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Abstract-The growth of aerosol particles by homogeneous condensation in the presence of a spatially 
uniform source of a condensing monocomponent vapor is investigated. The kinetic model in which the 
condensation growth obeys the set of formal kinetic equations describing the process (g) + (1) + (g + 1) 
(with g being the number of vapor molecules in a particle) is used. The mass spectrum is expressed in terms 
of the function describing time evolution of the vapor concentration. In contrast to the case of free 
condensation (no external source), the mass spectrum is a smooth function of the particle mass with the 
frontal peak moving with time to the right along the mass axis. We have shown (Lushnikov and Kulmala, 
1995, Phys. Rev. E 52, 1658-1668) that the particle number concentration either grows unlimitedly with 
increasing time or remains finite depending on how fast the condensation coefficients c(~ describing the rates 
for monomer accretion grow with the particle mass g. For power dependencies clg cc g’ the condensation 
regime switches at i, = l/2. The analogy of this phenomenon to the second-order phase transitions is noted. 
The present numerical results illustrate the growth processes using condensation coefficients obtained from 
Fuchs and Sutugin (1970, .I. Colloid Interface Sci. 27,2166222). The analysis of transition regime shows that 
the particle mass spectrum can be expressed in terms of a universal function whereas the dependence on the 
Knudsen number enters in a rather trivial manner in the final expression for the mass spectrum. Copyright 
0 1996 Elsevier Science Ltd 

1. INTRODUCTION 

Although the investigation of formation and growth of aerosol particles by condensation 
has a long history, the first systematic analysis of the process was given by Nikolai 
Albertovich Fuchs in his popular book Evaporation and Droplet Growth in Gaseous Media 
(Fuchs, 1959). The main attention in this book was directed to the growth processes by 
diffusion of condensing substances onto the surfaces of single particles. In his later work 
written together with his most prominent student, Dr A. G. Sutugin (Fuchs and Sutugin, 
1970), a very simple and still extremely effective empirical formula was proposed describing 
the vapor mass transport to a particle whose size is comparable or smaller than the mean 
free path of the vapor molecule in the carrier gas (transition regime). This Fuchs-Sutugin 
formula remains the most popular until now for two reasons: (i) it is simple and (ii) later 
studies of this process based on the analysis of the solution of the Boltzmann equation 
(Smirnov, 1987; Yalamov et al., 1981; Ivchenko, 1984; Ivchenko and Nikishin 1984; and 
many others) showed the Fuchs-Sutugin formula to hold within lo%-the precision which 
is more than enough for all practical calculations nowadays. 

Of course, Nikolai Albertovich Fuchs clearly understood the importance of the collective 
aspects of condensation process (the necessity to describe the process in terms of the 
particle-size distribution), and tried himself to approach this and other similar problems 
from this angle (Fuchs and Sutugin, 1968, 1970, 1971). 

One of us (A.L.) worked with Nikolai Albertovich for eleven years watching his permanent 
and insistent attention to the problem of aerosol particle formation. Fuchs, e.g., initiated the 
activity of Dr A. G. Sutugin in this direction (Sutugin and Grimberg, 1976; Sutugin, 1971; 
Sutugin et al., 1981) and maintained considerable interest for the results of his work. 

The interest for the condensational growth of aerosols has not faded. In fact, many new 
aspects appeared since the death of Nikolai Albertovich in the year 1982, among them: 

?? source enhanced condensation, 
?? condensation of vapor mixtures, especially binary condensation, 
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?? condensationevaporation processes in clouds, 
?? condensational growth of irregular aggregates (fractals, in particular), 
?? condensational growth of “cosmosol” particles (i.e. without carrier gas), and 
?? condensational growth of nanometric particles 

The order of the above list does not reflect their relative importance. In this paper we 
consider only the first item. 

The situations when newly formed molecules of a condensing vapor appear during the 
course of the condensation process are not so rare (see e.g. Seinfeld, 1986; Warren and 
Seinfeld, 1984). Some examples are the condensation of vapors whose molecules are 
produced by chemical reactions [gaseous precursors, sulphuric acid in the atmosphere 
(Seinfeld, 1986; Van Dingenen and Raes, 1991; Kulmala et al., 1995)], aerosol production in 
an irradiated atmosphere (Subba-Ramu and Muraleedharan, 1986) as well as certain 
technological applications of the condensation processes (Tohno and Itoh, 1993; Ying, 
1993). 

