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Energetics of small n-pentanol clusters from droplet nucleation rate data
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We use nucleation theorems to extract the excess internal energy of small molecular clusters of
n-pentanol from experimental droplet nucleation rates. Corrections to the theorems are derived, in
order to take into account the nonideality of the vapor phase, but these have only a small effect on
our results. Experimental datasets from different groups provide information about clusters of
different sizes at a range of temperatures. The analysis shows that there are significant and intriguing
deviations from the predictions of the capillarity approximation. 2800 American Institute of
Physics[S0021-96080)50612-§

I. INTRODUCTION densed phase under the same conditions; it is loosely related
to the surface energy. Analysis of various substances has

Identifying short-lived physical states which mediate aprovided information about clusters containing only a few
transformation between more easily characterized initial an¢ens of molecules.
final states is a familiar problem in fields as diverse as In this paper we analyze several experimental datasets
chemical reaction kinetics? and nuclear and particle for the nucleation ofi-pentanol droplets. This substance has
physics® In condensed matter physics, the problem arises ibeen the subject of a coordinated research program by a
the phenomenon of nucleation: the conversion of a metaaumber of experimental groups. In the course of this work,
stable phase, such as a supersaturated vapor, into a thernwe have examined one of the assumptions made in a recent
dynamically stable state such as a ligfiifihe intermediaries derivation of the nucleation theorefhsiamely, that the va-
in this transformation are small, quasibound, molecular cluspor phase is ideal. The corrections to the theorems are de-
ters. Theories of the population dynamics of these clusterscribed in the next section. We go on in Sec. Il to describe
together with ideas concerning their general thermodynamiour methods of analysis, and what they tell us about small
properties, lead us to conclude that the principal intermediatenolecular clusters afi-pentanol. We give our conclusions in
state in a droplet nucleation event is the so-called criticaSec. IV.
cluster® This is a cluster of a size that is equally likely to
grow or decay unde.r the conditions prevaﬂmg in the SUPETy ~RRECTIONS TO NUCLEATION THEOREMS FOR
saturated vapor. It is the analog of the excited compoun ONIDEAL VAPORS
nucleus in nuclear physics, or the activated complex, or tran-
sition state, in chemical kinetics. Two nucleation theorems have recently been derivéd,

By a careful analysis of the rate of phase transformationyhich relate the derivatives of the nucleation rate, with re-
specifically the number of droplets appearing per unit timespect to supersaturation and temperature, to the size and in-
and per unit volume from a supersaturated vapor, the progernal energy, respectively, of the critical cluster. According
erties of this critical molecular cluster can be determinedio a statistical mechanical derivation by FbtHe first theo-

The dependence of the rate of droplet nucleation on vapoiem reads

pressure yields the size of the cluster, and the dependence on

temperature yields its energy. Such studies are analogous to ( dInJ ) =1+i*, (1
the determination of the order of a reaction, and its activation alns' T

energy, in chemical kinetics. The analysis of droplet nucle- . . . s
ation rates to provide this information has only recently beerf! hergJ is the nucleation ratd is the tem_p'erature, and is
undertaker?;? the theoretical tools for the analysis are calleqt€ Sizé(number of m‘?'eCP'QSOT the CI’I:[IC61| clusster. The
nucleation theorents,® and they are quite general results MONOMer su;s)ersaturatlcm is defined asS’=p, /py , where
based on the thermodynamics of cluster formation. The maif: 2"d»1=p1(T) are the monomer number concentrations
result of the analysis is a plot of the excess internal energy df! the_ sgpersaturated and satura_ted vapor, re_spe_ctwely.

a critical cluster against its siz@umber of molecules The Similarly, the second nucleation theorem is given by
excess internal energy is the difference between the energy /5|03 1

of the cluster, and the corresponding energy the component (?) =
molecules would possess if they were part of a bulk con- s’
wherelL is the latent heat of condensation per molecule, and

dCurrent address: Department of Physics, P.O. Box 9, 00014 University ofx(i*) is the excess internal energy of the critical cluster.
Helsinki, Finland. Terms of the order op/p, and smaller have been neglected

