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Abstract

We compare two molecular Monte Carlo simulation methods, the discrete summation method and the growth/decay method,
which calculate the vapor-liquid nucleation free energy barrier by simulating isolated clusters of fixed size without the surrounding
vapor. The methods are applied to calculations of nucleation barriers of Lennard–Jones argon at 60K and 80K. Both of these
methods are computationally efficient, as only isolated clusters without the surrounding vapor are simulated, and the methods can
be applied with any given cluster definition. They give equivalent results to other methods where the vapor phase is also included.
The discrete summation method is based on the calculation of the difference in free energies between two systems containing an n-
cluster and an (n−1)-cluster plus one non-interacting (free) molecule. We show that the configurational space is not equivalent in
the two systems. Hence, there has to be an additional term in the free energy calculation that accounts for several kT in magnitude.
In contrast to previous studies we also show that it is not correct to prevent the overlap of the non-interacting molecule and another
molecule by a zero or an arbitrarily small repulsive potential, but with a small excluded space around the free molecule.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

In the atmospheric research the nucleation of
supersaturated vapor is a major point of interest
(Kulmala, 2003). The main quantity obtained from the
nucleation experiments and field measurements is the
nucleation rate. From the theoretical point of view
nucleation is dominated by energetics – the free energy
barrier. Molecular simulations are able to describe the
energetics of the nucleation phenomena most accurately
out of all approaches. There are two main difficulties in
molecular simulations to overcome, however. Pair
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potential models are currently incapable of correctly
expressing the interactions between more complex
molecules such as water, sulphuric acid or ammonia.
Even ab initio calculations of small molecular clusters
do not yet give satisfactory data to be compared with the
experiments (Vehkamäki et al., 2004). Another difficul-
ty lies in the selection of the most appropriate simulation
method. There are a great number of molecular methods
available, each having their own characteristics like
accuracy, speed and suitability for different kinds of
calculations. The aim of our study is to propose suitable,
fast and accurate simulation methods for the nucleation
free energy barrier calculations.

It is well known that the classical nucleation theory
(Volmer and Weber, 1925; Becker and Döring, 1935;
Zeldovich, 1942), even with its extensions (Lothe and
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Pound, 1962; Oxtoby and Evans, 1988; Dillmann and
Meier, 1991), is not capable of giving a complete
description of the nucleation processes. This is why
molecular level approaches, like the Monte Carlo
(MC) and molecular dynamic simulations, have
recently gained more attention in the study of
nucleation. Although the power of the simulation
methods is still limited by computational constraints
and the lack of reliable force fields in the study of
atmospheric nucleation processes, the complexity of
the systems that can be studied with these methods
has increased dramatically in the last years. This
makes the molecular approach to nucleation promis-
ing. Especially Monte Carlo simulations allow one to
calculate the nucleation rate straightforwardly even for
low saturation ratios. However, only few MC
simulation results appear to be suitable for a
comparison with the experiments. The controversial
experimental results for nucleation of argon have not
allowed one to make a conclusion on the compatibility
between the molecular theory and the experimental
data. In some cases the molecular theory gives results
closer to experiment than the CNT, while in other
cases the classical theory is more successful (Zahor-
ansky et al., 1999; Wu et al., 1978; Pierce et al., 1971;
Lewis and Williams, 1974; Matthew and Steinwandel,
1983; Steinwandel and Buchholz, 1984; Stein, 1974;
Hoare et al., 1980; Garcia and Soler Torroja, 1981; ten
Wolde and Frenkel, 1998; ten Wolde et al., 1999; Oh
and Zeng, 1999; Hale, 1996). Comparison of the
theory and experiment for homogeneous water
nucleation gives more data for analysis. Neither the
CNT nor MC simulations based on the statistical
mechanics approach agree well with the absolute
values of the experimental nucleation rate, but the MC
simulations reproduce the experimental saturation ratio
and temperature dependence, while the CNT is not
able to predict the correct temperature dependence
(Wölk and Strey, 2001; Merikanto et al., 2004). This
is encouraging for the future development and
improvement of the molecular approach to nucleation
problems.