Interest in the problem was renewed also in connection with non-aerosol applications of 
the source enhanced condensation process. A general statement of the problem is well 
described in the paper of Clement and Wood (1979) (see also the criterion of earlier works 
therein). The source enhanced polymerization was considered by Rabeony and Reiss (1988, 
1989) and Bodalia et al. (1994) who analyzed the polymer chain growth by joining 
monomeric molecules. Some applications of source enhanced condensation theory to the 
growth of island films were reported by Blackman and Wilding (1991), who performed 
a scaling analysis of island mass spectra and found many scaling laws for time dependence 
of the moments of the mass distribution similar to those reported in this and a later paper 
(Blackman and Marshall, 1994). Lushnikov and Kulmala (1995) (referred hereafter to as 
LK) gave the general analysis of the time evolution of particle mass spectra in source 
enhanced condensing systems. The central results of this work are outlined here and used to 
demonstrate possible ways for the applications of the above theory to aerodisperse systems. 

Below we study the following process: a spatially uniform source whose productivity 1(t) 
is a known function of time t produces single molecules of the condensing substance. The 
molecules may be involved into the growth process in three ways: 

?? Two colliding vapor molecules form a stable dimer which then serves as a condensation 
nucleus continuing to grow by adding other monomeric vapor molecules (non-barrier 
nucleation). 

?? The vapor begins to nucleate. The nucleation process produces supercritical aerosol 
particles serving as condensation nuclei. Their production rate is proportional to the 
source intensity 1(t) and depends on the evaporation and condensation rates (the prob- 
ability per unit time for a vapor molecule to escape from or condense on the particle). 

?? The vapor molecules condense on preexisting aerosol particles. 

This paper deals only with the first mechanism of particle formation and growth. The 
collection of the condensing particles is assumed to be characterized by the particle mass 
spectrum {c,,(t)}, where cy(t) is the concentration of particles containing g (g > 1) monomers 
(in what follows, the vapor molecules will be referred to as monomers). The mass spectrum 
evolves owing to the chain of reactions (g) + (1) 4 (g + 1) in each of which a monomer joins 
a g-mer at a given reaction rate xq. The external source permanently adds monomers, thus 
leading to the growth of their concentration at the initial stage. The subsequent decrease of 
the monomer concentration is a consequence of the stable dimer formation and the 
accretion of the monomers onto the surface of formed g-mers. 

Starting with the set of equations describing the kinetics of the condensation process in 
the presence of the external source LK have shown that the mass spectrum of the forming 
aerosol particles can be expressed in terms of the function describing the time dependence of 
the vapor concentration. 

The main result of our earlier consideration was the recognition of the fact that the mass 
spectrum of condensing particles is a smooth curve with a frontal peak moving to the right 
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along the mass axis. If the condensation rate (the probability per unit time to add a vapor 
molecule to a condensing particle) increases with the particle mass sufficiently fast, the 
particle number concentration remains finite despite a permanently acting source of fresh 
condensing matter. Otherwise, it grows unlimitedly with time (see LK). Similar result was 
derived by Blackman and Wilding (1991) from a scaling assumption on the time-mass 
dependence of the particle mass spectra. Here we show that this scaling assumption does 
not hold generally (except the case CX~ cc g), although the power time dependencies of the 
distribution moments are well reproduced. 

In the present paper we continue our recent investigations (LK) and study numerically 
how the aerosol concentration behaves once the condensation efficiencies obey the 
Fuchs-Sutugin formula. 

The present paper is organized as follows. The next section gives a general statement of 
the problem and formulation of basic equations for the case of non-barrier nucleation. The 
third section shows how the mass spectrum can be expressed in terms of the function 
describing the time change of the vapor concentration which, in turn, is analyzed in 
Section 4 where a kind of phase transition in the behavior of condensing systems is 
recovered. It is shown that for power-like dependences of the condensation efficiencies on 
the particle mass, the particle number concentration is either finite (at power exponents 
exceeding l/2) or grows without limit in time otherwise. The results of the numerical 
analysis using the Fuchs-Sutugin formula of the source enhanced condensation process are 
presented in Section 5. In the transition regime we assume that the condensation efficiency 
grows faster than g ‘P at the initial stage and slower than g’12 at the final stage thereby 
passing the critical point somewhere in between. We discuss our numerical results in view of 
this transition in Section 6. Section 7 concludes the paper with several remarks concerning 
possible ways of extending the results of this paper and their possible applications. 

