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Analysis of water–ethanol nucleation rate data with two component
nucleation theorems

Hanna Vehkamäkia) and Ian J. Ford
Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT,
United Kingdom

~Received 8 December 1999; accepted 22 May 2000!

We generalize the second nucleation theorem to multicomponent systems. Nucleation theorems are
used to extract the molecular composition and excess internal energy of the critical cluster from
experimental nucleation rates in a water–ethanol mixture. The excess internal energy is found to
depend only weakly on temperature and to be almost solely a function of the molecular numbers of
water and ethanol in the cluster. We estimate the contribution of the kinetic pre-factor to our
analysis, and find that it is small in the case of the first theorem, but significant for the second
theorem. We find that capillarity approximation fails to predict the experimental critical size and
excess energy in this highly nonideal system. ©2000 American Institute of Physics.
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I. INTRODUCTION

Characterizing the binding energy that holds matter
gether in a given atomic or molecular arrangement is a c
tral theme of condensed matter and molecular physics
contributes to our understanding of why certain microsco
structures are chosen under given conditions. Clearly,
framework for achieving this sort of understanding is to
tablish a theoretical model of intermolecular interactio
and to use it to calculate and compare suitable thermo
namic potentials for different structures. Recently it has
come possible to performab initio calculations of these in
teractions, starting from a basic quantum-mechan
description of the electronic behavior in the system, thou
the computational costs are considerable.1,2 Alternatively,
models can be built upon semiempirical potentials.3,4

It is important to validate models using experimenta
determined physical data. It is relatively easy to determ
the energy of a bulk condensed phase by studying the c
rimetry of the process of formation from its component pa
and this is valuable input to the development of models. T
same information is often available for individual molecule
However, schemes that succeed in describing these sp
cases of condensed matter are perhaps suspect when a
to other cases like unusual bulk materials or surfaces,
much current research is directed at considering such
tems.

Another unusual case is the molecular cluster. It h
been possible for some years to create and isolate bo
systems of some tens or hundreds of molecules, often u
molecular beam experiments.5,6 The molecules in the cluste
are held together by the same mechanisms that hold bulk
molecular structures together, but they have a very differ
environment compared with those other cases, and co
quently the binding energy per molecule in the structure

a!Presently at: Department of Physics, P.O. Box 9, 00014 University
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very different. If properties of such clusters could be det
mined experimentally, it would provide further stringe
tests for the various theoretical models that have been de
oped to describe condensed matter.

Unfortunately, the calorimetry of the formation of mo
lecular clusters is often poorly characterized, and this inf
mation is not usually available, except for simple cases
small clusters.7–9 But recent developments in the theory
nucleation of droplets from supersaturated vapors as we
the quality of experimental nucleation data offer new info
mation that could revolutionize this situation.10–12 It has be-
come possible to determine the thermodynamic proper
~particularly the binding energy! of small clusters. The theo
rems have been successfully applied to clusters containin
few as six and as many as eighty molecules for a range
substances, by analyzing experimental droplet nuclea
rate data. In these experiments, a supersaturated vapor is
ated and then the rate at which droplets nucleate from
studied as a function of the supersaturation a
temperature.13–15 This data can then be analyzed using t
so-called nucleation theorems;10,16 relations between the rat
of nucleation and the properties of the critical cluster, wh
is the size of cluster that is equally likely to grow or decay
the prevailing conditions. The main result of the analysis i
plot of cluster excess energy against cluster size in m
ecules. The excess energy is the difference between the
ergy of the cluster and the energy the constituent molec
would possess in a bulk liquid. It is loosely related to t
number of unsatisfied intermolecular bonds at the surfac
the cluster.