There are nowadays several different types of Monte
Carlo simulation methods that have been developed for
the study of nucleation. The common nominator for all
these methods is the same: they all attempt to calculate
the free energy barrier that separates the two phases.
The height of the energy barrier is the key quantity that
defines the rate of the process, the nucleation rate. The
methods can be divided in two types. The first one is
direct simulation of vapor to observe clustering (ten
Wolde and Frenkel, 1998; Oh and Zeng, 1999; Chen et
al., 2001). The second type is the simulation of isolated
cluster to calculate the cluster free energy (Lee et al.,
1973; Hale and Ward, 1982; Kusaka et al., 1998;
Merikanto et al., 2004). At the first sight the direct
simulation seems to be more rigorous than the
simulation of isolated cluster. However, all reported
methods of the first type assume the validity of the law
of mass action (Abraham, 1974; Bijl, 1938; Band,
1939a,b; Frenkel, 1939b,a). From statistical mechanics
we know that if an equilibrium cluster distribution
exists, then the cluster concentration can be calculated
through the cluster partition function. Then, the only
more general feature of direct vapor simulation is
taking the cluster–monomer and cluster–cluster inter-
action into account. As was shown by Oh and Zeng
(2000) their contributions are negligibly small for low
densities and for high densities they can be taken into
account through the mean field approach. This gives us
the equivalence of two types of vapor simulations.
Simulations of the isolated cluster using the discrete
summation method (Hale and Ward, 1982) and the
growth/decay MC approach (Merikanto et al., 2004)
have two advantages. First, they are much less time
consuming than simulations of the entire vapor–cluster
system since they do not need very large number of
molecules in the simulating system. Second, these two
methods do not require simulations at different
saturation ratios: one simulation yields nucleation
barrier for all saturation ratios at one temperature. In
the present study we have concentrated on the
theoretical background of the discrete summation
method (Hale and Ward, 1982) and its comparison to
the growth/decay MC approach (Merikanto et al.,
2004).

2. The discrete summation method

A starting point for the reversible work of formation
of clusters of size n is the law of mass action (Abraham,
1974; Bijl, 1938; Band, 1939a,b; Frenkel, 1939a,b)

N n

ZðnÞ ¼
N 1

Zð1Þ
� �n

; ð1Þ

where N n is the number of clusters of size n in the
vapor, and Z(n) is the canonical partition function

Z nð Þ ¼ K−3nqðnÞ
n!

; ð2Þ

where Λ=(h / 2πmkT)1/2 is the de Broglie wavelength,
where h is the Planck constant, m is the mass of a
molecule, k is the Boltzmann constant, and T is the
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temperature. Furthermore, q(n) is the configurational
integral

q nð Þ ¼ R
: : :

R
cluster

exp −
UnðR1; N ; Ri; N ; RnÞ

kT

� �
� dR1 N dRn; ð3Þ

where Ri is the position vector of the ith molecule, and
Un is the potential energy of the cluster.

The law of mass action [Eq. (1)] can be rewritten as

N n ¼ N 1exp −
DW
kT

� �
; ð4Þ

where

DW ¼ −kT ln
qðnÞ
n!

� �
−nlnq 1ð Þ−ðn−1ÞlnN 1

� �
ð5Þ

is often referred to as the reversible work of formation of
an n-cluster (see e.g. Reiss and Bowles, 1999). Using
the procedure of Hale and Ward (Hale and Ward, 1982;
Hale, 1996), Eq. (5) can be transformed to a more
convenient form for the purpose of molecular
simulations.

We make advantage of the fact that the configura-
tional integral of an n-cluster can be obtained by
multiplying [q(i)] / [q(i−1)] over all the cluster sizes
smaller than n:

q nð Þ ¼ qðnÞ
qðn−1Þ �

qðn−1Þ
qðn−2Þ �

: : : � qð2Þ
qð1Þ � q 1ð Þ: ð6Þ

The logarithm of this product can further be transformed
to the form

lnq nð Þ ¼
Xn
i¼2

ln
qðiÞ

qði−1Þ
� �

þ lnq 1ð Þ: ð7Þ

Knowing that q(1)=V, where V is the volume of the
system, the work of formation can be calculated by

DW ¼ kT
Xn
i¼2

−ln
qðiÞ

qði−1ÞV þ lni−lnN 1

� �
: ð8Þ

Further on, we treat the denominator q(i−1)V in the
logarithm inside the summation in Eq. (8) differently
from the way of Hale and Ward. This difference will
produce a distinction in the partition function of the
cluster.

After the transformation from the laboratory coordi-
nates R to the center of mass coordinates R′ the
expression of the configurational integral for the clusters
of n molecules becomes

qðnÞ ¼ n3qcmðnÞðnÞV ; ð9Þ
where

qcmðnÞ nð Þ ¼ R
: : :

R
n−cluster

exp −
UnðR V1; N ; R Vn−1Þ

kT

� �
� dR V1 N dR Vn−1; ð10Þ

and n3 is the Jacobian determinant of the coordinate
transformation, andZ

dRcm ¼ V : ð11Þ

Similarly in the center of mass coordinates Rʺ for an
(n−1)-cluster

qðn−1Þ ¼ ðn−1Þ3qcmðn−1Þðn−1ÞV ; ð12Þ
where

qcmðn−1Þðn−1Þ ¼
R
: : :

