
Comparative study on methodology in molecular dynamics simulation
of nucleation

Jan Julin, Ismo Napari, and Hanna Vehkamäki
Department of Physical Sciences, University of Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland

�Received 24 January 2007; accepted 23 April 2007; published online 14 June 2007�

Gas-liquid nucleation of 1000 Lennard-Jones atoms is simulated to evaluate temperature regulation
methods and methods to obtain nucleation rate. The Berendsen and the Andersen thermostats are
compared. The Berendsen thermostat is unable to control the temperature of clusters larger than the
critical size. Independent of the thermostating method the velocities of individual atoms and the
translational velocities of clusters up to at least six atoms are accurately described by the Maxwell
velocity distribution. Simulations with the Andersen thermostat yield about two times higher
nucleation rates than those with the Berendsen thermostat. Nucleation rate is extracted from the
simulations by direct observation of times of nucleation onset and by the method of Yasuoka and
Matsumoto �J. Chem. Phys. 109, 8451 �1998��. Compared to the direct observation, the nucleation
rates obtained from the method of Yasuoka and Matsumoto are higher by a factor of 3. © 2007
American Institute of Physics. �DOI: 10.1063/1.2740269�

I. INTRODUCTION

Nucleation in gaseous phase is usually described by clas-
sical nucleation theory �CNT�, which subjects the inherently
microscopic nature of nucleation process to macroscopic
thermodynamic treatment. The advantage of this approach is
simplicity and practicality: only measurable properties, such
as liquid density, surface tension, vapor pressure, etc., are
needed to obtain the rate of appearance of new particles, that
is, nucleation rate, from a simple equation. The disadvantage
is the unreliability of results. By assuming thermodynamics
�macroscopic theory� to hold for clusters of few tens of mol-
ecules �or even less�, CNT brings about an unpredictable and
system-dependent error source. It is not uncommon to find a
discrepancy of over ten orders of magnitude between the
measured nucleation rate and the nucleation rate predicted by
CNT.

To elucidate the problems of CNT and to explore and
test more refined approaches to nucleation, a microscopic
basis is required. The most straightforward molecular-level
method to investigate gas-liquid nucleation is the molecular
dynamics �MD� simulation.1 In the so called direct MD
method one places a large number of molecules in a simula-
tion box, quenches the system to a supersaturated state, and
follows the trajectories of the particles by integrating the
equations of motion. The nucleation event and the subse-
quent growth of the molecular cluster can readily be ob-
served during the simulation. This method contrasts with an
indirect MD simulation, where a nucleated cluster is already
present at the start of the simulation �see, for example, Ref.
2�. Other methods, for example, Monte Carlo simulation and
density functional theory, are also viable but MD has the
advantage of closely emulating the actual dynamic nucle-
ation process. Nevertheless, MD method has some intrinsic
difficulties, especially related to thermostating and extracting
nucleation rate from the simulations.

Molecular dynamics is essentially classical mechanics.

From the statistical physics viewpoint the simulation is per-
formed in constant energy ensemble �NVE�, which is some-
what restricting because real nucleating systems are usually
in contact with a heat bath, corresponding to the canonical
�NVT� ensemble in the statistical description. In nucleation
experiments the thermal coupling is achieved by adding car-
rier gas �usually an inert gas� to the nucleating vapor. In
atmospheric nucleation, carrier gas is always present in the
form of “air molecules” �mainly O2 and N2�. The interaction
with the carrier gas thermalizes the nucleating substance, and
the nucleation process is then isothermal. If carrier gas is
missing from a MD simulation, the nucleating clusters heat
up during condensation, which increases the evaporation rate
from clusters and, in consequence, lowers the nucleation
rate.

Thermal contact in MD simulations via carrier gas can
be a time-consuming method, because the carrier gas par-
ticles must outnumber the nucleating particles by several
times for effective thermalization. Usually a more cost-
effective method to imitate the presence of carrier gas is to
couple the system to an artificial thermostat. A thermostat
changes the velocities of the particles in order to achieve the
desired temperature. However, the thermostat may disturb
the dynamics in a nonrealistic manner, and generate a system
which does not correspond to a canonical one. Previous di-
rect MD studies on gas-liquid nucleation have used both the
carrier-gas method3–8 and thermostats9,10 to thermalize the
system. However, no studies exist where thermostating
schemes are compared in a systematic manner.