2. THE STATEMENT OF THE PROBLEM 

Let us consider a spatially uniform condensing system consisting of the carrier gas, 
condensing vapor and a spatially uniform source permanently producing vapor molecules 
with the rate Z(t) (the number of vapor molecules produced in a unit volume at a time). We 
assume: 

?? The molecules are able to produce aerosol particles along a scheme in which the 
molecules are added one by one: 

(1) + (1) + (2)> 

(2) + (1) + (3)> 
. . . -_t . . . 

(9) + (1) + (9 + 1). 

It is essential that neither breakup processes nor collisions between growing particles are 
included. The dimers are thus assumed to be stable against breakup and can grow by 
accreting one monomer at a time. 

?? The rate c(~ (condensation coefficients) of joining a monomer to g-mer is known as the 
function of the growing particle mass g (the number of monomeric molecules comprising 
the particle). The Fuchs-Sutugin expression for zg is adopted (Fuchs and Sutugin, 1970) 

&J = 471Da,f(g), (1) 

where D is the diffusion coefficient of the condensing molecules, al = (3~~/470”~ and u1 is 
the volume per molecule in the growing particle. The g-dependence of the condensation 
coefficient gs is given by the functionf(g) = g1’34([(g)), where 

4(i) = 
i+1 

$[” + 1.711 + 1 (2) 
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and 
V /*Ill 
i=*. (3) 

Here &, is the effective mean free path of the vapor molecule. Hence, [ is just the Knudsen 
number. Equation (1) is valid for all condensation regimes of interest. In the free 
molecular regime at ; $1, equation (1) gives 

xy x 82’3 (4) 
and in the continuous regime (< 6 1) 

xy CI, g1,3. (5) 

LK also analyzed other power dependences of x,: 
A ‘U&y (6) 

The source productivity is a known function of time t. Here we consider only sources 
independent of time 

Let cl(t), cz(t), . cy(t) be the number concentrations of 
The set of equations describing their time evolution is 

dc, 
-= 
dt 

I - (‘1 f xgcg, 
8=1 

dc2 1 
-_=-_x (’ dt 2 1 : - x_?c1(‘2, 

1,2, . . . y-mers (mass spectrum). 

(7) 

(8) 

These equations have a quite transparent physical meaning. The change in the concentra- 
tion of g-mers results from two processes: (g - 1) + (1) + (g) and (g) + (1) + (g + 1) (the first 
and the second terms of the r.h.s. of equation (9), respectively). While the first process adds 
g-mers into the aerosol, the second one leads to their losses which accounts for the opposite 
signs of these terms. 

The first two equations of this set have a different structure than the others. Equation (8) 
contains l/2 before the first term on its right-hand side. This “one-half” factor reflects the 
identity of two colliding monomers. The r.h.s. of equation (7) describes the monomer 
production (the term Z(t)) and the sink due to monomer capture by all forming particles and 
monomers themselves. 

This set of equations should be supplemented with the initial conditions. We choose the 
latter in the form: 

C,(O) = 0. (10) 

which corresponds to the “clean-of-aerosol” atmosphere at the initial moment (when the 
source begins to produce the precursor). 

Let us write down some useful consequences of the above equations. On summing 
equations (8), (9) over y within the interval [2, m) gives equation for the number concentra- 
tion of aerosol particles: 

dN 1 
-_=-u c 
dt 2I:> (11) 

with N = I,“=, cy. The summation begins with g = 2, for the monomeric molecules are 
attributed to the gaseous phase. 

The second consequence reflects the conservation of the total mass concentration 
M(t) = Cizzci,(f). Multiplying both sides of the set (9) by g and summing again over all 
g>2yieldti=I-?, or 

M = It - cl. (12) 
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The replacement of variables and unknown functions 

(13) 

will sometimes allow us to set I = 1 and c(~ = 1. 

3. DERIVATION OF A MASS SPECTRUM 

The strategy for solving the infinite set of coupled nonlinear differential equations (7)-(9) 
includes the following five steps (see LK): 

(1) Equations (8) and (9) are treated independently of equation (7), the concentration c1 
being considered as a given function of time. 