—E[L—kT+EX(i*)], 2
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densities of the vapor and liquid phase, respectively. T
Experimental data are usually presented in terms of th

in deriving this result, whergp and p; are the molecular /5|, 1
£ ) = [L=KT+E,(i*)]+(i*+1)

P
=— ———1
S sz p(PS) )

vapor supersaturation, defined 8s-P/Pg, where P and

T JB BL BPg
P.,=P¢(T) are the pressures of the supersaturated and satu- X| —=p(Pg)+—— +0O(Bp)2|. (9)
rated vapor, respectively. Only for an ideal gas d6ése- a kT?Av kT2

duce exactly t5 In order to analyze nucleation rate datato 114 Clausius—Clapeyron equatiatP,/dT=L/(TAv)
S

extract the critical cluster properties, we therefore need tQ .5 peen used to express the derivative of the vapor pressure
H H !
convert the theorems to a form involvirgrather thanS". i, terms of the molecular latent heiatand the difference in

For the first theorem we write the molecular volumes\v=1/p(Py)—1/p,. p(Py) is the
, molecular density of the saturated vapor.
( dInJ ) :(aan) S_ ﬁ_S) :(‘Hn‘]) ﬂ(ﬁ) _ Corrections made by using Eg&) and (9), instead of

gins' | 19InS/ S\gs ) 1dInS| P ldps/; the versions based on an ideal vapor, would be meaningless

(3 if the experimental data were not in fact provided in terms of
. . ... the pressure ratio supersaturat®nWe mention this since
We need to know something about the .clus_,ter size d'St.”buéometimes it is the vapor mass densitythat is measured:;
tion to .be able to_ evaluate the last derivative on the right- is is compared with a density at saturatjasto express the
h.a.nd side. 'For this purpose we use the following trur‘C""teé/hapor supersaturation. If this were the case, another pair of
virial equation of state, nucleation theorems would be needed, and their derivation
P=KTp(1+Bp), (4)  would follow a similar procedure to that detailed above.

whereB=B(T) is the second virial coefficient, which de-
pends on temperature only. The number of dimers in théll- ANALYSIS OF EXPERIMENTAL DATA
vapor can be related to the second virial coefficient, assuma Fitting the data for n-pentanol
ing that the deviations from ideal behavior arise from the

presence of dimers in addition to the dominant monomers in_ 1 "€ tWwo nucleation theorems allow us to calculate the

the vapor. In a more general case larger clusters also contriiZ€ @nd excess energy of a critical cluster if we know the

ute, but we neglect this. The molecular density can then b epend_ence of the nucleat?on rate on tem_pera_ture and super-
written as p=p,+2p, and the pressure aB/(kT)=p; saturation. The most effective way to obtain this dependence

; - 2 _ 2 : from the experimental data is to fit a functidgS, T) to the

;gzr;ulrene::)d;?gcgfcentrgtzic/)ﬁ oé;”éjialerg *2Bp7, wherep, s data. The_n the pleriv_ative@ (nJdln 9+ ar_ld @InJ/dT)g can

Using the virial approximation we then obtain from Eg. be used, in conjunction with the nucleation theorems—, to pro-
(3), the following form for the first theorem: dqge expressions fur*., the number of molecgles in the
critical cluster, and} , its excess energy; a relation between

dind . ) i* andE; follows from these expressions. In our analysis
((9 n 3) =(1+i")(1+Bp+O(Bp)?). (3 we use the original forms of the nucleation theorems, ignor-
T ing the nonideal gas corrections; this will be justified later.

To reformulate the second nucleation theorem, we statVe write E; as shorthand foE,(i*), the excess energy

from the identity evaluated at size .
We chose to fit the data ampentanol with a function of
(&InJ) B &InJ) +(a|nJ) aInS) ©) the form,
aT ., \ T ains/_\ oT |’
s s T s e b(c/T—1)3 10
and use the relations betwepn B, and p; presented above n-=-a (Ing)2 10
Eq. (5), to expressS=P/Pg in terms ofS'=p,/p3, " o .
wherea, b, andc are fitting parameters. This fitting function
4BpSS —1+/1+8BpsS’ was motivated by the work of Hale, who found that a phe-
S= S . (7)  nomenological expression which took a form similar to this
4Bp7;—1++/1+8Bp;

was surprisingly effective in correlating nucleation rates for a
variety of substance’®:' We use it since it permits a better

which can be simplified using Taylor expansions, to give ° > _ ;
fit to the experimental data than other functions that we tried;

S'(1-Bp3S')+ O(Bp)? in fact, given the scatter in the available data, a fitting func-

= S 5 tion which is definitively better than this one seems unlikely
(1=Bp1)+O(Bp) to be identified.