In this work we perform gas-liquid nucleation simula-
tions of simple Lennard-Jones particles. We compare two
existing methods, the direct observation of nucleation events
and the method by Yasuoka and Matsumoto,4 to obtain the
nucleation rate from the simulation and assess two popular
thermostats, the Berendsen and the Andersen thermostats.
The results are compared to simulations without thermostat-
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ing. The paper is organized as follows. In Sec. II we present
the system and describe the simulation method. Next, in
Sec. III, we show our results for temperature control, veloc-
ity distributions, nucleation rate, and cluster distributions.
The section ends with a comparison to CNT. Finally, in
Sec. IV we summarize our main conclusions.

II. MODELS AND METHODS

We simulated a system of 1000 particles in a box of size
120�120�120 Å3 with periodic boundary conditions. As is
shown by Wedekind et al.3 this size is easily large enough to
avoid possible finite-size effects. The interaction potential
was a Lennard-Jones potential,

V�r� = 4����/r�12 − ��/r�6� , �1�

and the parameter values for argon, �=3.40 Å and � /kB

=120 K, were used. The potential cutoff was at 5�.
The system starts at a temperature of 130 K, and is

quenched after 1 ns to the target temperature of 85 K. A 6 fs
timestep is used throughout the simulation. The simulation
was terminated either after 10 ns of simulation time or after
the size of the largest cluster exceeded 200 atoms, depending
on which happened first.

Two well-known thermostats, the Berendsen11 and
Andersen12 thermostats were used. When thermostating with
the Berendsen thermostat the velocities of every particle is
scaled by a factor

� = �1 +
�t

�
�T0

T
− 1��1/2

, �2�

where T0 is the target temperature, T is the current kinetic
temperature of the system, �t is the timestep, and � is a
preset time parameter. For the time parameter the value �
=400 fs was used. This value was found appropriate by Be-
rendsen et al.11 �Further discussion on the effect of the
strength of the coupling can be found in Sec. III A.�

When using the Andersen thermostat a number of par-
ticles are randomly selected to be given new velocities.
These new velocities are drawn from a Maxwell-Boltzmann
distribution corresponding to the target temperature. The
probability for a particle to get a new velocity is ��t, where
�t is again the timestep and � is a parameter describing the
collision frequency with an imaginary heat bath. In these
simulations the value of the parameter was set to �=5
�10−4 fs−1. Should one consider this value to correspond to
a collision frequency with carrier gas atoms of roughly the
size of N2 or O2, there would be about seven times more
carrier gas atoms than nucleating atoms present.

An apparent unnaturalness in both of these thermostats is
the fact that they remove heat from particles inside large
clusters as well. In order to test the effect this has on the
nucleation process we also conducted simulations with both
thermostats where only the free particles were thermostated.
That is, those particles that do not belong to any clusters
when a cluster is defined with the usual Stillinger criterion13

with the cutoff at 1.5�. In a more natural scenario one would
of course wish to use the thermostat on all particles in the
small clusters and the particles on the surfaces of larger clus-

ters as well, but the downside is a considerable increase in
simulation time as the list of neighbors for each atom should
then be more frequently updated.

Two different methods to obtain the nucleation rate were
used. First of these was the method of Yasuoka and
Matsumoto.4 In this method the number of clusters exceed-
ing a certain threshold size is plotted as a function of simu-
lation time. The slope of the linear dependence found is then
divided with the volume of the simulation box to get the
nucleation rate. In our simulation we used threshold cluster
sizes of 30, 40, 50, and 60 particles. An example of a
Yasuoka-Matsumoto graph used to determine the nucleation
rate is shown in Fig. 1, and as can be seen the slopes are
similar for the different threshold sizes. Also shown is the
number of atoms in the largest cluster as a function of time
from the same run.

