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Nucleation theorems applied to the Ising model

Hanna Vehkama¨ki* and Ian J. Ford
Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom

~Received 28 January 1999!

We use Monte Carlo simulations to study a single cluster of ‘‘up’’ spins in a sea of ‘‘down’’ spins in the
three-dimensional Ising model. We evaluate the growth and decay rates for clusters of different sizes, identify
the critical size for which these rates are equal, and obtain the internal energy of the critical size cluster. The
results of the simulations at different temperatures and magnetic fields are used together with the first and
second nucleation theorems to predict how the cluster nucleation rate changes when the external magnetic field
and the temperature are changed. Our results are in agreement with literature values, but our method requires
significantly less computational effort than the simulations reported earlier and avoids the difficult evaluation
of free energies.@S1063-651X~99!08206-9#

PACS number~s!: 05.50.1q, 02.70.Lq, 64.60.Qb
ha

u
s-
fo
he
th
in

a-

i
u
th
a
e

r
se
em
an
io
di

e-
f
o

y
m

h

t,
an
-

e
eri-

en

of
d

er
wth
-

s
di-

the

d by

s
n

I. INTRODUCTION

The nucleation of clusters of spins in Ising systems
been studied widely in the literature~see, e.g.,@1,2#!. The
conventional direct method to obtain information abo
nucleation is to follow the evolution of a population of clu
ters of different sizes in a large system. The critical size
which decay is just as likely as growth is obtained from t
size distribution of clusters or the size dependence of
cluster free energy. Counting the number of clusters reach
the critical size or following the evolution of the magnetiz
tion then gives the nucleation rate.

In contrast, we study a single cluster and determine
growth and decay rates to obtain the critical size. Our sim
lations give the size and the excess internal energy of
critical cluster as functions of temperature and external m
netic field. We use this information in conjunction with th
first and second nucleation theorems@3–6# to obtain thede-
rivatives of the nucleation rate with respect to temperatu
and external field. If we know the nucleation rate for one
of conditions, we can therefore use the nucleation theor
to predict the nucleation rates for other temperatures
fields. Our predictions are consistent with the nucleat
rates reported in earlier studies as well as with the pre
tions of classical nucleation theory.

The required number of lattice points in our thre
dimensional~3D! Ising model calculations is of the order o
103, whereas the studies involving the entire population
clusters require lattices with more than 1003 points. The
amount of CPU time needed to extract the size and energ
the critical cluster using our method is about 1% of the ti
needed for direct nucleation simulations.

II. THEORY

The Ising lattice is an array of magnetic particles~spins!
that interact with each other and with an external field. T
energy of the system is given by

*On leave from Department of Physics, P.O. Box 9, 00014 U
versity of Helsinki, Finland.
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where^ lm& denotes summation over nearest neighbors~each
pair counted only once!, J is the spin-spin coupling constan
and h is the parameter describing the interaction with
external field. (h5mH, wherem is the magnetic dipole mo
ment of the spin particles andH is the external magnetic
field.! The values of thez component of the spinssl are
restricted to61. For a three-dimensional cubic lattice th
coupling constant may be expressed in terms of the num
cally determined critical temperatureTc according toJ/kTc
50.221 656@7#; Tc marks the transition temperature betwe
the ferromagnetic and paramagnetic states atH50.

The kinetics of nucleation can be analyzed if the rates
growth and decay of a cluster ofi up spins can be evaluate
@8#. The steady-state rate of nucleation of clustersI is the net
number of clusters that grow through the critical size p
Monte Carlo step and lattice site. The mean rates of gro
and decay of ani cluster in the Monte Carlo stochastic dy
namics are writtenb i andg i , respectively. Under condition
where the population of isolated up spins in the system
vided by the number of lattice sitesN is n1 , I is given by

I 5
b1n1

11(
i 52

`

)
j 52

i

~g j /b j !

. ~2!