R
n−1−cluster

� exp −
Un−1ðRW1 ; N ; RWn−2Þ

kT

� �
dRW1 N dRWn−2;

ð13Þ
andZ

dR Vcm ¼ V : ð14Þ

Let us consider two systems, A and B. System A
consists of nmolecules in a cluster. The center of mass of
systemA is fixed. System B is otherwise exactly the same
as system A, but there is one free molecule, which does
not interact with the other molecules in the cluster. Clearly

qAðnÞ ¼ qcmðnÞðnÞ: ð15Þ
To get the relation between qB(n), which is obtained from
our simulation, and qcm(n−1), which is needed in Eq. (8),
we need to consider the configurational integral in more
detail. Deciding that the nth molecule in the n-cluster is
always the one not interactingwith the othermolecules we
can write the configurational integral for system B in the
center of mass coordinates of the n-cluster simply as

qB nð Þ¼ R
: : :

R
n−cluster

exp −
UnðR V1; N ; R Vn−1Þ

kT

� �
dR V1 N dR Vn−1;

ð16Þ
where R′i is the coordinate of molecule i in the center of
mass coordinates of the n-cluster. After the transformation
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to the center of mass coordinates of a system of n−1
interacting molecules (Rʺ) the configurational integral
becomes

qB nð Þ ¼ R
: : :

R
n−cluster

exp −
UnðRW1 ; N ; RWn−2Þ

kT

� �

� dRW1 N dRWn−2dR Vcmðn−1Þ3: ð17Þ
The center ofmass position is fixed.However, in systemB
the center ofmass position includes also the coordinates of
the non-interacting molecule. Thus, integration over the
center of mass of the (n−1)-cluster reflects the movement
of the center of mass in system B.

Instead of integrating over the center of mass
coordinate of the (n−1)-cluster R′cm we can integrate
over the non-interacting molecule, since

RWn ¼ −nR VcmZdR Vcm ¼ dRWn
n3

; ð18Þ

where 1/n3 is again the Jacobian determinant of the
transformation. This coordinate transformation is illus-
trated in Fig. 1. The transformation then leads to

qB nð Þ ¼ R
: : :

R
n−cluster

exp −
UnðRW1 ; N ; RWn−2Þ

kT

� �

� dRW1 N dRWn−2dRWn
ðn−1Þ3
n3

: ð19Þ

Now we have to consider the boundary conditions of
the cluster definition. Whereas the cluster of nmolecules
n n

cm

R’ R”

R’

cm,n

cm,n–1

Fig. 1. A schematic picture of the coordinate transformation from the
center of mass coordinates of the n-cluster to the center of mass
coordinates of the (n−1)-cluster. The interacting molecules are shown
as filled circles, and the nth molecule (not interacting) as an open
circle. The crosses correspond to the center of mass positions of the n-
and (n−1)-clusters. The position vector of the non-interacting
molecule is denoted by Rn′ in the n-cluster center of mass coordinates,
and by Rn̋ in the (n−1)-cluster center of mass coordinates. The relation
between the center of mass coordinate of the (n−1)-cluster and the
coordinate of the non-interacting molecule in the center of mass
coordinates of the n-cluster is obvious.
follows the cluster definition, the cluster of n−1
interacting molecules and one non-interacting molecule
does not necessarily fulfill the conditions required by the
cluster definition for the (n−1)-cluster. To overcome
this we will formally split the configurational integral
into two parts:

qB nð Þ ¼ R
: : :

R
ðn−1Þ−cluster

exp −
UnðRW1 ; N ; RWn−2Þ

kT

� �

dRW1 N dRWn−2dRWn
ðn−1Þ3
n3

þ R
n−cluster

notðn� 1Þ�cluster

: : :
R

exp −
UnðRW1 ; N ; RWn−2Þ

kT

� �

dRW1 N dRWn−2dRWn
ðn−1Þ3
n3

: ð20Þ

The first integral in "Eq. (20) includes only those
configurations of the cluster where n−1 interacting
molecules form an (n−1)-cluster and together with the
free molecule form an n-cluster. The second integral
includes only configurations where n molecules belong
to the same cluster, but n−1 interacting molecules can
not be considered as an (n−1)-cluster.

Furthermore, integration over the position of the nth
molecule gives the volume available for the free
molecule. Now we will mark the sum of the two
integrals in Eq. (20) as

qB nð Þ ¼ ðI1 þ I2Þ ðn−1Þ
3

n3
¼ I1½1þ dðnÞ� ðn−1Þ

3

n3
;

ð21Þ
where δ(n) accounts for the configurations in system B,
which do not fulfill the conditions required by the cluster
definition for the (n−1)-cluster.