The other method used was the so called direct observa-
tion method. In direct observation the nucleation rate is de-
termined by observing the time of nucleation onset, the time
when the first cluster that is able to grow appears. In the
example run shown in Fig. 1, the onset is clearly seen hap-
pening at 2.2 ns after the quench. The nucleation rate is then
estimated as �one cluster�/�time of onset�volume of simu-
lation box�. Naturally this method requires sufficient number

FIG. 1. Top: Time development of number of clusters larger than the thresh-
old sizes 30, 40, 50, and 60. Bottom: Time development of the number of
particles in the largest cluster for the same simulation run. The Berendsen
thermostat was used for this run.
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of simulation runs to acquire reasonable statistics. This re-
quirement is emphasized by the fact that the time of onset
could vary greatly from one run to another. It is worth noting
that the broad range of observed times of onset did not have
an effect on nucleation rates obtained with the method of
Yasuoka and Matsumoto.

III. RESULTS AND DISCUSSION

A. Temperature control

The two thermostats do their job, combating the tem-
perature increase due to condensation heat, with varying suc-
cess. As seen in Fig. 2, the Andersen thermostat manages to
keep the temperature well in check for all cluster sizes, and
the deviation from the desired temperature is at most about
3 K. The Berendsen thermostat manages to keep clusters up
to size 25 at the desired temperature, which is near the criti-
cal cluster size of our simulations. However, for larger clus-
ters than this the temperature rises rapidly and the largest
clusters are over 10 K hotter than the desired temperature.
Smaller values of the Berendsen time parameter � were also
tried, but it turned out that even these stricter couplings to
the thermostat were unable to keep the temperatures of larger
clusters at the desired level.

When the thermostating is applied only to the free par-
ticles, in other words monomers, the temperature of clusters
behaves in both cases almost similarly to the regular Ber-
endsen thermostated runs. As one should expect, when the
Berendsen thermostat is used only on monomers, the result-
ing cluster temperatures are slightly higher than in regular
Berendsen thermostated runs. Since both thermostats man-
aged to keep the temperature of the free particles where de-
sired, it comes as no surprise that when the Andersen ther-
mostat is used only on monomers, the cluster temperatures
mimic the behavior seen in corresponding Berendsen ther-
mostated runs.

With such temperature behavior it is clear that only the
regular Andersen thermostated runs can be considered to
produce a canonical ensemble. However, the gas phase does
remain in constant temperature in all four thermostating
methods considered, meaning that the situation is very dif-
ferent from constant energy �NVE� simulations, as Fig. 3
shows. In our NVE simulations the system is temperature
controlled with the Berendsen thermostat until 500 ps after
the quench, after which the thermostat is removed and the
simulation runs as a NVE simulation. The cluster tempera-
tures of Fig. 3 have been collected only from the NVE part of
the simulations. When nucleation occurs in constant energy
simulations, the smaller cluster sizes become over 5 K hotter
than the target temperature. Inspection of the temperature of
free particles as a function of simulation time reveals that
their temperature begins to increase when the temperature of
the clusters begins to increase after the nucleation onset. This
heating of the vapor phase is due to heated atoms which
evaporate from the nucleating clusters and slowly increase
the vapor temperature. Similarly to the free particles, the
temperature of clusters does not deviate much from the target
temperature before nucleation has occurred, explaining why
clusters with sizes near the critical size are cooler since these
are only found in the simulation in this fairly isothermal
period.

FIG. 2. Cluster temperatures averaged over several runs. The temperatures
are collected starting from the quench until the end of the simulation. Top:
Regular Berendsen �solid line� and Andersen �dashed line� thermostated
runs. Bottom: Berendsen �solid line� and Andersen �dashed line� thermostats
applied only to monomers.

FIG. 3. Cluster temperatures for NVE runs.
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B. Velocity distributions

As an initial configuration the velocities of the particles
are drawn from a Maxwell-Boltzmann distribution. During
the simulation the thermostats interfere with the velocities,
but this does not change the shape of the distributions as can
be seen in Fig. 4, where the dots represent the velocity dis-
tributions collected from the simulations and the solid line is
the theoretical Maxwell-Boltzmann distribution correspond-
ing to T=85 K. The time period from which the velocities
are collected begins at 200 ps after the quench and continues
until the nucleation onset. The smoother shape of the distri-
bution from the Berendsen thermostated run is due to a late
onset at about 8 ns after the quench compared to the onset in
the Andersen thermostated run happening 3 ns after the
quench, which results in more data for the Berendsen run.