Upon applying the principle of detailed balance to relate
g i to the b i , we obtain I 5@N( i 51

` P( i )#21, where P( i )
5b i

21exp@Fx(i)22hi#/kT, k is Boltzmann’s constant, and
Fx( i ) is the excess Helmholtz free energy of thei cluster@6#.
From these relations it is easy to prove that

S ] ln I

]~2h/kT! D
T

5^ i &1K S ] ln b i

]~2h/kT! D
T
L , ~3!

where the angular brackets denote an average weighte
the P( i ), for example,̂ g( i )&5( i 51

` g( i )P( i )/( i 51
` P( i ), for

some functiong( i ). If P( i ) is sharply peaked, the average
i-
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can be expressed as^g( i )&'g( i * ), where the critical sizei *
is the size of cluster for whichg i5b i , which maximizes
P( i ).

This allows us to derive the first nucleation theorem@3,4#
for the Ising model:

S ] ln I

]~2h/kT! D
T

5 i * 1S ] ln b i

]~2h/kT! D
T,i

i*
' i * 11. ~4!

The final form has been obtained using an approxim
analysis ofb i , which is described in the Appendix. Furthe
more, the second nucleation theorem@5,6# takes the form

S ] ln I

]T D
h/kT

5
Ex*

kT2
1S ] ln b i

]T D
h/kT,i

i*
'

Ex*

kT2
1

2J

kT2
, ~5!

again using an approximate form for the growth rateb i to
obtain the final term. The superscripti * means that the value
i 5 i * is inserted after evaluating the derivative. The exc
internal energy of a critical clusterEx* is defined as the dif-
ference in the coupling part of the internal energy@the first
term in Eq.~1!# between a system containing one cluster i
sea of down spins and a homogeneous system~all spins up!.
All these results are independent of the cluster definition

Our simulations, described in Sec. III, produce data
the size and excess internal energy of the critical cluste
functions of temperatureT and external field parameterh. By
integrating the nucleation theorems we can then determ
the behavior of the nucleation rateI (h/T,T) when the tem-
perature and the external field are changed. The integra
constant can be determined if the nucleation rate is know
a reference temperatureT0 and magnetic fieldh0. Integrating
Eqs.~4! and ~5! gives

ln I ~h/T0 ,T0!2 ln I ~h0 /T0 ,T0!5E
h0 /kT0

h/kT0
2~ i * 11!dS h

kT0
D
~6!

and

ln I ~h0 /T0 ,T!2 ln I ~h0 /T0 ,T0!

5E
T0 /Tc

T/Tc S Ex*

kT

Tc

T
1

2J

kTc

Tc
2

T2D dS T

Tc
D . ~7!

These results have been written in a manner that makes
plicit the dimensionless form of the integrands and integ
tion variables. The propertiesi * andEx* of the critical clus-
ter are functions ofh andT.

The classical formulas for the Ising model are presen
here for completeness since we compare the results of
simulations with the predictions of the classical theory. A
cording to the classical theory@8,9#, the nucleation rate ha
the form I 5Zb i* n1exp@2DF(i* )/kT#, where, for Ising sys-
tems,DF( i ) is the ~Helmholtz! free energy associated wit
the formation of ani cluster,Z is the Zeldovich factor, and
n1 is the concentration of isolated up spins. The free ene
of formation is given byDF( i )5GkTi2/322hi, whereG is a
dimensionless parameter related to the surface tension, t
from Heermannet al. @10# ~note thathHeermann52hthis work).
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Thus the critical cluster determined by the conditi
]DF( i )/] i 50 has the sizei * 5@GkT/3h#3 and the free en-
ergy of formationDF( i * )/kT54G3/27(2h/kT)2. The Zel-
dovich factor takes the form

Z[F 21

2pkT S ]2DF~ i !

] i 2 D i* G 1/2

5
1

3
AG

p
i * (22/3). ~8!

The growth rate isb i* } i * (2/3) andn1 is proportional to the
exponential of the energy of a single isolated up spin,n1
}exp@2(h26J)/kT#. The nucleation rate can only be eval
ated up to an unknown proportionality factor. Finally, th
excess internal energy at the critical size in the class
framework is given by

Ex5DFx1TDSx5DFx2T~]DFx/]T!52kT2S GkT

3h D 2 ]G

]T
,

~9!

whereFx5GkTi2/3.