Multiplying the right hand side of Eq. (20) by
[qcm(n−1)] / [qcm(n−1)] and knowing that I1= 〈vfree〉
qcm(n−1), where 〈vfree〉 is the canonically averaged
volume available for the free molecule, when it forms an
n-cluster together with an cluster of n−1 interacting
molecules, we will end up at

qB ¼ hvfreeiqcmðn−1Þðn−1Þ3
n3

½1þ dðnÞ�: ð22Þ

Using Eqs. (15) and (22) the ratio between the
configurational integrals of clusters of sizes n and n−1 is

qcmðnÞ
qcmðn−1Þ ¼

qAhvfreeiðn−1Þ3½1þ dðnÞ�
qBn3

: ð23Þ
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Using the conventional relation between the Helmholtz
free energy F(n) and the configurational integral,

FðnÞ ¼ −kT lnqðnÞ; ð24Þ
and inserting Eqs. (9), (12), and (23) into Eq. (8) we will
end in the expression for the reversible work of
formation of an n-cluster

DW ¼
Xn
i¼2

�
FA−FB−kT ln½1þ dðiÞ�

þ kT ln
i

qsvhvfreei
−kT lnS

�
; ð25Þ

where we have used the relation of the monomer density
to that in the saturated vapor (ρsv)

N 1

V
¼ qsvS ð26Þ

and saturation ratio S.
Eq. (25) contains three unknown values, namely the

Helmholtz free energy difference between systems A
and B, FA−FB, the δ-term ln(1+δ), and vfree. All these
values can be simulated by means of MC simulations.
The details of the methods are presented in the following
section. The way of calculating of the volume vfree
depends on the cluster definition. For the cluster
definition of Lee, Barker and Abraham (LBA) (Lee et
al., 1973) the available volume vfree is clearly the
volume of an n-cluster. For the other widely used cluster
definition, introduced by Stillinger (1963), the interpre-
tation of this volume is not so obvious. The cluster
definition also affects the choice of the simulation
volume. For the LBA cluster it is simply the volume of
the n-cluster, while for the Stillinger cluster the
simulation volume is formally the volume of the
system, V. In practice, the simulation volume for the
Stillinger cluster can be chosen to be big enough to
include all possible configurations of the cluster with its
fixed center of mass. The effectively searched volume is
confined by the Boltzmann factor and the cluster
definition, and it is clearly different for systems A and
B: due to the free monomer, the cluster in the latter
system can produce looser configurations than in the
former one. However, for the method presented in the
following section it is only important that effective
volumes of the simulated systems demonstrate good
overlapping, which is certainly the case.

In their formulation Hale and Ward did not use the
concept of the reversible work of formation. However,
if we apply their formalism for the calculation of the
work of formation, we find that our results differ from
the results of Hale and Ward by the term resulting
from the second integral in Eq. (20). Thus, the total
difference is

difference ¼ −kT
Xn
i¼2

ln½1þ dðiÞ�: ð27Þ

3. The overlapping distribution method

We employed the overlapping distribution method
(Bennett, 1976) along with the discrete summation
method described in the previous section to obtain the
free energy difference between two closely related
systems. In our case, these two cases are the systems A
and B described in Section 2. We simulated both
systems separately in the canonical ensemble. While
simulating system A we accumulated a probability
distribution PAðDUÞ, where ΔU=UA−UB is the total
potential energy difference between systems A and B.
Similarly, we produced a probability distribution
PBðDUÞ during the simulation of system B. Wherever
the histograms overlap, the Helmholtz free energy
difference between the systems is obtained by

DF ¼ DU þ kT ln
PAðDUÞ
PBðDUÞ

� �
; ð28Þ

where ΔF=FA−FB corresponds to the free energy
difference between the systems.

We used the cluster definition of Stillinger (1963).
When using this definition, the boundary condition
discussed in context of the second integral in Eq. (20) is
constituted of such exceptional configurations where the
non-interacting molecule in an n-cluster forms the only
link between two parts of the cluster and the exclusion of
the non-interacting molecule would break the (n−1)-
cluster. These exceptional configurations give rise for the
δ-term. The Bennett method can be used for calculation of
the δ-term as well. When simulating system B the
exceptional configurations are not forbidden. Suppose,
there is a system C, which is exactly the same as the
system B but the exceptional configurations are forbidden
or equally have very high positive energy. Applying an
“imaginary overlapping distribution method” shown in
Fig. 2 we are able to formulate the additional term. The
ratio between the configurational integrals of the two
systems (i.e. their free energy difference) is then obtained
as the ratio PC=PB at the only overlapping point
(ΔU≡UC−UB=0). By means of the term 1+δ(n) in Eq.
(21) this difference is now given by

1þ d nð Þ ¼ NðnÞ
NðnÞ−NeðnÞ ; ð29Þ
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PB

ΔU

P

P

0

C

Fig. 2. The idea behind the “imaginary Bennett method” used to
determine the term 1+δ(n). The only point, where the probability
distributions overlap, is at ΔU=0.