During the simulation we kept track of which particles
were in the same clusters, allowing us to find a velocity
distribution for the centers of mass of clusters. This was done
for clusters up to size six. It turns out that the centers of mass
also have a Maxwell-Boltzmann velocity distribution, which
is demonstrated in Fig. 5 for three-particle clusters. The dis-
tributions are not as smooth as the distributions of single

particle velocities as we now have a lot less data points to
draw the distributions from, even for cluster size as small as
three. For example, while the Berendsen thermostated run
provides 13�106 data points for the single particle velocity
distribution, there is only around 4�105 velocities available
for the three-particle case from the same run. Nevertheless,
the Maxwell-Boltzmann distribution is clearly observed, as
was the case for all the cluster sizes for which we collected
the center of mass velocity distributions. In this sense clus-
ters behave like large molecules with mass Nm, where N is
the number of particles in the cluster and m is the mass of an
individual atom.

C. Nucleation rate

Table I collects the nucleation rates obtained with the
different methods and thermostats along with the number of
simulations where a nucleation event was observed. The
nucleation rates are averages over all the runs. They are
given in the reduced units where we have taken the Lennard-
Jones parameters � and � as the units of length and energy,

FIG. 4. Velocity distributions of Berendsen �top� and Andersen �bottom�
thermostated runs. Solid line is the theoretical Maxwell-Boltzmann distribu-
tion at T=85 K. Velocities of all the atoms in the systems are included in the
distribution.

FIG. 5. Velocity distributions of the centers of mass of three-particle clusters
for different thermostats. From top to bottom: Berendsen, Andersen, Ber-
endsen only on monomers, and Andersen only on monomers. Solid lines
represent the theoretical Maxwell-Boltzmann distribution at T=85 K.
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respectively, and the single particle mass m �6.63
�10−26 kg for argon� as the unit of mass. The unit of nucle-
ation rate is then �J�=�−3�−1, where �=	m�2 /�=2.15 ps is
the unit time. In addition to the thermostated runs the table
shows nucleation rates for NVE simulations. There were un-
fortunately only few NVE simulations where nucleation was
observed. This was likely due to the rapid temperature rise of
the clusters after their formation, which, combined with our
rather high target temperature, causes the clusters to evapo-
rate again. Inspecting Fig. 3 again shows that in our two
NVE runs where nucleation did occur, the cluster tempera-
tures near the critical size have actually been lower than
85 K, providing more favorable conditions for nucleation.

The nucleation rates for the different thermostats are
fairly close to each other with the rates for regular Andersen
thermostated runs a bit higher than the others, and the rates
for NVE simulations are lower �as should be, see Barrett et
al.14�. The difference in nucleation rates between runs, where
only the free particles are thermostated, and the regular ther-
mostating is very small, for the Berendsen thermostat it is
practically nonexistent. The Yasuoka-Matsumoto method
yields two to three times higher nucleation rates than the
direct observation for all thermostats. This is still a fairly
good agreement.

We will next examine the distribution of nucleation on-
set times for the different thermostats. Getting nucleation
rates as high as the Yasuoka-Matsumoto ones with direct
observation would require the nucleation onsets to happen on
average within about 0.5 ns after the quench or even sooner
with the Andersen thermostat. Figure 6 shows that the distri-
bution of onset times is quite wide, and in all cases most of
the nucleation events start clearly later than 0.5 ns after the
quench. Immediately after the quench to the lower tempera-
ture we see less nucleation events than expected if the times
of onset followed an exponential distribution. While the va-
por after the quench is in a supersaturated state, some period
of time is always needed for the vapor atoms to agglomerate
together to form a critical cluster. Some of the earliest events
are probably facilitated by a subcritical cluster already
present before the quench. The distribution for the Andersen
thermostated runs seem to follow an exponential distribution,
but closer inspection reveals that the onset happens consid-
erably less frequently for the first 200 ps after the quench
than in the following 200 ps �see Fig. 7�. It should be noted
that the large number of Andersen thermostated runs in
which the onset happens during the first nanosecond after the

quench indeed makes it statistically reasonable to use the
narrower bin width of 200 ps for this time frame.