III. SIMULATIONS

We use a simple cubic lattice and set up a cluster oi
spins with sl511 surrounded by a sea of spins withsl
521. A spin is defined to be part of the cluster if it and
least one of its nearest neighboring spins have spin valusl
511. We generate a sequence of configurations represe
tive of the canonical ensemble by following the Metropo
@11# scheme, such that the probability for a spin to flip
min(1,exp@2DE/kT#), whereDE is the change in the energ
of the system due to the flip.

Our strategy is to find the critical cluster kinetically. Clu
ters above the critical size tend to grow in the stocha
dynamics of the Monte Carlo simulation. This is a reflecti
of the fact that the system free energy can be reduced
doing so. Similarly, clusters smaller than the critical si
tend to shrink, for the same reason. The critical size
equal rates of growth and decay or, equivalently, it deno
the cluster with the highest free energy.

In principle, simply by observing the evolution historie
of many individual clusters under the Monte Carlo dynami
the relative rates of growth and decay as a function of s
may be extracted. However, the tendency for clusters
move away from the critical size means that information
this important region will be relatively sparse. Instead,
calculate growth and decay rates as ensemble average
certain well-defined quantities at a fixed cluster size. In t
way, uniform statistics may be gathered over the interes
range of cluster sizes.

The simulation begins with a single up spin in the midd
of the lattice. This seed is grown by selecting a neare
neighbor lattice point at random and flipping it according
the Metropolis probability. This ‘‘select-and-try-to-flip’’ pro
cedure is repeated until the cluster has been grown to a
sired size. After the growth and decay rates have been
culated for this particular size, we can grow or shrink t
cluster to any other size.

The calculational procedure for a cluster of a particu
size can then be divided into two parts. One task is to ob
the probabilities that a particular configuration of the clus
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should grow or decay in the next Monte Carlo step and
other task is to change the configuration appropriately
obtain ensemble averages of these probabilities.

To evaluate thedecayprobability for a particular realiza
tion ~shape! of the cluster, we go through all the spins wi
sl51 that are on the surface of the cluster~the circled plus-
ses in Fig. 1! and add up the Metropolis probabilities for
spin flip. Thegrowth probability for the Monte Carlo step i
obtained by adding up the flip probabilities of the bounda
spins that are nearest neighbors to the cluster~the circled
minuses in Fig. 1!. The expressions for the total probabilitie
for growth and decay are derived in the Appendix.

Note that we do not actually implement a growth or dec
step in this procedure, except in the following case. We
low changes in the configuration~shape! of the cluster by
first applying the select-and-try-to-flip procedure to t
nearest-neighbor sites of the cluster~the circled plusses in
Fig. 1! until the cluster has grown by one spin. Then t
select-and-try-to-flip procedure is applied to the spins t
are on the surface of the cluster~the circled minuses in Fig
1! until the cluster has shrunk back to its original size. Eve
time a flip occurs, the list of surface spins and the list
nearest-neighbor spins are updated accordingly. Kawa
dynamics@12# could of course be used to simulate this sha
exploration at a fixed cluster size, but for simplicity we reta
the Metropolis scheme.

This procedure clearly restricts the cluster to change
only by one spin at a time, located at the cluster surface
turns out that this is slightly too restrictive for this syste
However, a simple modification allows additional grow
events to be taken into account.

In simulations where the potential spin flips are not lim
ited to the region adjacent to the cluster, occasional ev
occur where clusters merge: A change in size greater
unity is achieved in a single Monte Carlo step. The m
frequent event of this type is where a growing cluster mer
with a single isolated up spin. If such a spin existed at a
two lattice spacings removed from a cluster spin, then

FIG. 1. Schematic picture of a cluster in the Ising lattice; see
text for details.
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successful flip of the intervening spin would increase the s
of the cluster by two spins in one Monte Carlo step.