494 A. Lauri et al. / Atmospheric Research 82 (2006) 489–502
where N(n) is the total number of sampled configurations
of an n-cluster, and Ne(n) is the number of exceptional
configurations, in which the non-interacting molecule is
the only link between two parts of the cluster. In practice,
Ne is calculated when simulating system B. Thus, there is
no need to simulate system C.

For the simulations we define a factor λ, which is
used to turn the interaction between two molecules on
and off. The value of λ can vary between 0 and 1,
corresponding to zero and full interaction. In terms of
our formalism given in Section 2, the value λ=1
corresponds to system A, whereas λ=0 corresponds to
system B.

Particularly when simulating an ensemble where
there is no interaction with one of the molecules and the
rest of the cluster, unrealistically high potential energy
differences between systems A and B arise due to the
free molecule getting very near a cluster molecule.
These situations disturb the probability distributions. In
order to prevent the disturbance λ can be set close to, but
not equal to zero in the non-interacting case to prevent
molecule overlapping. In this case, however, we allow
more configurational space for the free molecule. This
will lead to a systematic error in the results. Another
way of preventing the molecule overlap is to restrict the
nearest allowed distance between the non-interacting
molecule and the cluster molecules to a certain value.

In our simulations we have estimated a numerical
value for the canonically averaged volume 〈vfree〉
available for the free molecule. In practice this was
done by a set of brute force Monte Carlo runs during the
simulations. For each randomly chosen configuration
we placed a sphere centered in the center of mass
position of the (n−1)-cluster. The radius of the sphere
was the critical distance of the cluster definition added to
the distance between the center of mass and the
molecule furthest away from the center of mass. Evenly
distributed random points inside this sphere were
selected for the configuration during the simulation of
ensemble A, and the number of points belonging to the
cluster according to the cluster definition was counted.
Then the available volume was obtained by multiplying
the volume of the sphere and the fraction of the points
belonging to the cluster. Averaging was done over two
thousand configurations.

4. The growth/decay Monte Carlo method

In the growth/decay Monte Carlo method we
simulate one cluster at a time with a fixed number of
particles. The cluster configuration space is traced out in
a canonical Metropolis simulation. Instead of letting the
cluster size fluctuate in a grand canonical fashion, we
only calculate the probabilities for the grand canonical
annihilation and creation moves. We have shown how
these probabilities can be linked to the kinetic
condensation and evaporation coefficients of Becker
and Döring (1935). The full derivation can be found
elsewhere (Merikanto et al., 2004; Vehkamäki and Ford,
2000).

We consider n fully interacting cluster particles with
nmax−n non-interacting particles at arbitrary positions
inside a large simulation box of volume V, the center of
mass of the cluster being placed at the center of the
simulation box. The annihilation probability A(n,
{Ri}ORj) for an interacting cluster particle at a position
Rj from configuration {Ri} is given by

Aðn;fRigORjÞ
¼ n

gVZ
exp

−½Un−1ðfRigORjÞ−UnðfRigÞ�
kT

� �
; ð30Þ

where γ=1 /λ− 3, λ is the de Broglie wavelength of the
particles, Un({Ri}) is the total interaction energy
associated with the configuration {Ri}, k is the
Boltzmann constant, and T is the temperature. The
notation {Ri}ORj indicates that the particle at position
Rj is taken away from configuration {Ri}. The activity
Z=exp[μ / (kT)], where μ is the chemical potential, is
equal to the density of the surrounding vapor ρ under the
ideal gas assumption. The probability to turn a non-
interacting particle into a fully interacting particle, the
creation probability C(n, {Ri}PRk), is given by

Cðn;fRigPRkÞ
¼ gVZ

nþ 1
exp

−½Unþ1ðfRigPRkÞ−UnðfRigÞ�
kT

� �
:

ð31Þ
The probability that an n-cluster decays into an (n−1)-
cluster during a Monte Carlo step is given by summing
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up the individual decay probabilities for each interacting
cluster particle and normalizing the sum with the
number of attempted annihilations n,

DnðfRigÞ ¼ aD
n

Xn
j¼1

dclumin½1;Aðn;fRigORjÞ�; ð32Þ

where αD is the probability that the annihilation is
attempted during the given Monte Carlo step, and δclu is
zero when annihilation would result in splitting the
resulting (n−1)-cluster into two or more clusters
according to given cluster definition, and 1 otherwise.