=S'(1-(S'—1)BpS) + O(Bp)2. (8) Three sets of experimental data on the nucleation of

n-pentanol were used. The data afidhal and Smok'? and
Now we can evaluate the last derivative on the right-handRudeket al® (which we regard as one $awere obtained
side of Eq.(6) and use the first nucleation theorem, E4), using thermal diffusion cloud chambers, the data of Hruby
for (dInJ/dIn 97 to get the following form for the second et all* were collected using an expansion cloud chamber,
nucleation theorem: and the data of Luijtert al.'® were gathered using the pulse
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TABLE I. Values of the fitting parameteis b andc for the three datasets. 400
g
Reference a b c(K) 350 0’9?—::,’,«"'
Hrubyetal. 68.5 101 591 > 300 320K
Zdimal and Smok, Rudeket al. 54.4 16.1 830 = 240 K
Luijten et al. 76.5 394 485 'Y 250+ . P
& Luijten et al.
2 200
()]
8 150 Zdimal and Smolik,
expansion method. Collectively the sets of data cover a range u% 100 Rudek et al.
of temperatures from 240 K to 320 K, supersaturations from # etal.
3.3 to 27, and resultant nucleation ratés m 3s 1) from 50—
107 to 10Y. Table | shows the values @ b andc for the o
| | | | | | | |

three sets of data. Figure 1 demonstrates that(Hg, with
the parameters as in Table |, provides a good fit to the data; .
the limitations of the fitting function are revealed by the fact Critical cluster size |
that the fit is not perfect. FIG. 2. The excess energy as a function of critical cluster size. Solid lines,
calculations from the experimental data, each valid within the rang&,of (
T) values covered by its respective dataset. Dashed lines, predictions of
B. The energetics of critical clusters in n-pentanol classical nucleation theory.

0 10 20 30 40 50 60 70 80 90

By finding the derivatives of Eq10) with respect to I'§
and T and applying the two nucleation theorems, one can
derive the following expressions f&; andi* interms ofS  energy of a macroscopic system, we exgeft<i* 2 in the
andT: limit of a large critical cluster. Therefore we set=2/3,
2b(c/T—1)3 which yields the expression
Fmoro——— 1, (11

(In 8)3 . 3b1/3ck o
) EX =———(1+i*)“°—L+KT. (14
. :3bck(c/T— 1)

22/3
* S —L+KT. (12)

The latent heat of condensation per molecilecan be
We use these expressions to find a relation betw&eand  calculated using the Clausius—Clapeyron equation, together
EX . Since both of these quantities are functionsS@ndT,  with an empirical expression for the saturation vapor pres-
there will not be a unique relation between them; we can‘:,u‘rgteﬁpS as a function of temperature. Forpentanol, we
write us

E:Zf(S,T,y)(l+i*)7—L+kT, (13
) N ) P.,=133.324 ex(90.08-9788T—9.90InT), (15
and the relation between the critical cluster size and excess

energy will depend ory, which can take any value. HOW- ey the pressure is expressed in Pa and the tempefature
ever, since the excess energy is analogous to the surfage . therefore the latent heat is given by

L=978&—9.9KT. (16)
40— Luijten et al. /-
25 260*; ; / Figure 2 shows the curves & as a function of* (in
271 ,y// 4 é40K units of kTy, whereTy=273.15 K which were produced
30 "‘/J///,////‘;A‘z K from each of the three sets of data. It should be noted that
) ! theseEj (i*) curves are not very sensitive to small changes
5 257 Hruby et al. in the fitting function.
- 20 A comparison is also made with the results of classical

for the nucleation rate, based on the original classical rate

L, nucleation theory, for which we use the following formula
//260 K e
y modified by a factor ofp, /p,

Zdimal and Smolik,
Rudek et al.