For the runs with other thermostats the histograms have
peaks at 1–2 ps, and they have a tail of nucleation events
spanning practically the whole range of our simulation time.
Even though nucleation on average occurs soonest when us-
ing the Andersen thermostat, there still exists a clear tail in
the histogram. An example of a general distribution that has
this shape and can be derived from Poisson’s assumptions is
the gamma distribution,

f�x� =
x�−1e−x/	

	�
���
, �3�

with the shape parameter � in the range between 1 and 2.
The gamma distributions fitted to the onset data are shown in
Figs. 6 and 7.

TABLE I. Nucleation rates obtained by different methods and thermostats.
Also shown is the number of simulations where a nucleation event was
observed.

Yasuoka-Matsumoto
Direct

observation
Number of
simulations

Andersen 2.3�10−7 1.0�10−7 99
Berendsen 1.3�10−7 0.5�10−7 97
Andersen to free 1.5�10−7 0.4�10−7 87
Berendsen to free 1.3�10−7 0.4�10−7 84
NVE 0.8�10−7

¯ 2

FIG. 6. Histograms for the times of onset with 500 ps bin width. From top
to bottom: Berendsen, Andersen, and Andersen only applied to monomers.
Total number of runs with observed nucleation events shown in the picture.
The solid lines are the gamma distributions fitted to the data.
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D. Cluster distributions and comparison
with classical nucleation theory

In molecular dynamics the cluster distributions are di-
rectly available from the simulations. In a simulation like
this, where the system is in a supersaturated state, we do not
have equilibrium after the quench, but the system is in a
metastable state prior to the nucleation onset. The vapor den-
sity remains practically unchanged when a constant nucle-
ation rate is observed with the Yasuoka-Matsumoto graphs,
so clusters smaller than the critical size can be considered to
be in quasiequilibrium during this period. Cluster distribu-
tions shown in Fig. 8 are from the period after the onset
where we have a constant nucleation rate. In the example run
of Fig. 1 the period would be roughly from 2.5 up to 3 ns
after the quench. These distributions are averaged over sev-
eral runs with different times of nucleation onset. The time of
onset did not affect the distributions, which is demonstrated
for the Berendsen thermostat in the bottom part of Fig. 8.
There appears to be some difference in the cluster distribu-
tions depending on the choice of thermostat. However, these
differences clearly do not affect the nucleation rates for the
different thermostats as was shown in Table I; additionally
the formation free energy will not be significantly different
for the different thermostats as we will see shortly.

Toxvaerd5 found that the cluster size distributions follow
a simple exponential form after a certain cluster size. Our
critical size is about half of that of Toxvaerd, and as we have
usually only one cluster exceeding the critical size, the sta-
tistics for the larger cluster sizes are rather poor. However,
the cluster concentrations seem to depend linearly on cluster
size at sizes above n
15 in Fig. 8.

The equilibrium cluster distribution is expected to have
an exponential form,

ce�n� = � exp�−
�G�n�

kBT
� , �4�

where � is the number density of monomers, kB is the Bolt-
zmann constant, T is the system temperature, and �G�n� is
the formation free energy of an n cluster. In a vapor nucle-
ating at a steady rate the cluster distribution is given by �see
Ref. 15�

c�n� = ce�n��1 − J�
i=1

n−1
1

	�i�ce�i�
� , �5�

where 	�n� is the rate at which monomers collide with an n
cluster, and the nucleation rate J is given by

FIG. 7. Narrower histogram bins for the 1 ns of nucleation onsets for the
Andersen thermostated runs, suggesting a gamma distribution shape. The
solid line is again the fitted gamma distribution.

FIG. 8. Top: Averaged cluster distributions for the different thermostats
taken from the period of constant nucleation rate after the onset. Bottom:
Cluster distributions for Berendsen thermostated runs where the nucleation
onset has occurred at different times, time passed between quench and the
onset given in legend.
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J = ��
i=1