In a similar fashion, the probability that an n-cluster
grows into an (n+1)-cluster during a Monte Carlo step
is given by summing up the nmax−n possible non-
interactive particle creations into interactive particles
and normalizing with the number of attempts nmax−n

GnðfRigÞ ¼ aC
nmax−n

X
k¼1

nmax−n

dclumin½1;Cðn;fRigPRkÞ�:

ð33Þ
The creation is attempted during a Monte Carlo step
with a probability αC=αD. δclu now ensures that the
created particle is a part of the resulting cluster
according to the applied cluster definition. During a
simulation, D(n,{Ri}) and G(n,{Ri}) are calculated for a
large number of configurations {Ri} to gain the
canonical ensemble averages of the growth and decay
probabilities Ḡn and D̄n. This procedure is carried out
for each cluster size n separately. Earlier (Merikanto et
al., 2004), we have showed that the work of cluster
formation of an n-cluster ΔWn has a simple relation to
Ḡn and D̄n given by

DWn ¼ −kT
Xn
j¼2

ln
G
P

j−1

D
P

j
: ð34Þ

In the kinetic approach ΔWn is given by (Becker and
Döring, 1935; Kashchiev, 2000)

DWn ¼ −kT
Xn
j¼2

ln
bj−1
aj

; ð35Þ

so there is a direct relation between the Becker and
Döring kinetic evaporation and condensation constants
βj and αj and grand canonical growth and decay
probabilities Ḡn and D̄n

G
P

j−1

D
P

j
¼ bj−1

aj
: ð36Þ

It is important to notice that the relation Ḡj−1/D̄j does
not depend on the size of the simulation box. This can be
seen by taking V sufficiently large. Then, the following
inequalities always hold

Aðn;fRigORjÞ < 1 ð37Þ

Cðn;fRigPRkÞ > 1; ð38Þ
and the minimum functions from Eqs. (32) and (33) can
be removed, yielding

GnðfRigÞ ¼ aC
nmax−n

X
k¼1

nmax−n

dclu ¼ aCVC;n

V
ð39Þ

DnðfRigÞ ¼ aD
n

Xn
j¼1

dcluAðn;fRigORjÞ

¼ aD
gZV

Xn
j¼1

dcluexp
−½Un−1ðfRigORjÞ−UnðfRigÞ�

kT

� �

ð40Þ
where VC,n is the volume of the space where the creation
is allowed.

From the above equations, it can also be seen that the
activity Z containing the saturation ratio dependence
appears only in the multiplier of the decay probability.
Thus, the simulation results for Ḡ(j−1, Z1) / D̄(j, Z1)
gained by using activity Z1 can be scaled to obtain
results for another activity Z2 as well. The scaling then
reads as

G
Pðj−1;Z2Þ
D
Pðj;Z2Þ ¼ Z2

Z1

G
Pðj−1;Z1Þ
D
Pðj;Z1Þ : ð41Þ

Thus there is no need for separate simulations for
different saturation ratios.
5. Overview of the methods and details of the
simulations

The discrete summation and growth/decay methods
both calculate the vapor–liquid nucleation free energy
barrier by simulating single isolated clusters of fixed
size without the surrounding vapor. Fig. 3 shows a
simplified illustration of the two methods.

In the discrete summation method two nearly
identical ensembles are simulated simultaneously.
One of the systems contains n molecules (ensemble
A) and the other one contains n−1 molecules plus one
free non-interacting molecule (ensemble B). The
molecules are moved inside the system according to
the Metropolis algorithm so that the n-cluster's center
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Fig. 3. A simplistic figure about the ideas behind (a) the overlapping
distribution method and (b) the growth/decay method.
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of mass is kept fixed. First the algorithm is applied to
ensemble A, and the molecules in system B are moved
accordingly. The potential energy difference between
the two systems is recorded in a probability
distribution (histogram). Then the algorithm is applied
to ensemble B, and the molecules in system A are
moved accordingly, producing a second probability
distribution of the potential energy differences. The
free energy is calculated from the overlap of the two
histograms using Eq. (28).