' ' ' InJy=In
2.0 25 3.0

InS

NI
am KT 3 p|2(k'|')3( In 8)2'

. . . — 1
FIG. 1. Comparison of experimental data and the functions fitted to them\.NhereU is the surface tensiofin N m~") andm the mass of

Dots, experimental data. Lines, predictions of the fitting functions far In & Mmolecule. Combir_ling this with the th nUdea'Fion theo-
along isothermal lines corresponding to the experimental data. rems and the Clausius—Clapeyron equation, we find
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FIG. 4. The excess energy of the critical cluster as a function of temperature
FIG. 3. The critical cluster size as a function of temperature and supersatw&nd supersaturation, calculated from the data dinal and Smok and
ration, calculated from the data offfnal and Smok and Rudelet al. and Rudeket al. and valid within the(S,T)range covered by those data.
valid within the (S, T)range covered by those data.

the values ofS and T which produced it. Ify were set to a
different value, this would still be true, but the point would

. ,[ 1 do (36m)*(3ds 2dp 3 be obscured by the appearance of explidit and
xcl= KT 20¢dT 3 \lodT pdT T Sdependence it} . (Itis useful to bear in mind that we are

seeking information on the excess enelgy(T,S,i) for a

T general cluster size given data orE} =E,(T,S,i*(T,S))

pr/s : (18 for a T- and S-dependent critical siz&*. The value ofy

determines how much of the- and S dependence is explic-
whereE},, represents the classical excess energy evaluated #ly present in the expression fdE; , and how much is

the classical critical sizg; . For the temperature dependencelocked up ini*.)

of o and of the liquid molecular density,, we use the The fact that the Hale function can be made to fit the
following correlations-3 experimental data shows that, over the small region of the
o=10"3[26.85469-0.07889T — 273.15], (19 (S, T) plane which is covered by a single set of experimental

measurements, this one to one correspondence betifieen
p1=10°N,(3.06+21.9@*-95.462%3+218.12 and E} is approximately correct. From a physical point of
3 5 view, too, we would expect this to be the case, since the

—210.2%474.37°%), (20 excess energy is closely related to the number of dangling

whereN, is Avogadro’s number and=1—T/T,; the criti- bonds on the surface of a cluster. This depends on the num-

cal temperaturd is taken to be 588.15 K. ber of molecules in the cluster, but not strongly on the tem-
Figures 3 and 4 show the critical cluster size and theperature or pressurg@rovided the cluster is compact, which

excess energy, respectively, as a functiorsaind T, calcu- it is at temperatures well below the critical temperature

lated from the data of @mal and Smdk!? and Rudek In general, however, the correspondence does not hold.

et al!® and covering the region of theS(T) plane investi- This is demonstrated by the inconsistency between the three
gated by them. Similar plots could be produced for the otheglifferent ES (i*) curves in Fig. 2, which use sets of data
sets of data. from different regions of the§,T) plane.

It is notable that Eq(10), unlike an arbitrary function These excess energy curves, then, should be regarded as

J(S,T), leads to a situation where, if we sgtequal to 2/3  approximations which are valid on restricted regions of the
on the physical grounds mentioned above, the first and mog6,T) plane. Without such an approximation, it would be
significant term in Eq(13) does not depend on the super- hard to produce a graph such as Fig. 2. Introducing the ap-
saturation or temperature other than through that is, Proximation enables us to gain insight into the energetics of
f(S,T,2/3) is actually independent & and T. This means the critical cluster.

that, if the less significant L+ kT term is disregarded, there . _ .

is a one to one correspondence between the number of mo(l:—' Correction terms in the nucleation theorems

ecules in a critical cluster and its excess energy. A given In order to evaluate the importance for this work of the
will always be associated with the saBg , irrespective of nonideal terms in the nucleation theorems, we nBethe
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second virial coefficient of-pentanol. Since data for this do
not appear to be available in the literature, we use instead the

second virial coefficient of-butanol. We follow a correla-

tion for B as a function of temperature which was introduced
by Tsonopoulo$’*® based on an earlier one by Pitzer and