� � 1

	�i�ce�i�
��−1

. �6�

In the summation of Eq. �5� 1/ceexp��G�n� / �kBT�� has a
very sharp peak around the critical size n* and approaches
zero elsewhere, thus

c�n� 
 ce�n� for n � n*. �7�

If we let n go to infinity in the summation of Eq. �5�, we see
from Eq. �6� that the sum is equal to J−1. From the near
symmetry of the exponential in 1 /ce it is clear that adding
the terms up to the critical size should yield about half of
this. So we have

c�n*� 
 ce�n*�/2 �8�

for the critical cluster number density.
Solving Eq. �4� for the cluster formation free energy one

obtains

�G�n� = − kBT ln
ce�n�

�
. �9�

Even though the simulated cluster distributions of Fig. 8 are
obtained from a vapor nucleating at a steady rate rather than
an equilibrium situation, according to Eq. �7� a reasonable
approximation for the formation free energy of cluster sizes
clearly smaller than the critical size is given by Eq. �9�. As
the steady state cluster distribution starts to deviate from the
equilibrium distribution at cluster sizes close to the critical
size, we should take this into account when trying to plot the
formation free energy. Doing this, however, would require us
to make further approximations so we settle on plotting the
formation free energy with the help of Eq. �9� and then cor-
rect for the critical value. Figure 9 shows the formation free
energy obtained from our simulations for the different ther-
mostats. The formation free energy levels off at the critical

size, which in our system is about 25 for all thermostats.
From Fig. 9 we see that the critical formation free energy
would be 
7 in the reduced units ���G�=�� should the equi-
librium expression be valid at that size. But as we have
c�n*�=ce�n*� /2, we must correct this estimate by −kBT ln 2
finally arriving at �G*
6.5 for a simulation-based estimate
for the critical formation free energy of our system.

Assuming that the cluster has spherical shape, and the
vapor is an ideal gas, the formation free energy is expressed
in classical nucleation theory as

�G�n� = �36�

�l
2 �1/3

�n2/3 − nkBT ln� p

pe
� . �10�

Here � is the surface tension of the planar liquid-vapor in-
terface, �l is the number density of the bulk liquid at liquid-
vapor equilibrium, p is the pressure of supersaturated vapor,
and pe is the equilibrium pressure of the vapor. The maxi-
mum of the formation free energy �G* corresponds to the
critical cluster size n*, and from Eq. �10� one gets

n* =
32�

3

�3

�kBT ln S�3�l
2 �11�

for the critical size and

�G* =
16�

3

�3

�kBT�l ln S�2 �12�

for the critical formation free energy, where S= p / pe is the
saturation ratio.

From Eqs. �11� and �12� we get CNT estimates for the
critical values, which turn out to be somewhat larger than the
simulation results. Using values for �l and � from the results
of Mecke et al.16 and for the equilibrium vapor pressure pe

the result from Laasonen et al.2 which gives us a saturation
ratio S=4.7, the CNT prediction for critical cluster size is
n*=38 and critical formation free energy �G*=20.9, again in
the reduced units.

Finally, obtaining a value for the critical formation free
energy allows for yet another way to determine the nucle-
ation rate, as an expression for nucleation rate can be written
as

J = �l
−1	 2�

�m
� pe

kBT
�� exp�−

�G*

kBT
� . �13�

Plugging in the simulation-based value �G*=6.5 results in a
nucleation rate J=3.4�10−9, about two orders of magnitude
smaller than those in Table I. Using instead the CNT value
for the formation free energy one gets a predicted nucleation
rate JCNT=5.3�10−18, which is over ten orders of magnitude
lower than the simulated values. The two orders of magni-
tude difference between the nucleation rate obtained from
Eq. �13� with the critical formation free energy from simula-
tions and the nucleation rate obtained directly from the simu-
lations is partly due to the uncertainties in the values of the
surface tension, number density of the bulk liquid, and equi-
librium vapor pressure as well as our estimate for the value

FIG. 9. Formation free energy approximated with Eq. �9� for the different
thermostats given in the reduced Lennard-Jones units.
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of the critical formation free energy, and partly due to the
fact that the kinetic prefactor in Eq. �13� uses the bulk values
for liquid density and surface tension, yet the critical cluster
consists only of around 25 particles.