We can estimate the likely importance of this effect. F
the 3D cubic lattice, the probability for an isolated down sp
to flip per attempt is exp@2(h26J)/kT#, which is around 0.02
for the conditions studied. The number of second nea
neighbors~the squared minuses in Fig. 1! is estimated to be
of the order of 4(i 2/312i 1/3), which is the result for a cubic
cluster if i 1/3 is an integer number. This implies that fori
.8 there is likely to be at least one spin withsl51 among
them if the system is allowed to evolve without constraini
the flips to the boundary region. We call thesesatellite spins.

It turns out that we have to take the effect of satellite sp
into account to reproduce the results of earlier studies. To
so, when adding up the probabilities for boundary spins
flip, we also calculate the probability for the boundary sp
to havens satellite spins (ns51, . . . ,5),multiply this by the
probability for a spin withns satellites to flip, and add the
resulting probability to the appropriate growth probabilit
All the flips leading to size (i 11) ~for example, the merging
of one satellite with a cluster of sizei 21) are added to the
growth probability of sizei. Similarly, we account for the
fact that a decay may occur due to the flip of a spininsidethe
cluster, but this has a minor effect on the results. We the
fore make a near-exact evaluation of the growth and de
probabilities per Monte Carlo step for a particular config
ration and sampling is only involved when changing t
shape of the cluster.

The critical size is found by studying different clust
sizes and identifying the size for which the growth and dec
rates are equal. When the critical size is known, it is straig
forward and fast to average the coupling part of the inter
energy over different shapes to get the excess internal en
Ex* .

The lattice size for all our calculations was chosen to
10310310, although test calculations with different lattic
sizes were performed to make sure that the results are i
pendent of this choice. Moreover, the simulation was ter
nated if the cluster reached the lattice boundaries, so we
not need to specify boundary conditions. An additional che
was performed by using a lattice with periodic bounda
conditions and allowing the cluster to change its size free
During the control simulation the excess energy and the
of the cluster were recorded, allowing us to calculate
average energy of the cluster as a function of size. Since
average energies obtained from the actual simulation
lengthier free growth and decay runs agree, we are confid
that we are sampling the shape space correctly.

The simulations for one temperature and magnetic fi
were completed in about 5 min using an ALPHA EV5 33
MHz workstation with one processor. In compariso
Acharyya and Stauffer@13# report that they used a lattice o
size 2563 and CPU time of around 1.5 h on a CRAY-T3
with 32 processors to perform their direct nucleation simu
tions. Thus, compared to direct nucleation simulations,
method is significantly faster. The difference in time is na
rally due to the fact that we can perform the simulation
much smaller lattices and to the fact that we restrict the t
flips to the boundary region around the cluster. We can a
confine our simulation to the sizes around the critical size
identify the exact watershed, which is a further economy

e
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The present method of accounting for the effect of sa
lite spins is not expected to work well when the clusters
less compact, which is the case when the temperature
proaches the critical temperatureTc . To find the critical size
in these cases, we would have to abandon the idea of fo
ing on a single cluster and take into account the merging
two clusters explicitly. We would no longer be able to co
centrate entirely on spin flips in the boundary region arou
the cluster, with a small perturbation due to the effect
satellites.

IV. RESULTS

We focused on conditions for which nucleation rates o
tained from direct simulation have been reported, namel
temperatureT50.59Tc @10,13#, and compared our result
with these earlier studies as well as the predictions of c
sical nucleation theory. Figure 2 shows the critical clus
size as a function of magnetic field parameter at this te
perature. The agreement between our results and the e
results of Heermannet al. @10# and Acharyya and Stauffe
@13# is very good. The sizes given by Heermannet al. @10#
agree with the predictions of classical theory. We also sh
the critical sizes obtained by our method when neglecting
effect of satellite spins upon the growth and decay rates
this case the growth rates are clearly underestimated and
critical sizes are larger.

Figure 3 shows the behavior of the nucleation rate as
magnetic field is changed, while the temperature is kept c
stant atT050.59Tc . We use Eq.~6! to predict the nucleation
rate, having chosen reference valuesh0 /kT050.221 15 and
I 05I (h0 /T0 ,T0)55.81310210. This reference nucleation
rate is the number of critical nuclei formed per Monte Ca
step and lattice site calculated using direct simulation
Heermannet al. @10# ~the circled point in Fig. 3!. Our pre-
dictions agree well with the further results of Heermannet
al. @10#.

Acharyya and Stauffer@13# report the nucleation times in
this system, which are taken to be inversely proportiona
the nucleation rate. Since the proportionality factor is u
known, only the slope of the dashed line representing th

FIG. 2. Critical cluster size as a function of external field p
rameterh, compared with other studies. The predictions of class
theory coincide with the results of Heermannet al. @10#.
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results in Fig. 3 is significant. The classical theory pred
tions suffer from the same lack of information about t
proportionality constant. For convenience the vertical d
placement of these curves is arbitrarily chosen so that t
lie close to the line representing our results and it is clear
the slopes are in good agreement.

Unfortunately, direct simulations of nucleation appe
only to have been carried out in the literature for the sin
temperature 0.59Tc . Nevertheless, we are able to compa
our results with classical theory for other temperatures.
calculated the excess internal energies for the critical clu
at temperatures between 0.54Tc and 0.70Tc with h0 /kT0
50.243 35, and performed the integration in Eq.~7!. The
excess internal energy of the critical cluster and the criti
cluster size as a function of the temperature are shown in
4, together with the classical theory predictions. The dev
tions from classical theory are seen to be small. The temp
ture dependence of the nucleation rate obtained using Eq~7!
and the classical predictions are shown in Fig. 5. The re
ence values wereT050.59Tc and I 054.4431028, again

-
l

FIG. 3. Nucleation rate as a function of the magnetic field p
rameterh. The unit of the nucleation rate is the number of critic
nuclei formed per Monte Carlo step and lattice site. The circ
point was used to determine the integration constant required in
calculations. The vertical positionings of the dashed lines are a
trary and they have been placed close to our results for clarity.

FIG. 4. Critical cluster size (i * ) and excess internal energ
(Ex* ) of the critical cluster as a function of temperature.
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taken from Heermannet al. @10#. Again, only the slope of the
classical curve is significant.

Since it is our aim to demonstrate how the second nu
ation theorem can be used to extrapolate nucleation rate
to new regions of parameter space, we present the r
rather than their derivatives. The slope of the classical cu
agrees well with our results at the low temperatures stud
but starts to deviate when the temperature is higher. W
applied to the formation of liquid droplets from supersa
rated vapors, classical theory tends to predict nucleation r
with an incorrect temperature dependence and so it is in
esting to note that it behaves in the same way in the cas
the Ising model.

Finally, our simulations provide numerical values of t
growth ratesb i and so we are able to test the validity of th
approximation made in obtaining the right-hand sides of E

~4! and~5!. We found that the derivative@] ln bi /](2h/kT)#T,i
i*

is within 30% of the assumed value of unity for all the co

ditions studied and that the derivative (] ln bi /]T)h/kT,i
i* is

about three times the assumed value 2J/kT2. These devia-
tions from the values used in Eqs.~4! and ~5! do not affect
the calculated nucleation rates significantly.

V. CONCLUSIONS

We used single-cluster simulations to determine kin
cally the size and excess internal energy of the critical clu
in a 3D cubic Ising model at various temperatures and ex
nal magnetic fields. The critical size is that which is equa
likely to grow and decay, and our results agree with tho
reported earlier. The advantage of our method is that res
are produced with remarkably less computational effort.
concentrate on single clusters rather than populations of c
ters, which allows us to use small lattice sizes. We also av
the laborious task of evaluating free energies.

We can predict the dependence of the nucleation rate
the external magnetic field using the first nucleation theor
and our simulation data for the critical size. We find tha

FIG. 5. Nucleation rate as a function of temperature. The uni
the nucleation rate is the number of critical nuclei formed p
Monte Carlo step and lattice site. The point marked with an as
isk, taken from the work of Heermannet al. @10#, was used to
determine the integration constant in our rates. The vertical p
tioning of the dashed line is arbitrary.
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one-site growth mechanism is not accurate enough to
scribe the nucleation rate observed in direct nucleation s
ies. The effect of the merging together of one or more sa
lite spins with the cluster has to be taken into account.