Curl!® This gives

kT
B= 5= (fO(T)+wf (T +1(T))), (21)
C
where T, is the critical temperaturé563 K for n-butano),
P.=4.423x1(° Pa is the critical pressurél,=T/T., ®
=0.590 is an acentric factor, and

0.330 0.1385 0.0121 0.000607
fO)(T,)=0.1445- - - -

T, T2 L T
(22
(T, =0.0637+ 0.331 0.423 0.008 3
RS S
, 0.0878 0.0408
fA(T,)= - (24

T

Energetics of small n-pentanol clusters 5397
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FIG. 5. The ratioRyo;= Do/ (Dig+ Do), quantifying the importance of
the correction term in the second nucleation theorem. Solid line, Ref. 14;
dashed lines, Refs. 12,13; dotted lines, Ref. 15.

2(c/T-1)

JB
3ckinS aT

+ .
Tc?T

(28)

corr—

o[
(S—1)Py| B| ;=1

Figure 5 shows thaR,,,, is very small for a range 0%

We have reservations about the use of this correlation herey,q 1 representative of experimental conditions, justifying
since it is based on experimental data in the range 380-44Q¢ neglect of the correction term in this investigation of the

K, while we wish to apply it in the range 240-320 K. This

energetics oh-pentanol. However, it might prove necessary

extrapolation is hard to justify, and it should be noted that ity jnc|yde the correction term in calculations involving dif-
leads toB values around 240 K which are more than an Orderferent substances or differers,T) regimes.

of magnitude larger than those recommended at 380 K.

The magnitude oR,,, increases with increasing and

However, since the literature does not contain data quantifyt 5ne might expect the correction term to become less im-

ing the nonideality even ai-butanol in the desired tempera-

portant with increasing temperature, since the magnitude of

ture range, extrapolating the Tsonopoulos correlation is cUrg yecreases and, physically, a vapor becomes more ideal.

rently the best way of proceeding.

However, increasing the temperature at constant supersatura-

The nonideal gas correction term to the first nucleationyj,, jnyolves increasing the pressure, which leads to less

theorem is not significant for this work, sin@&p<1. For
example, atT=273.15 K and I'§=2, we find B=~—-2

X 10" m® andp~10 m~3, soBp~—2x10 3. The sec-
ond nucleation theorem can be written as

=Dig+ Decorrs
S

dind
( (29

aT

where Dig=(L—KkT+E})/kT? is the ideal gas term and
Do is the correction term which, if we introduce the ap-
proximationAv ~ 1/p(P;) and also the ideal gas approxima-

tion p~P/kT, and substitute Eq11) for i*, becomes

2b(c/T—1)3
(InS)®

corr—

Ps L
(S—l)—(B(——l

JB
KT2 kT

+T(5'_T .
(26)

ideal behavior and outweighs the effect of the changB,in
with the result that the correction term becomes more signifi-
cant as the temperature increases.

IV. CONCLUSIONS

Experimental data on the nucleation of droplets from
supersaturated vapors can provide us with detailed informa-
tion about the energies of small molecular clusters. The the-
oretical tools which allow us to uncover this information are
the recently derived nucleation theorems, which are relations
between the derivatives of the nucleation rate and properties
of the critical cluster. Such an analysis has been made pos-
sible by the availability in recent years of high quality ex-
perimental data.

In this paper we have extended an earlier derivation of

In order to quantify the importance of the correction term,the theorems to account for nonideality of the vapor phase.

we consider the ratidR =D cor/(DigtDeor) - Using Eq.
(10), we write

3bc(c/T—1)?

- 2
Pt (TInS)? @0

corr—

Therefore, the ratio is

In practice, the corrections are small, largely due to the low
vapor densities used in experimental studies. We estimate
that the neglect of nonideality leads to an error in the derived
cluster excess energy of less than 2%.

We have analyzed data from a number of experimental
studies of the nucleation of dropletsmpentanol. The avail-
ability of data on a single substance from different experi-
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