IV. CONCLUSIONS

We have performed MD simulation of 1000 simple
Lennard-Jones atoms to assess the effects of simulation
methods on nucleation. We have compared the Berendsen
and the Andersen thermostats in regulation of vapor and
cluster temperatures. Nucleation rate was derived from the
simulations by direct observation of nucleation onset and by
the method of Yasuoka and Matsumoto.4

Our simulations show that the Andersen thermostat regu-
lates the temperature of clusters better than the Berendsen
thermostat. This fact is reflected both in cluster distributions
and in the nucleation rates. However, the differences are
small compared to orders of magnitude difference to CNT
results. The velocities of atoms and the center of mass ve-
locities of small clusters conform to Maxwell distribution of
velocities with all thermostats, which implies that a close
approximation of true canonical ensemble is generated. If
strict isothermality is required, the Andersen thermostat is
preferred. However, it seems that thermostating method
�Berendsen or Andersen� is not a critical issue in obtaining a
reasonable approximation of nucleation rate. It would seem
unnecessary to further refine which particles the thermostats
are applied to, that is, using the thermostats on all particles in
smaller clusters and on the surfaces of larger clusters in ad-
dition to the free particles.

There exist other thermostats which could possibly be
used in nucleation simulations. In particular, the Nosé-
Hoover thermostat17 has been widely used and it is com-
monly available in MD software packages. Nevertheless,
problems in thermal regulation of small clusters with Nosé-
Hoover thermostat has been reported,18,19 which is the reason
why we have not considered it in this study.

In a practical sense, perhaps the most important differ-
ence between the two methods to obtain the nucleation rate
is the fact that a relatively high number of simulation runs is

needed for the direct observation method, while a single run
could suffice for the method of Yasuoka and Matsumoto.
This might rule out the option of using direct observation
should the system size be larger, and consequently the simu-
lation time longer. Determining the nucleation rate with the
method of Yasuoka and Matsumoto results in two to three
times higher nucleation rates than using the direct observa-
tion method. Acquiring nucleation rates similar to the
Yasuoka-Matsumoto ones with direct observation would re-
quire that for the majority of the runs the nucleation onset
would occur shortly after the quench, which seems to be an
unlikely scenario according to the shape of the onset distri-
butions acquired from our simulations. Observing the onset
directly after the quench is not to be expected as some period
of time is needed so that the vapor atoms can agglomerate
together to form a critical cluster. Nevertheless, the agree-
ment between the two methods is still fairly good.

1 D. Frenkel and B. Smit, Understanding Molecular Simulation, 2nd ed.
�Academic, New York, 2002�.

2 K. Laasonen, S. Wonczak, R. Strey, and A. Laaksonen, J. Chem. Phys.
113, 9741 �2000�.

3 J. Wedekind, D. Reguera, and R. Strey, J. Chem. Phys. 125, 214505
�2006�.

4 K. Yasuoka and M. Matsumoto, J. Chem. Phys. 109, 8451 �1998�.
5 S. Toxvaerd, J. Chem. Phys. 115, 8913 �2001�.
6 K. Yasuoka and M. Matsumoto, J. Chem. Phys. 109, 8463 �1998�.
7 S. Toxvaerd, J. Chem. Phys. 119, 10764 �2003�.
8 P. Krasnochtchekov and R. S. Averback, J. Chem. Phys. 122, 044319
�2005�.

9 K. Tanaka, K. Kawamura, H. Tanaka, and K. Nakazawa, J. Chem. Phys.
122, 184514 �2005�.

10 N. Lümmen and T. Kraska, J. Aerosol Sci. 36, 1409 �2005�.
11 H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and

J. R. Haak, J. Chem. Phys. 81, 3684 �1984�.
12 H. C. Andersen, J. Chem. Phys. 72, 2384 �1980�.
13 F. H. Stillinger, J. Chem. Phys. 38, 1486 �1963�.
14 J. Barrett, C. Clement, and I. Ford, J. Phys. A 26, 529 �1993�.
15 H. Vehkamäki, Classical Nucleation Theory in Multicomponent Systems

�Springer, Berlin, 2006�.
16 M. Mecke and W. Winkelmann, J. Chem. Phys. 107, 9264 �1997�.
17 M. Tuckerman, Y. Liu, G. Ciccotti, and G. Martyna, J. Chem. Phys. 115,

1678 �2001�.
18 S. A. Harris and I. J. Ford, J. Chem. Phys. 118, 9216 �2003�.
19 E. Kelly, M. Seth, and T. Ziegler, J. Phys. Chem. A 108, 2167 �2004�.

224517-8 Julin, Napari, and Vehkamäki J. Chem. Phys. 126, 224517 �2007�

Downloaded 12 Sep 2007 to 128.214.177.187. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp


