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Critical cluster size and droplet nucleation rate from growth and decay
simulations of Lennard-Jones clusters

Hanna Vehkamäkia) and Ian J. Ford
Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT,
United Kingdom

~Received 22 July 1999; accepted 6 December 1999!

We study a single cluster of Lennard-Jones atoms using a novel and physically transparent Monte
Carlo simulation technique. We compute the canonical ensemble averages of the grand canonical
growth and decay probabilities of the cluster, and identify the critical cluster, the size for which the
growth and decay probabilities are equal. The size and internal energy of the critical cluster, for
different values of the temperature and chemical potential, are used together with the nucleation
theorems to predict the behavior of the nucleation rate as a function of these parameters. Our results
agree with those found in the literature, and roughly correspond to the predictions of classical
theory. In contrast to most other simulation studies, we are able to concentrate on the properties of
the clusters which are most important to the process of nucleation, namely those around the critical
size. This makes our simulations computationally more efficient. ©2000 American Institute of
Physics.@S0021-9606~00!50209-8#
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I. INTRODUCTION

A vapor can be described as a collection of free m
ecules and quasibound molecular clusters which are gai
and losing molecules at various rates. Small clusters
more likely to decay than grow, and this makes it possible
understand how a supersaturated vapor, one that is the
dynamically metastable with respect to a condensed ph
can be maintained in existence. The phase transformatio
impeded since it must proceed through the formation of th
relatively unstable small molecular clusters. However,
ratio of growth to decay probability, per unit time, increas
with cluster size. Viewing the clusters as tiny versions
continuum droplets in thermal equilibrium, the size depe
dence of the growth and decay probabilities is easily und
stood. There is competition between the free energy cos
creating the droplet–vapor interface, and the bulk reduc
in free energy afforded by the phase transformation. For
so-called critical size, the probabilities of growth and dec
are equal. Since growth and decay are stochastic, an
vidual cluster can reach the critical size through improba
sequences of molecular acquisitions. The formation of c
cal clusters is key to the phenomenon of nucleation, wh
droplets appear from a supersaturated vapor. This com
but inadequately understood phenomenon has been a su
of numerous theoretical studies, aimed at interpreting
growing body of experimental data.

The underlying problem in simulating the dynamics
nucleation is that the events leading to cluster growth i
supersaturated vapor are very rare. It is therefore rather
ficult to gather enough statistics by observing the sponta
ous creation of critical clusters in a computer simulation o
sample of vapor. With computers becoming more and m
capable all the time some simulations of this type have b
done: a recent example is the work of Yasuoka a

a!On leave of absence from Department of Physics, P.O. Box 9, 00
University of Helsinki, Finland.
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Matsumoto.1 They study a system consisting of molecules
nucleating vapor under a rather large supersaturation
gether with carrier gas molecules in a molecular dynam
simulation. The nucleation rate is obtained directly by cou
ing the number of clusters of different sizes formed in t
course of the simulation.

But most efforts have been focused on the properties
single clusters in specified environments. The informat
gathered is then used within a description of the dynamic
cluster populations to predict the nucleation rate. In suc
theory, the critical cluster lies at the peak of a curve of wo
of formation plotted against cluster size.2–4 The rate of
nucleation is related to the work of formation of a critic
cluster. This is the difference between the free energy of
cluster, and the free energy of the same set of molecule
they were part of a homogeneous vapor phase. This in tu
related to the excess cluster free energy: the difference
tween the free energy of the cluster, and the free energy
molecules would contribute if they were part of a bulk co
densed phase.4

Several techniques to study the properties of individ
clusters, with the aim of identifying the critical cluster siz
and free energy, have been described in the literature~see
e.g., Refs. 5–7!. An early and influential attempt to calculat
the work of formation of a cluster from molecular simul
tions was reported by Lee, Barker, and Abraham.8 Starting
from a high temperature quasiideal gas of molecules,
which the free energy is known, a cluster could be formed
sequences of cooling and compression, in the process m
toring the change in free energy.9,10 Using a good initial
estimate of the critical size, one needs in principle to co
sider only a few cluster sizes to identify the maximum of t
cluster work of formation curve. The main drawback wi
this procedure is that the reference ideal gas state is fa
moved from the desired conditions.

In the recent literature free energy difference calcu
tions have become more popular. Schemes have been d
4

3 © 2000 American Institute of Physics
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oped which, in effect, evaluate the free energy differen
between clusters differing in size by one molecule.11–14Cal-
culations of this type allow a cluster to be constructed
adding one molecule to the cluster at a time. By monitor
the change in free energy upon each addition, a free en
profile from the monomer up to the critical size can be o
tained. An example of this technique, working directly wi
the free energies, is the Bennett method.11,15The free energy
difference between clusters containingN and N11 mol-
ecules is determined by calculating ensemble averages o
energy-dependent Fermi function for a system where alN
11 particles are interacting fully with each other, and fo
system where the interaction of the (N11)th particle is al-
most turned off.

Another route to the free energy is to find the co
strained size distribution of clusters using umbrella sa
pling. Recent examples of this kind have been presented
Kusakaet al.13 and ten Woldeet al.12. Kusakaet al. work in
a grand canonical ensemble, restricting the number of m
ecules to a narrow interval betweenNl andNu , and compar-
ing the frequencies of occurrence ofN molecules in the sys
tem. This gives the probability for anN-cluster to exist at a
specified temperature and chemical potential, which in t
gives the cluster work of formation.

ten Wolde et al.12 perform constant NPT simulations
and bias the sampling by adding a fictitious potential, wh
depends on cluster size, to the true intermolecular poten
This allows them to enhance significantly the formation
clusters within a certain size range. The effect of the ad
tional potential is canceled when interpreting the results. T
simulation yields the size distribution of the clusters, whi
is again closely related to the cluster free energy as a fu
tion of size. Thermodynamic integration methods are use
extend the results at one vapor pressure to other pressu

In all these methods the critical size is identified as
size where the work of formation has its maximum. T
critical work of formation can be used to evaluate the nuc
ation rate. If the external parameters are changed, the
repeated calculation, or alternatively thermodynam
integration,12 is necessary to obtain a new free energy p
file, a new critical size, and a critical work of formation.

The approaches where the full free energy profile is
tained by simulations are illustrated by the upper loop of
flow diagram shown in Fig. 1. The main effort required is t
M cluster comparisons needed to establish the profile of
energy against size, whereM is of the order of the critical
size.

Our major aim in this article is to demonstrate how ra
of nucleation of droplets from a supersaturated vapor can
calculated more efficiently from atomistic simulations, ma
ing use of two recently derived theoretical results known
the nucleation theorems.16,17 The nucleation theorems hav
been used to extract information about critical clusters fr
experimental data.4,17 These theorems state that if we kno
the size and the internal energy of the critical cluster
know how the nucleation rate changes with temperature
supersaturation. The size and energy of the critical clu
can be obtained by studying a narrow size region, with o
m comparisons between clusters around the expected cr
e

y
g
gy
-

an

-
-

by

l-

n

h
l.

f
i-
e

c-
to
s.
e

-
a

c
-

-
e

e

s
e

-
s

e
d

er
y
al

size. The study of the whole size spectrum from monom
upwards is avoided, since we do not need the free energ
the critical cluster. The drawback is that we need a refere
rate at one temperature and supersaturation to predict
values of nucleation rates. The reference rate can be obta
with one full free energy profile study. The procedure
illustrated in the lower loop of the flow diagram in Fig. 1
The expensive part of the calculation in the lower loop
volvesm repetitions, wherem is smaller thanM.

We have developed a novel Monte Carlo simulati
technique to obtain the critical cluster information. Havin
tested the method for the case of new phase nucleation in
Ising model of interacting spins,18 we have gone on to cal
culate the averaged growth and decay probabilities for c
ters of Lennard-Jones atoms in a grand canonical ensem
To enhance statistics, we actually obtain the averages
grand canonical growth and decay probabilities within a
nonical scheme. The method bears some similarity to
schemes that calculate free energy differences as desc
above. We identify the critical cluster as the size for whi
the growth and decay probabilities are equal, and then
ploit the nucleation theorems to determine the variation
nucleation rate as the conditions are changed. We take
necessary reference nucleation rates from the literature.

The free energy differences are associated with the p
abilities of gain or loss of a molecule from the cluster wh
the cluster population approximates to thermal equilibriu
Our simulation method could be used to generate full f
energy profiles, and the other simulation methods could
used to obtain the critical size without constructing the wh
free energy profile. The idea behind the approaches wh
thermodynamic integration is used to obtain free energy p
files in other conditions, when the profile is known in on
reference state, is very similar to the usage of nuclea
theorems. The computational cost of these methods also
responds to that of the lower loop.

The theory underlying our simulation scheme is d
scribed in the next section, and further computational det
are discussed in Sec. III. The models for the equilibriu
properties of Lennard-Jones fluid which we use when co
paring our results with those given by the classical nuc

FIG. 1. Flow diagram for methods for calculating nucleation rates. So
recent schemes follow the upper loop, while our new approach is illustr
by the lower loop.M is greater thanm, since in the lower loop we need to
study only a narrow range of sizes, whereas in the upper loop the full
spectrum from monomers up to critical size has to be studied. The lo
loop does not yield the nucleation rate, only its temperature and super
ration derivatives: a reference rateJ0(T0 ,S0) has to be obtained by one
circuit around the upper loop, for example.
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ation theory are reviewed in Sec. IV, and then the nuclea
theorems are described and developed in Sec. V. The cri
cluster information and the nucleation rates obtained by
ploiting nucleation theorems are presented in Sec. VI.
nally, we give our conclusions in Sec. VII.

II. THEORETICAL BACKGROUND TO THE
SIMULATION TECHNIQUE

If the Becker–Do¨ring2 rate equations for cluster popula
tion dynamics are applied to the subsaturated vapor in t
mal equilibrium, the ratio of growth and decay probabilitie
per unit time, of a cluster ofN molecules can be related t
the differences in grand potential between clusters of s
N11, N, andN21. Thus, observing the growth and decay
clusters under a grand canonical scheme would give us
formation about the relative stability of clusters of differe
sizes. By scaling up the cluster growth rates to represe
supersaturated vapor, we obtain a set of rate equations w
describe nucleation, and which allow us to identify the cr
cal size.

In the classical treatment the grand canonical partit
function of a system ofN indistinguishable particles in a
volumeV reads19,20

J5 (
N50

`
gNZN

N! E
V
)
i 51

N

dr i expF2UN~$r i%!

kT G , ~1!

where r i is the position of particlei and UN($r i%) is the
interaction energy of theN-particle system, which depend
on the configuration$r i%. The brackets represent the set ofN
particle positions. Activity is defined asZ5exp@m/(kT)#, T is
the temperature,k is the Boltzmann constant,m is the chemi-
cal potential,g51/L3, and L5Ah2/(2pmkT) is the ther-
mal de Broglie wavelength of the particles. Herem is the
mass of the particle andh is Planck’s constant.

To be able to compare the probabilities of occurrence
the ensemble of states with different numbers of particles,
introduceNmax as an upper limit for the number of particle
in the system. Now the partition function can be written a

J5 (
N50

Nmax E
V

)
i 51

Nmax

dr i

gNZN

VNmax2NN!
expF2UN~$r i%!

kT G . ~2!

This form is obtained by insertingNmax2N distinguishable
noninteracting particles into the system. The factorVNmax2N
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in the denominator cancels the extraNmax2N integrals over
the spatial coordinates of a noninteracting particle. Fo
simulation to be realisticNmax has to be large to make th
noninteracting particles fill the space densely.

The transformation from Eq.~1! to ~2! is necessary to
give two systems with different number of particles a co
mon measure: in Eq.~2! each term in the sum contains th
same number of integrations, and the integrands are there
directly related to the statistical weight of the configuratio
The probability for the system to be in a state withN par-
ticles having coordinates$r i%, and Nmax2N noninteracting
particles at arbitrary positions, can then be identified as

P~N,$r i%!5
gNZN

VNmax2NN!
expF2UN~$r i%!

kT G . ~3!

In the algorithm for grand canonical simulation pr
sented by Yaoet al.,21 a simulation step consists of random
choosing to try either a creation, annihilation, or movem
of a particle, which is then accepted with the followin
probabilities.19,21 We regard the act of creation to be th
transformation of a noninteracting particle into a fully inte
acting one. The probability that one particle is created
position r k is given by min@1,C(N,$r i% % r k)#, where

C~N,$r i% % r k!5
P~N11,$r i% % r k!

P~N,$r i%!

5
gZV

N11
expF2~UN11~$r i% % r k!2UN~$r i%!!

kT G ,
~4!

and the probability that a particle at positionr j annihilates is
min@1,A(N,$r i%*r j )#, whereA(N,$r i%*r j ) is given by

A~N,$r i%*r j !5
P~N21,$r i%*r j !

P~N,$r i%!

5
N

gZV
expF2~UN21~$r i%*r j !2UN~$r i%!!

kT G .
~5!

The probability that a particle at positionr j moves to posi-
tion r j8 is min@1,M (N,$r i%,r j→r j8)#, where
M ~N,$r i%,r j→r j8!5expF2~UN~$r1 , . . . ,r j8 , . . . ,rN%!2UN~$r1 , . . . ,r j , . . . ,rN%!!

kT G . ~6!
y
us

our

an
ran-
In order to produce a series of configurations repres
tative of the grand canonical ensemble, the relative proba
ties of attempted creation,aC , and destruction,aD , have to
be equal, but the relative probability of an attempted mo
aM can be chosen independently. The most common ch
is to set all these probabilities equal,22 so aC5aD5aM

51/3.
n-
li-

e
ce

It is worth mentioning that the approach of Rowle
et al.23 is equivalent to the one presented here: their fictitio
particles correspond to ourNmax2N creation sites. The dif-
ference in their formulas is due to the fact that instead of
three types of steps~move, annihilation, and creation! their
grand canonical algorithm consists of two types of step:
attempted move, or an attempted change of type of a
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domly picked particle. In the latter case, if a real particle
picked annihilation is attempted, and if a fictitious particle
picked creation is attempted.

We introduce a cluster definition~defined in detail in the
next section! and study a single cluster, i.e., configuratio
that violate the single cluster condition are not permitt
Thus, the actual probability for a move to be accepted
dclumin@1,M (N,$r i ,r j→r j8%)#, where dclu51 if the cluster
condition is satisfied in the new configuration, and 0 oth
wise. In the same way, the creation and annihilation pr
abilities are subject to the cluster condition.

We could let the cluster evolve according to the gra
canonical scheme, changing its shape and size~number of
component particles! freely, and register the growth and d
cay events as a function of the cluster size to obtain
desired growth and decay probabilities. However, in t
scheme the size of the cluster varies uncontrollably, and
hard to gather the required statistics near the critical s
which by its very nature is visited infrequently.

We follow the ideas of our earlier work with the Isin
model,18 and study a single cluster of a particular siz
changing its configuration according to the canoni
scheme. We evaluate the canonical ensemble averages o
grand canonical growth and decay probabilities per Mo
Carlo step, and also the ensemble average of the intera
energy of the cluster. In this way we get exactly the sa
information about growth and decay as we would get fr
true grand canonical simulations, but are able to stud
specified cluster size to a desired accuracy.

The probability that annihilation is attempted within
Monte Carlo step isaD , and since the target particle is ch
sen at random from the real particles available, the proba
ity of picking a particle at positionr j is 1/N. For configura-
tion $r i% the decay rate, that is the total probability for
particle to annihilate in a Monte Carlo step, is given by

D~$r i%!5
aD

N (
j 51

N

dclu min@1,A~N,$r i%*r j !#, ~7!

where dclu sets the probability to zero if the annihilatio
would result in splitting the cluster.

To evaluate the growth rate we take Eq.~2! to mean that
there areNmax2N possible creation sites at random positio
within the system. The probability of attempted creation
aC5aD , and that of trying the creation at positionr k is
1/(Nmax2N). The total creation rate is the sum of the pro
abilities to create a particle at any of theNmax2N positions.
Thus, the creation rate for a configuration$r i% reads

G~$r i%!5
aC

Nmax2N (
k51

Nmax2N

dclu min@1,C~N,$r i% % r k!#,

~8!

wheredclu is zero if the particle created would not be part
the cluster according to the cluster definition.

The growth rate is essentially the average of grow
probabilities over Nmax2N sites, and it is independen
of Nmax if Nmax is large enough to provide sufficient sam
pling. Both growth and decay rate depend on the volu
of the systemV in a complex way due to the minimum
.
is

-
-

d

e
s
is
e,

,
l
the
e
ion
e

a

il-

s

-

h

e

function employed, but their ratio is independent ofV.
This can be seen, for example, in the limitV→`. In
this limit the following inequalities always hold
A(N,$r i%*r j ),1 and C(N,$r i% % r k).1. If we denote the
volume of the part of space where creation is allowed,
cording to the cluster condition, byVC , we get G($r i%)
5aCVC /V for the growth rate and D($r i%)
5aDN/(gZV)exp@2(UN21($r i%*r j )2UN($r i%))/(kT)# for
the decay rate. It is clearly seen that the ratio ofG to D does
not depend onV.