In the growth/decay method we are simulating only
one ensemble instead of two. We calculate the grand
canonical decay and growth probabilities given by Eqs.
(32) and (33) for n-molecule cluster configurations,
which are created using the canonical Metropolis
algorithm. The growth probability for a specific
molecular configuration is calculated by inserting
molecules at random positions around the cluster and
calculating the creation probability given by Eq. (31) for
every successful creation, where the new (n+1)-
configuration satisfies the applied cluster definition. In
our simulations the density of the inserted molecules
was 10 times the liquid density of argon. The decay
probability is gained by calculating the annihilation
probability given by Eq. (30) for every molecule in the
cluster. Only annihilations, where the remaining (n−1)-
cluster does not violate the applied cluster definition, are
taken into account.
In this paper we have used the two methods for the
simulations of vapor–liquid nucleation of argon. The
interaction between the argon atoms is described by the
Lennard–Jones potential

uijðRijÞ ¼ 4e
r
Rij

� �12

−
r
Rij

� �6
( )

; ð42Þ

where Rij is the distance between molecules i and j, and
ε and σ are the energy and distance parameters of the
selected potential, respectively. In our simulations we
used the full potential with parameters ε=119.4K and
σ=3.4Å. We used no cutoff. In some simulations we
used a hard sphere of radius ranging from 2 to 3Å
around each molecule in the cluster. This was taken into
account when calculating vfree.

We applied the Stillinger cluster definition for both
methods, stating that each molecule in a cluster must
have another cluster molecule within some given
connectivity distance, and that no molecules that do
not belong to the cluster can within the connectivity
distance. Here, we have taken the connectivity distance
to be 1.5σ, which is the standard connectivity distance
for Lennard–Jones particles describing the first mini-
mum in the radial distribution function of the liquid.

In the simulations we equilibrated the randomly
generated initial cluster configurations containing n
argon atoms for 2n×105 Monte Carlo steps in both
methods. Then, for the free energy calculation we
generated another n×106 configurations. In the over-
lapping distribution simulation the potential energy
difference histograms were generated from all the
sampled configurations. In the growth/decay simulation
the growth and decay probabilities were calculated for
every 100th configuration.

6. Results and discussion

Using the twomethods described in the earlier sections
we calculated the work of formation at different saturation
ratios and temperatures. We used the experimental values
of saturated vapor pressures as the reference value for the
monomer density in saturated vapor (Lide, 2002). The
size of the clusters ranged from two to two hundred
molecules. We will first take a look at the effect of the
factor λ and the δ-term introduced in Section 2. Later we
compare the results given by the two methods. We will
also make a comparison with earlier studies.

Factor λ can be used to give the non-interacting
molecule in system B a slight interaction, which
prevents it overlapping with another molecule. Our
simulations show that the choice of λ, when simulating
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system B, plays a very important role in the simulation
results. For the cluster definition we have used there is a
dramatical difference between the results obtained by
λ=0.01 and λ=10−8, as can be seen in Fig. 4. In
contrast, prevention of the overlap by a hard sphere
radius works well. In our simulations all the nearest
allowed distances between 2Å and 3Å yielded the same
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The δ-term accounts for the fact that turning the
interaction of one molecule off might result in the
remaining molecules to form two separate clusters
instead of one cluster. We have shown in Section 2 that,
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when applying the discrete summation method in the
calculation of the reversible work of formation, it is
necessary to take into account the fact that the
configurational space is larger for an n-cluster than for
the system containing (n−1)-cluster plus one free
molecule. If we do so, an additional term to the original
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Fig. 7. Comparison between the work of formation results obtained by the m
curve triplets correspond to the following monomer concentrations in the sur
σ3. T⁎=0.7 (T=83.58K).
formulas (Hale and Ward, 1982; Hale, 1996) arises.
Figs. 5 and 6 show the work of formation both the δ-
term omitted and included in 60 and 80K, respectively.
As seen in the figures, it can be significant for the
Stillinger cluster definition. At 60K the magnitude of
the effect is approximately 3kT, but the effect gets
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ethods we have used and Chen et al. (2001). Starting from the top, the
rounding vapor: 5.75×10−3/σ3, 7.5×10−3/σ3, 10−2/σ3, and 1.3×10−2/
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stronger at higher temperatures being already approx-
imately 10kT at 80K. This follows from the fact that at
higher temperatures the cluster configurations are
looser, making it more probable to have clusters split
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in two parts, which are interconnected only by the non-
interacting molecule.

We can estimate the importance of the difference for
the cluster definition by Lee, Barker and Abraham
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(LBA) (Lee et al., 1973) or a similar definition by Hale
(1996). According to the LBA cluster definition n
molecules form a cluster, when they can be confined
with a sphere of a certain volume vn. The center of the
sphere is assumed to be in the center of mass of these n
molecules. The volume of the sphere is chosen
according to some physical criteria leading to the
volume being usually proportional to n. The results of
our formalism concerning the boundary condition set by
the cluster definition are shown in Eqs. (20), (21), and
(29). When applying our formalism to clusters defined
by the LBA or Hale definitions, the ratio of the
configurational integrals for the n-cluster and for the
system containing (n−1)-cluster plus one free molecule
cannot exceed the ratio of the configurational spaces vn/
vn−1, i.e. n/(n−1). Hence, the additional term cannot be
more than

difference ¼ −kT
Xn
i¼2

½1þ dðiÞ�

¼ −kT
Xn
i¼2

ln
i

i−1
¼ −kT lnn: ð43Þ

Comparing the latter expression with the data in Figs. 5
and 6 we conclude that for the LBA type of cluster
definitions the additional term seems to be of less
significance than for the Stillinger cluster definition.

Fig. 7 shows the results from the two methods
discussed in this paper compared with the results from
0 20 40 60 80 10

0

0.5

–0.5

1

–1

1.5

2

2.5

3

3.5

4
T = 6

Number of molec

δW
n,

n–
1 

(k
T

)

Fig. 10. The difference of the work of formation between an n-cluster and an
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the “aggregation volume bias method” developed by
Chen et al. (2001). The results from all the three
methods agree within the calculation accuracy.

The calculations of the free energy barriers up to
cluster sizes containing 200 argon atoms were carried
out with the two methods at 60K and 80K temperatures.
The same number of configurations was sampled in
these calculations in both methods.

From the results shown in Figs. 8 and 9 we can see
that the two methods produce comparatively similar
results. However, there is some deviation, especially at
T=80K. The differences between the work of formation
of n- and (n−1)-clusters δWn,n−1 are shown in Figs. 10
and 11. At both temperatures the overlapping distribu-
tion method gives higher values for the difference in a
certain size region. At T=60K the region covers cluster
sizes 10–30, and at T=80K this region stretches from
15-molecule clusters up to 60-molecule clusters.

The differences shown in Figs. 10 and 11 also show
that the growth/decaymethod gives more accurate results,
when the number of sampled configurations is equivalent.
However, this does not directly tell anything about the
difference between the computational efficiencies be-
tween the two methods, as the configurations are sampled
around ten times faster with the discrete summation
method. The growth/decay method requires additional
computational time for the grand canonical creation and
annihilationMonte Carlomoves. From additional runswe
could see that the growth/decay achieves the same
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(n−1)-cluster δWn,n−1 at 60K. The solid line corresponds to the values
e results of the growth/decay method. S=20.
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computational accuracy for the free energy calculation
with around one-tenth of the sampled configurations,
making the methods equivalent in efficiency.

7. Conclusions

In this paper we have compared two molecular
Monte Carlo simulation methods, which are both
capable of calculating the free energy of cluster
formation by simulating single isolated clusters without
the surrounding vapor. The comparison was made by
calculating the free energy barriers for Lennard–Jones
argon nucleation at temperatures 60K and 80K for
several fictitious surrounding vapor densities. Both
methods give essentially equivalent results as the
methods where the vapor phase is explicitly included.
The advantage of these methods is that the simulated
system is only the size of the cluster. This makes them
computationally efficient. The efficiency of the two
methods is nearly equivalent. The given number of
configurations is sampled around ten times faster with
the discrete summation method than with the growth/
decay method, but the growth/decay method gives the
same accuracy for the free energy calculation with
around one-tenth of the analysed configurations than the
discrete summation method. In this paper we have used
the same amount of configurations in the calculations,
making the results gained from the growth/decay
method more accurate.
We have not included the vapor–cluster interaction
and the excluded volume terms for the calculation of
free energy barriers. Whereas this interaction is
negligible for low densities of the gas phase, it has
been shown that for high densities of the nucleating
vapor the vapor–cluster interaction has a significant
effect on the results, but these terms could be easily
added separately to results, as Oh and Zeng (1999) have
shown. The cluster–vapor interaction would then be
approximated with a mean field interaction.

Our results for the work of formation differ from the
results based on the formalism of Hale and Ward
(1982) by a term, which arises from the nonequivalence
of the configurational space between the ensemble A,
which contains n interacting molecules, and the
ensemble B, which contains n−1 interacting molecules
plus one free molecule. At T=80K the order of the
term is around 10kT for the work of formation of the
critical cluster. When the additional term is included in
the free energy calculations, the discrete summation
method and the growth/decay method give nearly
identical results.

Furthermore, we have shown that the free molecule
cannot be represented with an arbitrarily small interac-
tion term, which would prevent molecular overlapping
in system B. The results show a strong dependence on
the size of the interaction even for very small values.
Instead, the molecular overlapping should be prevented
by a hard sphere around each cluster molecule. An
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interval where the results are independent of the size of
the sphere for a wide range of values can be found.
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