We demonstrate how the second nucleation theorem
the easily obtainable data for the ensemble-averaged ex
internal energies of critical clusters can be used to predict
temperature dependence of the nucleation rate. Direct si
lation studies at a wider range of temperatures could be m
in order to check these predictions. In the near future
simulation technique outlined here will be used to study
nucleation of molecular clusters.

ACKNOWLEDGMENTS

This work was funded by the United Kingdom Enginee
ing and Physical Science Research Council~EPSRC! under
Grant No. GR/L78499 and the Academy of Finland~Project
No. 41886!. H.V. thanks K. Arstila for useful discussions.

APPENDIX

In this appendix, we go through an evaluation of t
growth and decay ratesb i andg i . We define these to be th
probability per Monte Carlo step that the cluster will chan
size by plus or minus one. A Monte Carlo step is the rand
selection of a site in the Ising lattice followed by an attem
to flip the spin at that site.

The probability that a particular sitej should be selected is
simply 1/N, whereN is the number of sites in the lattice. Th
probability that cluster growth should then result is the pro
uct of three factors: first, a factorv j , which is zero if the
spin is already up and unity otherwise; then a factorCj ,
which is zero if the spin if flipped, would create a config
ration disallowed under the cluster definition, but unity ot
erwise; finally, a factorpj , given by the Metropolis function
The total probability for growth given a certain configuratio
K is then the sum of these probabilities over all sites in
lattice:b i

K5N21( jv jCj pj . In practice,v j andCj are unity
only for down spins adjacent to the cluster: the sites sho
as circled minus signs in Fig. 1. The mean growth proba
ity b i is then just the ensemble average ofb i

K over all con-
figurationsK of a single cluster of sizei.

Similarly, the probability for growth given a particula
configurationK is given byg i

K5N21( j (12v j )Cj pj and in
practice the sum is restricted to the outermost sites of
cluster: the circled plus signs in Fig. 1. The flip of a sp
within the body of the cluster can be taken into account,
it has only a minor effect at the temperatures we are stu
ing. This expression is then averaged over the ensemble
fact, we should consider the probability per sweep of
lattice to be the correct growth rate sinceb i and g i would
otherwise be system size dependent, but this detail is
important for our purposes.

The expression forb i
K can be used to estimate the deriv

tives required to simplify Eqs.~4! and ~5!. It turns out that
the Glauber function@14# for the flip probability is more
useful for this purpose than the Metropolis function. W
write the simpler expressionb i

K5N21(kpk
G , where the in-

dex k runs over allowed sites for growth, where

f
r
r-

i-
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pk
G5

1

2 F12tanhS DE

2kTD G ,
whereDE is the change in energy of the configuration as
ciated with the growth event, and thenb i5^b i

K& i where the
angular brackets denote ensemble averaging over config
tions K of a cluster of sizei. For growth, we have]DE/]h
522 @see Eq.~1!#. Therefore,

S ]b i

]~2h/kT! D
T,i

5K N21(
k

pk
G@11exp~2DE/2kT!#21L

i

and so

S ]b i

]~2h/kT! D
T,i

<K N21(
k

pk
GL

i

5b i ,

so that (] ln bi /](2h/kT))T,i<1.
The derivative ofb i with respect toT is less easy to
s

-

ra-

characterize, since the statistical weight of the configurati
depends onT. If we ignore this fact, the previous derivatio
may be repeated, yielding the result

S ]b i

]T D
h/kT,i

5K (
k

pk
G 2l kJ/kT2

N@11exp~2DE/2kT!#L
i

,

where l k is the change in the number of up-down neare
neighbor pairs produced by the spin flip at sitek when in
configurationK. Even this expression cannot be analyz
further: We simply assume thatl k can be replaced by a
mean value of order one and replace the term in squ
brackets in the denominator by unity to obtain

S ]b i

]T D
h/kT,i

;2J/kT2b i ,

so that (] ln bi /]T)h/kT,i;2J/kT2, which is the approximation
used in Eq.~5!.
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