We evaluate the ensemble averagesD[^D&can and G
[^G&can for different sizes, and identify the critical size a
the size for which these averages are equal. Then we ob
an accurate ensemble average for the energy^E& of this
single size.

III. COMPUTATIONAL DETAILS AND TEST
CALCULATIONS

We define a cluster as a connected network of neighb
and two particles are considered neighbors if they are
than r neigh apart. This definition has been introduced
Stillinger.5 The valuer neigh51.5s was chosen as it corre
sponds to the first minimum of the radial distribution fun
tion of a liquid.12 s is the length scale of the Lennard-Jon
potential. We compare our results with those of ten Wo
et al.12 but unfortunately we cannot use exactly the sa
cluster definition as they do: in addition to requiring the clu
ter to be a network of neighbors, they demand that e
particle in the cluster should have five neighbors to be liqu
like. In their simulation they include explicitly the vapo
molecules surrounding the cluster, and these provide the
essary neighbors for the surface particles in the cluster
our case there are no explicit vapor molecules around
cluster; thus requiring five neighbors makes the clusters
tremely compact. Trial simulations showed that this wou
dramatically increase the critical size.

The entire system is taken to be a sphere with radiusR,
which is related to volumeV of the system appearing in Eqs
~2!, ~5! by V54pR3/3. Around the origin we set up a cluste
of the size studied, which satisfies the cluster definition. D
to the cluster definition, creation can be successful only
sites which are within the distancer neigh of some existing
particle. This is used to reduce the computing time: we ke
track of the particle that is furthest from the origin and t
creation only in the origin-centered sphere with radiusR8
5r furthest1r neigh. Outside this sphere creation can never
successful. In Eq.~8! the Nmax2N attempted creation site
cover the whole volumeV with a fixed density, but (Nmax

2N)@12(R8/R)3# terms of the sum are automatically zer
The radiusR can be taken as very large to avoid the clus
ever being close to the boundaries of the system: the ac
volume of the system enters the simulation only through E
~4! and~5!, and the calculation ofNmax for Eq. ~8! from the
fixed densityNmax/V. When changing the configuration, w
attempt, on average, one canonical move for every parti
Every tenth configuration, the origin is moved to the ne
center-of-mass.

We study a sufficient number of configurations to obta
accurate ensemble averages. The accuracy is monitore



d

e.g.

4197J. Chem. Phys., Vol. 112, No. 9, 1 March 2000 Critical cluster size and droplet nucleation rate
TABLE I. Test calculations forN51 andN52 clusters with different densities of creation sitesNmax/V ~for
N51) and number of sample configurationsNconfig ~for N52). Calculations are performed with the truncate
and shifted Lennard-Jones potential withkT/e50.741,Z850.02, andR55s. r l is the molecular density of the
liquid phase. The digits after the6 sign denote the statistical error in the two last digits of the result,
0.020 10601 means 0.020 1060.000 01.

N Nmax/V Nconfig ^G&sim ^G&exact ^D&sim ^D&exact ^E&sim /e ^E&exact/e

1 100r l 1 0.020 10601 0.020 11 ¯ ¯ ¯ ¯

1 1000r l 1 0.020 12601 0.020 11 ¯ ¯ ¯ ¯

2 100r l 1000 0.030 17616 0.031 66 0.0791652 0.0823 20.70603 20.68
2 100r l 10 000 0.030 22606 0.031 66 0.0805617 0.0823 20.69602 20.68
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comparing the averages over equal subblocks of the cha
configurations. We can study widely separated sizes w
modest accuracy to locate the interesting size region,
perform more accurate simulations around the expected c
cal size.

The particles forming the cluster are simple Lenna
Jones atoms interacting through the potential

U~r i j !54eF S s

r i j
D 12

2S s

r i j
D 6G , ~9!

wheree ands are the well depth and the length scale of t
potential, respectively, and wherer i j is the separation be
tween atoms labeledi and j.

We performed two sets of simulations: one to get
critical size as a function of chemical potential differen
between vapor and liquid,Dm/(kT) ~defined in detail in the
beginning of Sec. IV!, at a constant temperature, and t
other to get the critical size as a function of temperature w
constantDm/(kT). The first set was performed with the fo
lowing truncated and shifted potential:U8(r i j )5U(r i j )
2U(r cutoff) when r ,r cutoff andU8(r i j )50 whenr .r cutoff .
The cutoff radius wasr cutoff52.5s, and no long-range cor
rections were used. The second set of simulations was
formed with the full potential~9!. The reason for using two
versions of the potential is that we wanted to compare
results to those of ten Woldeet al.,12 which are obtained a
kT/e50.741 with the truncated and shifted potential, wh
the literature studies used for comparison at other temp
tures refer to the full potential.

The parameters entering the simulation are the temp
ture T, and reduced activityZ8 defined as

Z85Z3~s/L!35exp@m/~kT!23 ln~L/s!#. ~10!

First we studied clusters consisting of one or two ato
only. For these sizes the growth and decay probabilities~the
latter makes sense for the two-cluster only, and even then
cluster requirement of one neighbor has to be relaxed! can be
evaluated exactly. The ensemble average of the growth
for a ‘‘cluster’’ consisting of a single atom is given by

^G&N515
1

VE0

r neigh
minF1,

ZgV

2
expS 2U~r !

kT D G4pr 2dr,

~11!

where U(r ) is the interaction energy between the existi
atom at the origin and the created atom at distancer from it.
From Eq.~7!, the average decay rate for a dimer is
of
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^D&N525
1

QE
0

r neigh
minF1,

2

ZgV

3expS 2U~r !

kT D GexpS 2U~r !

kT D4pr 2dr, ~12!

and the average energy for the dimer is

^E&N525
1

QE
0

r neigh
U~r !expS 2U~r !

kT D4pr 2dr, ~13!

whereU(r ) is the interaction energy of two atoms which a
separated by distancer; the normalization factor isQ
5*0

r neighexp@2U(r)/(kT)#4pr2dr, and exp@2U(r)/(kT)# is the
Boltzmann factor associated with a dimer configuration ch
acterized by an atomic separationr.

Finally, the average growth rate for the dimer is

^G&N525
1

QVEr 50

r neighE
x521.5

r /2 E
y50

Ar neigh
2

2x2H 4pr 2dr

34pydxdyminF1,
ZgV

3
expS 2U~r !

kT D G
3expS 2U3~r ,x,y!

kT D J , ~14!

where the integration limits forx andy arise from the nature
of the creation volumeVC which consists of two partially
overlapping spheres, and depend on the separation of the
atoms in the dimer denoted byr. U3(r ,x,y) is the interaction
energy of three atoms, the first one of which is situated in
origin, the second one at Cartesian coordinates (r ,0,0) and
the third one at (x,y,0).

Table I shows the examples of these test calculati
with kT/e50.741, Z850.02, andR55s, for the truncated
and shifted potential. The simulation results agree well w
the ones obtained by evaluation of the integrals in Eqs.~11!
to ~14! using MATHEMATICA .24 Moreover, in doing this we
have gained information about how many configuratio
have to be studied and what the value ofNmax should be to
get enough statistics. We found that the density of the
tempted creation sites (Nmax/V) has to be of the order of 100
times the density of the liquid at the prevailing temperatu
The number of configurations needed for accurate res
naturally increases with the size of the cluster.

Our simulations were performed on a Compaq Alp
Server GS140 with a 525 MHz processor.Nmax/V5100 was



pe

T
bl
e
th
ly
n
he

ie
a-

e
tif
a
m
f-

n
fte

un
e

ry

r-
e
u
e
an
th

ia

tia

b
on

ua-

r–

or

n-

res

eir
ion
to
rs

lde
es-
ace

on.
clas-
ata
is
m-

ures.

-
.
s is

ata
-

en
-

4198 J. Chem. Phys., Vol. 112, No. 9, 1 March 2000 H. Vehkamäki and I. J. Ford
used in all simulations, and the number of configurations
size was generally 10 000, although larger values of up
100 000 were used occasionally for improved accuracy.
give a picture of the time required for the simulations, Ta
II shows times required for example simulations. It is se
that while the time required increases fairly linearly wi
Nmax/V and number of configurations, it grows nonlinear
when the size of the cluster increases. The times do
change significantly if we use the full potential instead of t
truncated one. The radius of the box (R) does not affect the
times either. The simulations for the largest size we stud
N575, took about 10 h CPU time with 10 000 configur
tions.

IV. PHYSICO–CHEMICAL DATA AND COMPARISON
MATERIAL

ten Woldeet al.12 use umbrella sampling to compute th
free energy of a cluster as a function of its size, and iden
the critical size as the size where the work of formation h
its maximum. They report the critical sizes at constant te
peraturekT/e50.741 as a function of chemical potential di
ferenceDm(P)5m(P)2m l(P), where m l and m are the
chemical potentials of the liquid and vapor, respectively, a
P is the pressure. They use the truncated and shi
Lennard-Jones potential withr cutoff52.5s and no long-range
corrections. The smallest critical size they studied is aro
66 and the largest 350. The critical sizes obtained from th
simulations are in good agreement with classical theo2

which predicts the critical sizeN* to be given by

Nclass* 5
32pG`

3

3r l
2Dm3

, ~15!

whereG` is the surface tension of a flat liquid/vapor inte
face andr l is the number density of the liquid at coexistenc

We want to compare the critical sizes given by o
method with classical theory, and with the results of t
Woldeet al. at the smallest sizes they studied. We also w
to use the nucleation theorems to predict the behavior of
nucleation rate as a function of temperature andDm/(kT).
For these purposes we have to relate the chemical potentm
that enters our simulations to the molecular densityr and the
pressureP of the vapor, and hence to the chemical poten
differenceDm.

At relatively low densities, a Lennard-Jones fluid can
described by the virial expansion truncated after the sec
virial coefficientB(T):

TABLE II. Average CPU time elapsed~t in seconds! in obtaining the aver-
age growth and decay probabilities in example simulations with differ
densities of potential creation sitesNmax/V and number of sample configu
rationsNconfig for different size intervals@Ni ,Nf #. r l is the molecular den-
sity of the liquid phase.kT/e50.741,Z850.02.

Nmax/V Nconfig t @1,2# t @10, 11# t @25, 26# t @69, 70#

100 r l 1000 16 185 478 2448
100 r l 100 1.7 17 50 318
50 r l 100 0.9 7.4 27 142
r
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P5kTr~11Br!. ~16!

The chemical potential for a system described by this eq
tion is given by

m

kT
5 ln~rL3!12Br. ~17!

A more accurate description is given by the following Haa
Shenker–Kohler~HSK! model:25

P5kTrS 11Br1
h2~10212h14h2!

~12h!3 D , ~18!

m

kT
5 ln~rL3!12Br1

h2~15221h18h2!

~12h!3
, ~19!

whereh5prd3/6 and the hard sphere diameterd is

d5E
0

21/6

@12exp$2~U~r !1e!/~kT!%#dr. ~20!