(2) The new variable 

2= 
5 

f 
cl@‘) dt’ (14) 

0 

is introduced instead oft. This step casts equations (8) and (9) into infinite set of uncoupled 
linear ordinary differential equations (Goodrich, 1964). 

(3) We solve this set and express the spectrum in terms of cl(z). 
(4) The spectrum thus found is used to close the equation for cl(z). 
(5) The way back from T to t does not create problems once cl(r) is known: 

s ’ dz 
t= 

Oc10. 
(15) 

Let us start our way along this route. The first step has been done (see equation (14)). Now 
equation (8) takes the form 

dcz - = 3alcl - a2c2. 
dr (16) 

This equation contains the non-uniformity cl(z) which at this stage is considered as 
a known function of the new variable r. Other equations of this set are homogeneous: 

%=a_,_ 
dz g 1 g I - agcgs 

Equations (16) and (17) can be solved by the Green function method giving 

s ‘I 

CA4 = 5Yg@ - r’)cr(r’)dr’, 
0 

(17) 

(18) 

where gg(r) is the Green function of the set (8) and (9), i.e. its solution with cl replaced by 
Dirac’s delta-function S(r). The asymptotic of LK showed that at sufficiently large g and 
r the Green function has the Gaussian form: 

FSg(r) z Jmexp[-(z - ~,)~/2r,Z], 

where the position of the Gaussian peak is 

rg = i r; l 
s=2 

(19) 

(20) 

and its width is expressed in terms of the condensation efficiencies as follows: 

Tg= J i a;‘. 
s=2 

(21) 
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The following essential moments should be marked: 

(a) The sum on the r.h.s. of equation (21) converges at large g for I. > l/2 and diverges 
otherwise, giving the first indication that 3, = l/2 represents a “singular” point. 

(b) The ratio of the width to the peak position always decreases with growing g, allowing 
the replacement of the Gaussian by a delta function when it multiplies smooth functions of 
z or g. 
Equations (18) and (19) formulate the final result of this section: 

_ (’ - ” - ‘,)’ 
1 

c (z,)dz’, 

1 (22) 

Now everything is known except the monomer concentration, for which the closed equation 
was derived in LK: 

dcl 1 T 
cl-=z-tXalc:--alcl 

dz 2 s 
a(~ - ?)cI(z’)dz’. 

0 
(23) 

Here the function TX(Z) = c(~(~) is introduced with the dependence g(z) being defined from the 
equality: 

z= - 
s 

Cf(r) ds 
(24) 

2 MS 

The further steps include numerical or analytical solution of equations (23), (24) and 
performing the integration in equation (22). 

4. THE PHASE TRANSITION 

In order to understand the physical picture, we give a simplified analytical treatment of 
the phenomenon. First, we approximate the sum on the r.h.s. of equation (7) as follows: 

f @gCg = Q)(N(Q + Cl (t)X (25) 
g=1 

where the average particle mass g(t) is defined as the ratio of the mass to number 
concentrations: 

g(t) = t 
N(t) + cl(t). 

To derive equation (26) we used equation (12) and set I = 1 in agreement with equation (13). 
The term c1 (t) in 
sufficiently large t. 
equations: 

the denominator of equation (26) is negligible compared to N(t) at 
Now equations (7) and (11) give the closed set of first-order differential 

dc, - = 1 - a(t/N)c,(N + c,), 
dt 

(27) 

dN 1, -_=__c 
dt 2’ 

(28) 

Next, we return to c(~ = g’ and neglect the term dc,/dt on the 1.h.s. of equation (27) and c, 
in the brackets on its r.h.s. The latter approximations obviously hold at t $1 meaning 
simply that all monomers are consumed by the particles formed at earlier stages of the 
condensation process. Now equation (27) allows c1 to be expressed in terms of N and t to 
close equation (28): 

dN 1 
_=_ 
dt 2 

t-2AN-2('-A' (29) 

Equation (29) is readily solved giving the asymptote shown in Table 1. 
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Table 1. Asymptotic time behavior of monomer and particle number concentrations 
(t, z % 1) 

0<1<1/2 1=1/2 l/2 <I <l I=1 

c,(r) t-1,(3-ZiI 
l&G t-2 t-’ 

N(t) p - 22M3 - 21) JG Nm (4 (r&)/4 

1.4 

1.2 

1.0 

0.8 

~0.6 
7 
z 

0.4 

0.2 

0.0 

0.0 0.2 u.4 v.0 u.0 I .” 

x 

Fig. 1. Phase transition in the source enhanced condensing systems. The dependence of the “order 
parameter” N-’ (t = co) on the power exponent 1. At I z1/2 the condensation process ceases 
producing new particles at large times. All vapor produced by the source is spent by the growing 

particles formed at earlier stages of the condensation process. 

Table 1 shows that the exponents in the power dependencies are continuous functions 
having jumps in their first derivative at 2 = l/2. At ,4 > l/2, the number concentration 
remains finite at large t. The analogy between such unusual behavior and the second-order 
phase transition is clearly seen. N,(1) stands for a finite, A dependent limit. 

If we consider ~$2) = N- ‘(co) as the “order parameter” the analogy with phase transition 
will be even more apparent: p(l) = 0 at 1 <l/2 and p(A) > 0 otherwise (see Fig. 1). 

Of course, equations (27) and (28) may be used for the approximate determination of cl(r) 
and to restore the mass spectrum along the route outlined in the previous section. 

The whole situation may be summarized as follows: the source enhanced condensational 
growth of aerosol particles proceeds qualitatively differently with I <l/2 and 2 > l/2 in 
equation (6). When the condensation efficiency increase with particle mass is sufficiently 

slow (slower than clg CC &), the vapor consumption by formed aerosol particles never 
reaches the level sufficient for complete suppressing the new particle formation. The particle 
number concentration increases unlimitedly at r -+ cc (and thus t + co). At faster increase of 
clg with g, the growing aerosol particles consume almost all vapor produced by the source 
preventing thereby the formation of the new particles. The particle number concentration 
remains finite at far stages of the condensation process. 

Similar result was reported by Blackman and Wilding (1991), who started with the 
assumption on the scaling behavior of the particle mass spectrum at large t: 

C&) = s-“fw’)~ (30) 
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where the power exponents 6, and z were determined by Blackman and Wilding (1991). The 
scaling assumption is seen to be in contradiction with our asymptotically exact result 
(equation (22)) giving, nevertheless, correct values of respective power exponents as well as 
our approximate approach. 

5. TRANSITION REGIME 

In this section we apply the above theory to the transition regime. The first step along this 
route is the introduction of properly arranged condensation efficiency instead of that given 
by the Fuchs-Sutugin formula (equation (2)): 

ag = aig2’3 
1 + Qi’3 

1 + 1.283<g”3 + 0.75<2g2’3 ’ 

where the dimension carrier is c1 = 37tDa~/A, and the parameter 5 = al/&, is always small 
(cc lo-3 at normal conditions) and ignored everywhere except those cases when this 
parameter appears in the combination g1135. 

Next, we introduce the dimensionless time t measured in units of (1a,)- ‘I’, the condensa- 
tion efficiency c(~ measured in units of c(i and concentrations cJt) measured in units of 

fi in accordance with equation (13). 
Next all the functions entering equations (22) and (23) are calculated. 
Replacing the sum in equation (20) by an integral and subsequent elementary 

z + 3.780 = 1.69 ‘I3 + 1.125<g2’3 + y ln(1 + 4g”3). (32) 

This equation defines the dependence g(t) (see also equation (24)). 
The width Is (equation (21)) becomes: 

If = 2.381 - 3g-‘13 + t[1.689tg1i3 + 2.41n(tg”3) - 1.6981n 51. (33) 

Only terms growing with g and 5 are retained in the brackets. It is of interest to follow the 
structure of this expression. It contains a constant term and terms growing with g which, 
however, are of importance only at very large <gli3 when the combination t2g113 becomes of 
the order of unity. This fact allows one to ignore all terms in the brackets except the first one 
and to rewrite the above equation in a simpler form: 

I-; = 2.381 - 3g-“3 + 1.689c2g1’3. (34) 

One sees that at t2g113 << 1, the width is independent of g. 
In order to reach the continuous regime, it is necessary to travel a long way along the 

g-axis: corresponding values of g have the order of 1012. Corresponding interval of z also 
spans four orders of magnitude. These two facts prevent a direct computer solution of this 
problem and necessitate an approximate semianalytical approach based on the following 
simple idea: to perform direct numerical integration of equation (23) and then use a version 
of the asymptotic approach of LK. Because the function CX~ is not a power function of g, the 
straightforward application of the LK theory is impossible. Nevertheless, some simplifica- 
tions are still available. 

The numerical integration of equation (23) shows that the function c(z) has a sharp 
maximum at r cc 1 which allows one to replace the very smooth function c((z - t’) in the 
integrand of equation (23) with ~$7) and solve the following set of two ordinary differential 
equations: 

dcl 
Cl---=l- 

dz 
c: - clX(r)N, (35) 

dN 1 

dt =2”” (36) 
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Next, at large values of t the 1.h.s. of equation (35) and the second term on the r.h.s. of this 
equation may be ignored (see LK) allowing thereby the solution of equations (35) and (36) in 
the form 

(37) 

The integral on the r.h.s. of equation (37) is also readily expressed in terms of I,: 

(39) 

In deriving the above result equations (21), (24) and (33) were used. Equation (32) defines the 
dependence g(r). 

The following iterative method was used to solve cl(r): 
Equations (35) and (36) can be written in the form 

;:= 2(1 -f- J&N), 

$r = 0.5Jf. (41) 

where f= cf. The set of differential equations (40) and (41) was solved numerically for 
r < 1000 with initial conditionsf(0) = cl(O) = 0 and N(0) = 0. The resulting cl(z) is used in 
equation (23) under the integral sign. Equation (23) is also written in terms off= c: and it is 
solved with the initial conditions mentioned above to get a new approximation for cl(z), 
which is again used under the integral sign to get another approximation for cl(z). The 
convergence of this iterative method is demonstrated in Fig. 2. Four steps are enough for 
successive approximations to be practically the same. 

0.8 

0.7 

0.6 

- First approximation 
----- Second approximation 
.... ... Third approximation 
.-.- Fourth approximation 

0.4 

0’ 
0.3 

0.2 

0.1 

0.0 

.- . . 1 

J 
0 1 2 3 4 5 

I- 

Fig. 2. The results of successive iterative steps for solving equation (23). First approximation is 
given by the solution of (35) and (36). Approximation for c,(r) is used under the integral sign in 
equation (23), which is solved to get the next approximation. Three steps are enough to get 

indistinguishable curves. 
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In calculating the mass spectra at large r, we cut the upper limit in the integral in equation 
(22) by putting it equal to rO. The reason for this step is the smallness of cl(t) at larger r. 

The dependence on i’ in Iy may be neglected at g <lOi’. Equation (34) justifies this 
approximation: the product t2g”3 is of the order of lo-‘. 

This allows the size spectrum to be expressed in terms of a single universal function 
almost independent of l: 

cy(5) = 
1 

2%&z Fq(4 (42) 

where 

F,(r) = (43) 

The function F,(T) is claimed to be almost independent of iJ although the function cl(r) 
enters the integrand on the r.h.s. of equation (43), because at r < ro, the condensation in the 
free molecular regime defines the time behavior of the monomer concentration, or, shorter, 
the parameter 4 may be neglected at such r in calculating the function c 1 (7). The dependence 
of the condensation process on the Knudsen number enters only via the condensation 
efficiencies xB and the time dependence of the maximum position r,,. In practice, 5 changes 
only slightly when varying physical conditions. Our numerical analysis shows (see Sec- 
tion 6) that F, is numerically almost independent of [. 

Now rather simple numerical calculations allow the full analysis to be completed. 

6. RESULTS AND DISCUSSION 

In this paper we outlined the general and asymptotically exact approach developed in 
LK and demonstrated its application to the realistic situation of the source enhanced 
condensational formation and growth of aerosol particles in the transition regime. The 
Fuchs-Sutugin semiempirical expression for the condensation efficiencies (equation (2)) 
combined with LK approach allowed the whole problem to be reduced to the numerical 
solution of the ordinary integrodifferential equation (23) for cl(e) and some rather elemen- 
tary analytical or numerical integrations. Introducing dimensionless mass spectrum and 
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10000 

o-------L- . ’ ’ s ’ 
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I- 

Fig. 3. Source enhanced condensation of aerosols in the transition regime. The dependence of 
variable 5 on real dimensionless time. 
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time (equation (13)) gives the results expressed in terms of the universal (independent of the 
source productivity I and the dimension carrier tll and the parameter 5) function F,(z). 
Figure 3 shows the dependence of real dimensionless time t on r. One clearly sees why the 
use of the variable t is much more favorable than t: very large t corresponds to much smaller 
t which substantially reduces computing times. The condensation coefficient c(~ (equa- 
tion (31)) and the maximum position zg are plotted in Fig. 4a and b versus the particle mass g. 

