant temperatureT and
monomer densityn1 . The tested models include two widely
used stiff and unpolarizable potential models SPC/E24 and
TIP4P,23 and a fairly recent stiff but polarizable potential
model developed by Guillot and Guissani,28 called GG
model in this paper.

The method was first tested with SPC/E. This model has
been used in the calculations of work of formation of small
water droplet also by Kusakaet al.16 We ran our simulations
at the conditions used by Kusakaet al.,16 T5298.15 K and
n151023 nm23 with SPC/E potential, and were able to ex-
actly reproduce the free energy curve in their Fig. 8.

Wölk and Strey10 have measured the homogeneous
nucleation rates at five different temperaturesT by varying
the vapor pressurespv . To compare our simulations with
their data we need to relate our input parametern1 to pv .
There are two ways to do this. The first way is to input into
simulation some valuen1 and calculate the resulting cluster
distribution nN by using Eq.~31!. Assuming that imperfect
gas is a mixture of ideal gases corresponding to each cluster
size,pv can be then be solved from

pV5kT(
N51

`

nN . ~47!

In practice the summation only extends to some limiting size
N̄, and larger clusters are artificially taken away from the
system.34 Therefore,N̄ can be safely set to a size slightly
greater than the critical size, as long as the critical size is
fairly large. Another way is to calculate the monomer partial
pressure contribution to the experimental value ofpv . This
can be done using a virial expansion with its first term cor-
responding to the monomer gas.

The choice of method does not matter as long as the
contribution of nonmonomer gases to vapor pressure is
rather small. By carrying out the virial expansion one can
indeed verify that during the experiments of Wo¨lk and Strey
the clusters give a negligible contribution topV . But as we
shall see later, the SPC/E model produces very small critical
cluster sizes, and the choice ofN̄ becomes difficult. Thus, for
SPC/E, the calculation ofpv from Eq. ~47! becomes ques-
tionable. For this reason we have chosen to represent all the
results in terms ofn1 .

Figure 2 shows simulation results for the reversible work
of cluster formation as a function of cluster size at 259.9 K
andn154.6131024 nm23 for all three potential models and
the classical value calculated with Eq.~42!. At this tempera-
ture and vapor density the classical nucleation theory agrees
quite well with the experimental data by Wo¨lk and Strey and
the classical work of formation curve can be used as a ref-
erence for the experimental free energy barrier. The figure
emphasizes how dramatically the resulting work of forma-
tion depends on the choice of model potential. Compared to

FIG. 1. The work of formation as a function of cluster size for three differ-
ent limiting neighbor distances at 300 K andnv56.8231023 nm23 for
TIP4P potential model. The critical size is marked with a filled diamond in
each case.
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the classical curve, SPC/E especially seems to produce an
energy barrier and a critical cluster size that are clearly too
low. TIP4P produces a work of formation curve that agrees
best with classical nucleation theory. We can also note that
the critical cluster size with TIP4P is close to the one pre-
dicted by CNT. The GG model, that is the only polarizable
water model, does not perform as well as TIP4P. Interest-
ingly, all the water potentials produce a jump in the work of
formation when the cluster has four molecules. This implies
the existence of a magic number, representing a fairly stable
tetramer structure.

The fact that all models produce too low work of forma-
tion curves must lie in the properties of the potential models.
The models that we study here are relatively simple repre-
sentations of the water molecule. They have been con-
structed to represent a set of some of the bulk properties of
water while failing to accurately represent others. To this day
there exists no universal water model that could accurately
describe all the properties simultaneously with a reasonable
accuracy, and even the growing complexity of the models
has not improved the situation significantly. In a nucleation
simulation one would like to use a water model capable of
describing the interaction between molecules not only in the
bulk liquid phase, but also inside the nucleating clusters con-
taining only a few molecules. Indeed, if we look at binding
energies of clusters produced by different models~Fig. 3!,
we notice that the stronger binding corresponds to lower
work of formation. Kathmannet al.36 have shown that TIP4P
potential results in too much binding between cluster mol-
ecules compared to real water. This in turn decreases the
work of formation of clusters. It is then understandable that
GG and SPC/E results give a worse agreement with the ref-
erence work of formation in Fig. 2, as they produse even
more strongly bound clusters than TIP4P.

Stronger binding suppresses the decay rate of the clus-
ters. This can be seen from Fig. 4, where we show the di-
mensionless grand canonical probabilitiesḠ1 and D̄ i of
growth and decay of clusters for each model and cluster size.
The probabilities have been calculated for clusters in a
spherical cavity of 5 nm radius, so that the results for differ-

ent models are comparable. It is striking to see that the evo-
lution and magnitude of the growth probability is nearly
identical in all models. The difference is seen mainly in the
decay probability. Again, the dip in the decay probability for
a cluster containing four molecules can be clearly seen in all
models. It probably results from a favorable geometry of a
water cluster containing four molecules compared to adja-
cent cluster sizes.

For the comparison with experiments, we calculated the
full work of formation curves up to the critical cluster sizes
at temperatures~218.9, 229.5, 239.6, 249.7, and 259.9 K!
and monomer densities corresponding to experiments by
Wölk and Strey.10 Figure 5 shows the simulated critical clus-
ter sizes, along with the experimental predictions obtained by
fitting a function lnJ@T,ln(S)# to the experimental data of
Wölk and Strey, and using the nucleation theorem43

S ] ln J

]S D
T

5N* 11. ~48!

The form of the chosen fitting function affects the results. We
have tried several functional forms loosely based on the clas-
sical expression for nucleation rate, and indicate by error
bars the uncertainty due to the arbitrary choice. The dramatic
variation in the critical cluster sizes gained from different

FIG. 2. The reversible work of cluster formation against cluster size at 259.9
K and n154.6131024 nm23 for TIP4P, SPC/E, and GG models of water.
Also the classical nucleation theory prediction is shown since the experi-
mental nucleation barrier height is close to the classical one at these condi-
tions.

FIG. 3. The mean potential energy of the clusters against cluster size at
259.9 K andnv54.6131024 nm23. Note that the cluster definition affects
the mean potential energy in the clusters.

FIG. 4. Grand canonical average growth and decay probabilities as a func-
tion of cluster size at 259.9 K andnv54.6131024 nm23 for a simulation
sphere of 5 nm radius. All growth probabilities overlap. The units of prob-
ability are arbitrary.
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potential models is clearly seen. The best fit is gained with
TIP4P for which the magnitude and monomer density depen-
dency is fairly close to experimental results. The agreement
for GG is less satisfactory, and SPC/E produces critical clus-
ters sizes which are clearly too small. Figure 6 shows the
classical theory results for critical cluster size calculated
from Eq.~43! with the experimental results and TIP4P simu-
lation results at 259.9 and 218.9 K. Classical nucleation
theory still gives a better fit with the experiments than the
simulations. However, given that TIP4P produces the wrong
magnitude for the work of formation, the agreement between
the simulated and experimental critical sizes is quite remark-
able.

The insertion of the calculated values for the work of
formation into Eq.~40! with the classical prefactor@Eq. ~41!#
gives us the nucleation rates at a givenT andn1 . The simu-
lation results for TIP4P and GG are shown in Fig. 7, along
with the experimental data and classical nucleation theory
results. The classical theory agrees well in magnitude with
the experimental data in this temperature region. It also has
the right dependency on the monomer density, but a wrong
temperature dependency. Due to underestimation of the work
of formation, simulations give nucleation rates which are too

high. But TIP4P particularly gives a correct dependency on
the monomer density and temperature. However, the magni-
tude is constantly overestimated by a factor of 2.23104.
Also GG model performs better than classical theory in
terms of temperature dependency, although the magnitude is
now constantly overestimated by a factor of 1.33109.

The correct temperature and monomer density depen-
dence is more clearly seen in Fig. 8, where the simulated
nucleation rates are divided with factors mentioned above to
coincide with the experimental data. TIP4P simulations es-
pecially match the experimental values almost perfectly. The
fit in the temperature dependency with GG simulation results
is also better than the classical predictions, but the monomer
density dependency is not quite as good.

Earlier, Hale and DiMattio20 used a Monte Carlo simu-
lation to determine the Helmholtz free energy differences of
small clusters at 260, 280, and 300 K using TIP4P. Based on
their simulations, they proposed a scaled form for the nucle-
ation rate that gives a correct temperature dependency for the

FIG. 5. Critical cluster sizes as a function of monomer density at five dif-
ferent temperatures. We show the simulation results for TIP4P, GG, and
SPC/E models. Critical sizes deduced from experiments by Wo¨lk and Strey
and classical results are also shown.

FIG. 6. Critical cluster sizes as a function of monomer density at two dif-
ferent temperatures for TIP4P model with experimental predictions and clas-
sical theory results. Error bars indicating the uncertainty in experimental
results are also shown.

FIG. 7. Nucleation rate as a function of monomer density. We show the
simulation results using the TIP4P and GG models at five temperatures.
Experimental results of Wo¨lk and Strey and classical theory nucleation rates
are also shown.

FIG. 8. Nucleation rates from the simulations divided with constant factors.
Results of the TIP4P~factor 2.23104) and GG~factor 1.33109) models are
shown against monomer density at five different temperatures. Experimental
and classical nucleation theory results are also shown.
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nucleation rate. They also argued that this scaling also ap-
plies to a wider temperature range, but didn’t carry out simu-
lations outside the 260–300 K temperature interval. Our re-
sults verify that TIP4P produces the correct temperature
dependency also in the 220–260 K interval.

Figure 9 shows a plot of critical cluster sizes against the
nucleation rate for TIP4P in logarithmic scale. We see near-
linear curves that shift gradually toward larger critical cluster
sizes with increasing temperature. According to classical
theory the curves are not exactly linear, but curve towards a
higher nucleation rate with the increasing critical cluster size.
The slopes in all the curves are fairly similar, and the sepa-
ration between the simulated lines is closer to experimental
separation than the lines given by the classical theory.

In this paper we have studied nucleation in terms of
temperature and monomer density. Another possibility also
exists, arising from the incomplete description of real water
properties by simple potential models. The models do not
give an accurate description of the binodal of water. Thus the
saturation pressures for the models are different from real
water. Because of this, comparisons of experimental and
simulated nucleation rate and critical cluster size at the same
temperature and saturation ratio give different results than
comparisons at the same temperature and monomer density.

Calculation of the binodal for different water models at
the studied temperatures is beyond the scope of this paper.
However, Dr. Bin Chen has kindly provided us the saturation
pressures for TIP4P close to our simulation temperatures44

gained from Gibbs Ensemble Monte Carlo simulations: 220
K; 6.2 ~0.4! Pa, 230 K; 17.5~0.9! Pa, 240 K; 55.1~1.8! Pa
and 260 K; 328~12! Pa. Numbers quoted in the brackets are
the standard error of mean analyzed from five independent
simulations and each has a length of 200 000 Monte Carlo
cycles. 500 molecules were used in these simulations.

Figure 10 shows how results for TIP4P in Fig. 7 change
if the input monomer density is calculated from the model
saturation vapor pressure. As one can see, the agreement be-
tween simulations and experiment does not improve. Simu-
lated nucleation rates become considerably higher, because
the saturation pressures and hence the input monomer densi-
ties are about 1.4 times higher than in the previous case. The
temperature dependence of nucleation rate is not as good

either. We note that for SPC/E, the critical cluster sizes
would grow and nucleation rates drop since the SPC/E satu-
ration vapor pressures are only fractions of true saturation
pressures at the studied temperatures.

VI. CONCLUSION

We have studied homogeneous nucleation of water with
a semigrand canonical Monte Carlo method that was origi-
nally introduced by Vehkama¨ki and Ford.22 This method is
based on the calculation of average grand canonical growth
and decay probabilities of molecular clusters in a canonical
ensemble. In this paper, we have showed how it can be used
in calculations of the work of formation of molecular clus-
ters. Furthermore, we have derived a connection between the
growth and decay probabilities and kinetic condensation and
evaporation rates. This connection opens up new possibilities
to study cluster properties. It can also be used in the sensi-
tivity analysis of the nucleation process.

Here we have used the extended method for calculations
of critical cluster size, cluster work of formation and the
nucleation rate of water. In the simulations clusters were de-
fined by applying the Stillinger cluster definition. We
checked that the results are not very sensitive to the chosen
nearest neighbor distance of the cluster definition. The simu-
lations were run at temperatures and monomer densities cor-
responding to experiments by Wo¨lk and Strey.10 Calculations
were carried out with three stiff potential models, namely
with the unpolarizable TIP4P23 and SPC/E24 models and with
a polarizable model developed by Guillot and Guissani,28

called GG model in this paper. Comparisons with experimen-
tal data show that our simulations with TIP4P reproduce the
size of the critical cluster fairly accurately. TIP4P also pro-
duces a correct temperature and monomer density depen-
dency of nucleation rate, but the magnitude is overestimated
by a constant factor of 2.23104. With GG we get nucleation
rates which are too high by a factor of 1.33109, but again
the temperature and monomer density dependencies of the
nucleation rates and critical cluster sizes agree fairly well
with the experimental data. The results of the TIP4P and GG
models are encouraging since the major drawback of classi-
cal nucleation theory is the wrong temperature dependence
of the nucleation rate. Simulations with SPC/E resulted in far
too small critical cluster sizes and high nucleation rates.

FIG. 9. Nucleation rate as a function of critical cluster size. From left to
right the lines correspond to temperatures 218.9, 229.5, 239.6, 249.7, and
259.9 K.

FIG. 10. Nucleation rate as a function of saturation ratio. Note that the
temperatures are in a different order than previously.
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The water models generally do not reproduce the satura-
tion vapor pressure behavior of real water correctly. Because
of this, we also compared the TIP4P results with experiments
at the same saturation ratios rather than monomer densities.
This did not improve the agreement between simulations and
experiments.

Overall, the results reflect the high sensitivity of the
nucleation process. The resulting critical cluster sizes and
nucleation rates are highly affected by the choice of molecu-
lar interaction potential model. Small variations in the aver-
age potential energies of clusters between the models have a
strong effect on the stability of the clusters. A stronger aver-
age binding between the molecules in a cluster is reflected as
a reduced decay probability, while the growth probability is
not significantly affected. Thus, the overall stability of clus-
ters increases with stronger binding. This in turn lowers the
critical cluster size and boosts the nucleation rate.
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