The chemical potential difference is related to the vap
pressureP by the following equation:

Dm~P!5E
Ps

PF 1

r~P8!
2

1

r l
GdP8, ~21!

where the liquid is assumed incompressible.
ten Wolde kindly provided us with data for vapor de

sity r as a function of pressureP, obtained from their simu-
lations with the truncated and shifted potential for pressu
in the range 0.007<Ps3/e<0.017 at temperaturekT/e
50.741. We found that the Lennard-Jones fluid, under th
simulation conditions, can be described by the virial equat
of state~16!, and the second virial coefficient was found
beB/s3527.506. The behavior of the vapor clearly diffe
from that of an ideal gas. The higher-order term in Eq.~18!
is not needed to obtain a good fit to the data. ten Wo
et al.12 also present the value for the saturation vapor pr
surePss

3/e50.007 83, and the necessary values for surf
tension and liquid density needed in Eq.~15!: G`s2/e
50.494 andr ls

350.766.
For temperatures other thankT/e50.741 we found nei-

ther critical size data nor nucleation rates for comparis
Comparisons at other temperatures are thus made with
sical theory only. But the required physico–chemical d
found in the literature refer to the full potential, and for th
reason the full potential is used in our simulations for te
peratureskT/e50.70, kT/e50.75, andkT/e50.80. Lotfi
et al.26 report that the HSK equations~18!, ~19! can be ap-
plied to the Lennard-Jones systems at these temperat
They also give the saturation vapor pressurePs , saturation
vapor densityr(Ps), equilibrium chemical potentialms , the
latent heat of evaporation per atomL, and the average inter
action energy per atom in the liquidel at these temperatures
An estimate for the surface tension at these temperature
obtained by fitting a second-order polynomial to the d
given by Meckeet al.27 The second virial coefficients ob
tained by integrating the Mayerf-function are tabulated in
the book by Hirschfelderet al.28 Table III summaries the
values used in this work.

t
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TABLE III. Physico–chemical data for the full potential Lennard-Jones fluid. Apart from the virial coeffici
the results are obtained from simulations with the truncated potentials~using varying cut-off distances!, adding
long-range corrections. The reduced chemical potential is defined asms* 5ms /(kT)23 ln L/s.

kT/e Pss
3/e r(Ps)s

3 ms* B/s3 d/s r ls
3 G`s2/e L/e el /e

0.70 0.001 31 0.001 93 26.298 29.8647 1.028 14 0.842 66 1.1452 6.758 26.0957
0.75 0.002 64 0.003 63 0.690 28.7460 1.025 79 0.821 58 1.0301 6.5899 0.906
0.80 0.004 70 0.006 17 0.184 27.8209 1.023 57 0.799 29 0.918 23 6.4018 0.710
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V. NUCLEATION THEOREMS

Now let us establish the form of the nucleation theore
that can be used to interpret our simulation results. The d
vation of nucleation theorems presented by Ford4 involves an
unusual definition of saturation ratioS85r1 /r1

s , wherer1

and r1
s(T) are the monomer number concentrations in

supersaturated and saturated vapor, respectively. For an
gas this reduces to the standard definitionS5P/Ps , P and
Ps being the pressures of supersaturated and saturated v
respectively. With these definitions the first nucleation th
rem reads

S ] ln J

] ln S8
D

T

511N* , ~22!

whereJ is the nucleation rate andN* is the size~number of
molecules! of the critical cluster. The second nucleatio
theorem~neglecting terms of the order ofr/r l or smaller! is
given by

S ] ln J

]T D
ln S8

5
1

kT2
@L2kT1Ex~N* !#, ~23!

whereL is the latent heat per molecule in the vapor–liqu
transition, andEx(N* )5E(N* )2N* el(T) is the excess in-
ternal energy of the cluster~compared to bulk liquid at pres
sureP), which is loosely related to the surface energy of t
cluster. Both of the theorems are valid for a nonideal as w
as an ideal vapor.

To convert the first theorem to an appropriate form
this study we write

S ] ln J

] ln S8
D

T

5S ] ln J

]Dm/~kT! D
T
S ]Dm/~kT!

]P D
T
S ]P

]r D
T

3S ]r

] ln S8
D

T

. ~24!

The second derivative on the right-hand side can be ev
ated using Eq.~21! and the third derivative using the equ
tion of state. The last derivative is evaluated assuming
the deviations from ideal gas law arise from the presenc
dimers in addition to the dominant monomers in the vap
For the case where temperature is kept constant and the
cal size is evaluated as a function ofDm/(kT) we use the
virial equation of state~16!. The second virial coefficient an
the number of dimers in the vapor can be related by ass
ing that r5r112r2 and P/(kT)5r11r2 which leads to
s
ri-

e
eal

or,
-

e
ll

r

u-
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of
r.
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-

2B5r2 /r2 andr15r12Br2, wherer2 is the number con-
centration of dimers. We obtain the following form for th
first theorem

S ] ln J

]Dm/~kT! D
T

5~11N* !S 12
r

r l
D ~11O~Br!2!. ~25!

It should be noted that Oxtoby and Kashchiev16 presented
the first nucleation theorem in the form

S ]W*

]m D
T

5N* , ~26!

whereW* is the work of formation of a critical cluster. Thi
form is exact and free of the corrections described abo
which arise largely from taking the partial derivative wi
respect toDm and notm.

In the set of simulations whereDm/(kT) is kept con-
stant, and the critical cluster size and energy are found
function of temperature, we use the HSK Eq.~18!. To refor-
mulate the second nucleation theorem, we notice that s
we are again going to neglect terms smaller thanBr, we can
work with Eq. ~16! instead of Eq. ~18!, since the
h-dependent term in Eq.~18! is small compared to theBr
term. Starting from the identity

S ] ln J

]T D
Dm/kT

5S ] ln J

]T D
S8

1S ] ln J

] ln S8
D

T

S ] ln S8

]T D
Dm/kT

,

~27!

and using relation~21! and the relations betweenr, B, andr1

presented above Eq.~25!, we get the following form for the
second nucleation theorem:

S ] ln J

]T D
Dm/kT

5
1

kT2
@L2kT1Ex~N* !#1~N* 11!S r

r~Ps!
21D

3S Ps

kT2r l

1
Ps

kTr l
2

]r l

]T
2

L

DvkT2r l
D . ~28!

We have also neglected terms of the order ofr/r l or smaller,
since this was done when deriving Eq.~23!. The Clausius–
Clapeyron equation]Ps /]T5L/(TDv) has been used to ex
press the derivative of the vapor pressure in terms of
molecular latent heatL and the difference of molecular vol
umesDv51/r(Ps)21/r l .
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In the next section, we compare the nucleation rates
tained using the nucleation theorems with the classical
pression for the nucleation rate2,29,30 ~modified by a factor
1/S!:

Jclass5A2G`

pm

r1
2

Sr l
expS 216pG`

3

3kTr l
2Dm2D , ~29!

wherer1 is again the concentration of monomers in the v
por, assumed to be given by the virial approximationr1

5r12Br2.

VI. RESULTS

A. Critical size as a function of chemical potential

Figure 2 shows the results of a set of simulations
Z850.02, corresponding toDm/(kT)50.702, for the trun-
cated and shifted potential. The smooth curve fitted to
G/D data indicates that the critical size is about 37. T
energy starts to fluctuate at larger sizes due to insuffic
statistics. If a more accurate estimate for the critical clus
energy is needed, it can be obtained with extended sim
tions for this size only.

Figure 3 shows the critical size and critical cluster e
ergy as a function of the reduced activityZ8. The uncertainty

FIG. 2. The ratio of average growth rate to average decay rate, and
average energy as a function of size for Lennard-Jones clusters. Resu
computed with the truncated and shifted potential.

FIG. 3. The critical size and the average internal energy of the crit
cluster as a function of reduced activity~or chemical potential difference!.
The temperature iskT/e50.741. Results are computed with the truncat
and shifted Lennard-Jones potential.
b-
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in the critical size is less than or equal to61. The results of
our simulations are compared with the results of ten Wo
et al.,12 as well as with classical theory predictions. The co
nection betweenZ8 andDm/(kT) is obtained using Eqs.~16!
and ~17! together with Eqs.~10! and ~21!. Figure 4 shows
Dm/(kT) as a function of reduced activity in different ap
proximations. It is seen that neglecting the 1/r l term in Eq.
~21!, resulting in the often-used approximationDm'Dm8
5m2ms , does not make a big difference, but the nonid
behavior of the Lennard-Jones gas is significant. This
been recently pointed out also by Sengeret al.10

We obtain fairly good agreement with the lowest critic
sizes studied by ten Woldeet al., bearing in mind that our
cluster definition is rather different from theirs. The classic
theory~where cluster definition is not specified! agrees quite
well with both sets of simulation results, lying between the
For small sizes, the classical results start to deviate from
results of our simulations, giving consistently larger critic
sizes. This is no surprise, since the capillarity approximat
used in classical theory is expected to fail for small clus
sizes. We cannot increaseZ8 much further than we have
since we reach the spinodal atZ850.0245 or P53.15Ps

according to Eq.~16!. The highest pressure studied at th
temperature isP52.63Ps .

B. Nucleation rate as a function of chemical potential

The first nucleation theorem~25! can be used to obtain
the nucleation rate as a function ofDm at constant tempera
ture, once the rateJ0 is known for one valueDm0 /(kT), and
if we know the critical size and the density as a function
Dm:

ln J5 ln J01E
Dm0 /(kT)

Dm/(kT)

~11N* !S 12
r

r l
Dd@Dm/~kT!#,

~30!

whereN* depends onDm/(kT).
For the reference rate,J0 , we use a value reported in th

literature. In another recent article, ten Woldeet al.29 have
used molecular dynamics to calculate the nucleation rate
the same Lennard-Jones system at the temperaturekT/e
50.741 for one saturation ratioS5P/Ps51.53, which cor-

he
are

l

FIG. 4. The connection between the chemical potential difference
drives the nucleation, and the reduced activity for a Lennard-Jones flu
different approximations.m andm l are the chemical potentials of the vapo
and liquid phases, respectively, andms is the chemical potential at phas
equilibrium.
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responds toDm0 /(kT)50.37. The value of the nucleatio
rate isJ053.5310229/(s3t), wheret5s21Ams2/e is the
time unit, andm is the mass of the Lennard-Jones atom. T
supersaturation is well below the range we consider, and
we use classical values for the critical size, together with
~30!, to extrapolate this reference rate up toDm/(kT)50.60,
which is the lowest value of chemical potential we studie
This is justified since the simulations of ten Woldeet al.12

indicate that the classical predictions for the critical size
satisfactory at this temperature for 0.37<Dm/(kT)<0.65.
We then use the critical sizes obtained from our simulati
to extrapolate the nucleation rate further, into the inter
0.60<Dm/(kT)<0.79, which corresponds to 0.018<Z8
<0.022 and 2.03<S<2.66.

Figure 5 shows the comparison between nucleation r
obtained using Eqs.~30! and ~29!. We also show that using
Nclass* in Eq. ~30! for 0.60<Dm/(kT)<0.79 results in a
nucleation rate curve with the same slope as the class
curve, as it should. The effect of the nonideality correct
12r/r l in Eq. ~25! is also demonstrated. The nonideali
correction to the first nucleation theorem is small but n
completely insignificant.