The z-dependence of the monomeric and total number concentrations are displayed in 
Fig. 5. One clearly sees that the maximum is very narrow, which justifies the approxima- 
tions described in Section 5. The function N(t) is given by solution of partial differential 
equations (35) and (36) when t < 1000, and by equation (35) when z > z. = 1000. N(z) levels 
to a constant value of about 1.45 when r = 100, growing very slowly after that. 
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Fig. 4. Source enhanced condensation of aerosols in the transition regime. Condensation efficiency 
LX# (a) and the maximum position tg (b) are plotted versus 9. 
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Fig. 6. Source enhanced condensation of aerosols in the transition regime. The time evolution of 
the size spectrum c~(T). 

Figure 6 shows the time evolution of the size spectrum when r is 10 or less. Figures 7a and 
b show the universal function F,(r) describing the particle mass spectrum with small and 
large values of z. It is important to stress once again that neither the properties of the carrier 
gas nor physicochemical constants of condensing substance enter this function. 

Calculations with 5. lo3 = 1,2,3,4 showed that all the results are not very sensitive to the 
value of 5. In the figures presented here the curves corresponding to different values of 
5 would be indistinguishable. The results presented are calculated with c. lo3 = 4. 

Perhaps the most remarkable feature of the Fuchs-Sutugin condensation efficiency is 
a smooth transition through the critical point A = & = l/2. It is interesting to follow 
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Fig. 7. Source enhanced condensation of aerosols in the transition regime. The universal function 
F,(T) describing the particle mass spectrum. 

whether some critical phenomena come up in passing from free molecular to continuous 
regime of the particle growth. (from I = 2/3 or A = l/3). Our analysis clearly demonstrates 
that neither jumps nor cusps are observed in the time behavior of the particle mass spectum 
and its moments. The only manifestation of the transition is the time dependence of particle 
number concentration which almost saturates at the free molecular stage (small g at which 
c( B cc g213) but continued growing due to the transition to diffusion controlled regime. 

7. CONCLUDING REMARKS 

Starting with the formal kinetic scheme we considered in detail the particle formation by 
condensation in presence of a spatially uniform and constant external source producing the 
molecules of a condensing vapor. We have shown that for realistic (in the present paper) and 
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model condensation rates (typically growing with the particle mass as its power; see LK) the 
mass spectra of forming particles are described by rather smooth functions linearly linked 
with the time dependence of the monomer concentration. This result reduces the rather 
complicated problem of solving an infinite set of nonlinear differential equations to the 
integration of a single ordinary integrodifferential equation. 

The most important physical consequence of the above theory is the existence of two 
types of mass spectra. When the condensation rate clq grows slowly with the particle mass 

(slower than &), the mass spectrum has a non-integrable peak at its front which moves to 
the right along the mass axis. The number concentration of the aerosol particles reveals 
unlimited growth with time. 

For stronger dependencies of xs on y the maximum becomes integrable. The most 
remarkable fact in this case is finiteness of the degree of gas-to-particle conversion: the 
number concentration of the aerosol particle formed by the condensation process remains 
finite although the source continuously produces new condensing matter. 

In both case above the mass spectrum has the frontal maximum (integrable or non- 
integrable) and a long power tail. The monomer concentration decreases with time despite 
the presence of the source. This is not a surprising fact, for the vapor consumption grows 
with increasing particle size and the source has no time to produce enough vapor molecules 
to support the monomer concentration at a given level. 

In the present paper we demonstrated the effectiveness of the LK approach in considering 
the aerosol particles growth in the transition regime. We showed that the whole theoretical 
consideration is reduced to several more or less elementary analytical or numerical steps 
and allows one to describe the final spectrum in terms of the universal function F(x). 
Although the Fuchs-Sutugin formula describes a transition of the condensation regime 
through the critical point i, = 2, = l/2, no specific manifestations of the phase transition are 
observed. The particle number concentration almost saturates at times corresponding to 
the transition regime. 

This work was primarily motivated by a necessity to create a sufficiently simple approach 
to attack much more complicated and more realistic situations including binary mixtures, 
a nucleation stage, or the presence of condensation nuclei. 

The numerical analysis was carried out using MATLAB and NAG-Library Fortran 
routines D02EAF and DOlGAF. 
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