C. Critical size and average interaction energy as a
function of temperature

We performed simulations at temperatureskT/e50.70,
0.75, and 0.80 at a constantDm/(kT)51.393 05. The rela-
tion betweenZ8 andDm/(kT) is given by Eqs.~18! and~19!
together with Eqs.~10! and ~21! using parameters listed i
Table III. Table IV shows the simulation conditions as w
as the results for the critical size and average interac
energy of the critical cluster. The simulation conditions a
closest to the spinodal atkT/e50.8 where the vapor densit
in the simulation isrs350.051 24 while the spinodal den
sity is rs3'0.067. We have evaluated the classical value
the critical size using Eq.~15!. At kT/e50.70 andkT/e

FIG. 5. The nucleation rate as a function of the chemical potential dif
ence. The temperature iskT/e50.741. Results are computed with the tru
cated and shifted Lennard-Jones potential. The lines show the rate obt
using the full form of the first nucleation theorem with classical critical s
~dotted line! and the critical sizes given by our simulations~solid line!. The
crosses and circles show the corresponding result obtained using the
nucleation theorem derived in the ideal gas approximation.
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50.75 the classical theory gives reasonably good estim
for the simulation results, but atkT/e50.80 the classical
theory starts to fail badly.

The parameters shown in Table III, and used to obt
classical predictions, have been obtained with the trunca
potential using long range corrections. The values given
not represent the system accurately, especially for the sur
tension. This can be seen from the results of Meckeet al.27

which change when changing the cut-off radius from 5s to
6.5s, the latter being the highest value they used. Thus,
difference between the simulation results and the class
predictions is a combination of classical approximations a
inaccurate data.

D. Nucleation rate as a function of temperature

If we know the nucleation rateJ0 for one temperature
T0 , we can obtain the temperature dependence of the rat
integrating the second nucleation theorem~28!:

ln J5 ln J01E
T0

T S ] ln J

]T D
Dm/(kT)

dT. ~31!

We use the classical nucleation rateJ05Jclass(kT0 /e
50.7, Dm0 /(kT0)51.393 05) as a reference rate, due to t
lack of a suitable simulation result for the nucleation rate
the full potential.

Figure 6 shows the logarithm of the nucleation rate a
function of temperature. We compare the classical predic
with the results obtained when using the full Eq.~28! and
when neglecting the nonideality correction. The correction
found to be small but noticeable. Nucleation theorems o
give the slope of the curve, and it agrees with the slope of

-

ed

rst

FIG. 6. The nucleation rate as a function of the temperature. Results
computed with full Lennard-Jones potential. The classical nucleation ra
kT/e50.7 is used as the reference rate in the method based on nucle
theorems.

TABLE IV. Simulation parameters and results for critical size and critic
cluster interaction energy, different temperatures withDm/(kT)51.393 05
kept constant. Classical predictions for sizeNcla* are also shown.

kT/e rs3 S Z8 Nsim* Ncla* ^E(N* )&sim

0.70 0.008 996 4.38 0.007 538 48 82 76 2243.6 e
0.75 0.019 594 4.62 0.013 9343 46 48 2153.3 e
0.80 0.051 24 5.30 0.023 2905 10 29 29.613 e
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classical curve up to temperatureskT/e50.75. At kT/e
50.80 where the critical size deviates from the classi
value significantly, the slopes are significantly different.

VII. CONCLUSIONS

We have presented a new technique for obtaining
relative probabilities for the growth and decay of molecu
clusters in a vapor. We have done this by evaluating
canonical ensemble averages of grand canonical growth
decay probabilities, per Monte Carlo step, for clusters
Lennard-Jones atoms, as a function of the cluster size.
growth and decay probabilities are related to the differen
in free energy between clusters. Despite the multitude
techniques described in the literature, we chose to dev
the present growth and decay simulation since we feel
physically more transparent and straightforward to app
The size for which growth and decay probabilities are eq
is identified as the critical size: the cluster with the maximu
work of formation. For Lennard-Jones atoms the critic
sizes obtained using our method are consistent with litera
values and classical theory predictions.

We use the critical cluster size and energy, together w
two nucleation theorems, to determine the behavior of
droplet nucleation rate when the temperature and vapor
persaturation are changed. This same approach was de
strated for the Ising system in our previous article.18 Using
the nucleation theorems relieves us of the need to know
free energy of the critical cluster. This can save compu
tional effort: to obtain the free energy one has to create
critical cluster step by step from a state whose free energ
known. This could involve many calculations for clusters
various sizes, and perhaps for a range of conditions. In c
trast, we can focus our simulation only on sizes around
critical size. The price paid is that we then only know t
derivatives of the nucleation rate, and need a reference
to predict the absolute value of the nucleation rate. We
literature values for the reference rate. Of course, crit
cluster properties could be obtained by any method wh
compares the free energies, or relative populations, of c
ters in a vapor, and the information could be fed into t
nucleation theorems in the way we have described.

We have derived corrections to the nucleation theore
due to the nonideal nature of the vapor phase, and found
these corrections are numerically small for the Lenna
Jones system under the conditions studied. However,
connection betweenm andDm is significantly affected by the
nonideality of the vapor. We have extrapolated nucleat
rates calculated for one set of conditions to other temp
tures and vapor supersaturations. The dependence o
nucleation rate so obtained agrees fairly well with class
values for nucleation rates, and as expected the devia
increases as the critical cluster size gets smaller, and a
conditions approach the spinodal limit.
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The simulation method and analysis can be extende
more complicated systems, for example molecules such
water, and multicomponent clusters. Also, the cluster defi
tion we used can be easily modified. Our method has pro
to be an effective way to gather information about nucleat
clusters. We have therefore demonstrated the power
nucleation theorems in the analysis of molecular simulatio
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