Until now, this analysis has been applied only to cases
single component vapor condensation, due to the lack o
key theoretical result, the second nucleation theorem
multicomponent nucleation. The first nucleation theorem
multicomponent systems has been developed and explo
in several earlier studies,17–20most of which neglect the con
f

1 © 2000 American Institute of Physics
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tribution of the kinetic factor in the nucleation rate. In Sec.
of this paper we derive the second nucleation theorem
multicomponent systems, and estimate the significance o
kinetic pre-factor in both the first and the second theore
We apply the nucleation theorems in Sec. III to obtain inf
mation about small mixed molecular clusters of water a
ethanol, using data from Schmittet al.21 The results we ob-
tain provide a picture of the binding behavior of small bina
clusters. We discuss the implications of this microscopic
formation in Sec. IV, and give our conclusions.

II. SECOND NUCLEATION THEOREM FOR
MULTICOMPONENT SYSTEMS

A. Basic thermodynamics

We adopt the Gibbs approach and model the forma
of a molecular cluster from a vapor by referring it to th
notional formation of a continuum liquid phase with bu
properties and definite spherical geometry. The differe
between this model and the real properties of a small m
lecular cluster is expressed in terms of the properties o
surface phase, as will be seen.

We keep the terminology general, and starting with
‘‘original’’ phase at pressurepo consisting of a number o
components labeledi, at fixed chemical potentialsmo,i , in a
volume V, we reversibly and isothermally create within th
system a droplet of ’final’ phase at pressurepf occupying a
volume Vf . To derive the second nucleation we need
evaluate the temperature derivative of the associated ch
in grand potential, or nucleation work. Following the not
tion of Oxtoby and Kashchiev16 the nucleation workW* is
given by

W* 5~po2pf* !Vf* 1f* , ~1!

wheref* is the total work of formation associated with th
surface phase.

The asterisk refers to the critical cluster, which satisfi
the following conditions:16

mo,i5m f ,i* 5ms,i* ~ for all i !, ~2!

pf* 5po1S ]f*

]Vf*
D

T,mo,i

, ~3!

where mo,i , m f ,i* , and ms,i* are the chemical potentials o
componenti in the original, final and surface phases, resp
tively.

Now we take the derivative of Eq.~1! with respect to
temperature holding the chemical potentialsmo,i fixed for all
species.

S ]W*

]T D
mo,i

5Vf*
]~po2pf* !

]T
1

]Vf*

]T
~po2pf* !

1S ]f*

]Vf*
D

T,mo,i

]Vf*

]T
1S ]f*

]T D
V

f* ,mo,i

. ~4!

The second and third term vanish according to Eq.~3!. The
Gibbs–Duhem relation for the final phase reads
r
he
.

-
d

-

n

e
-
a

n

ge

s

-

Vfdpf2SfdT5(
i

nf ,idm f ,i , ~5!

and for the original phase

Vodpo2SodT5(
i

no,idmo,i , ~6!

where nf ,i(no,i) is the number of molecules of typei that
occupy the volumeVf (Vo) of uniform final~original! phase,
andSf (So) is the entropy of the final~original! phase. For
the surface phase the Gibbs–Duhem relation reads

df1SsdT52(
i

ns,idms,i1gdA, ~7!

where g is the surface free energy per unit area, and
surface area of the cluster,A is a function of droplet volume
Vf . ns,i is the surface excess number of particles andSs is
the entropy of the surface phase. When the temperatur
kept constant this equation is also called the Gibbs ads
tion isotherm. All the Gibbs–Duhem relations naturally ho
for the special cases of a critical nucleus and the surround
vapor. Keeping the chemical potentials of the original pha
fixed, and requiring that the chemical potentials of the fin
and surface phases obey Eq.~2! gives the result

S ]W*

]T D
mo,i

5
Vf*

Vo*
So* 2Sf* 2Ss* . ~8!

If we take the derivative ofbW* with respect tob
51/T, we get

S ]bW*

]b D
mo,i

5W* 2TS ]W*

]T D
mo,i

5~po2pf* !Vf* 1f* 2
Vf*

Vo*
TSo* 1TSf* 1TSs*

52pf* Vf* 1TSf*

1(
i

nf ,i* m f ,i* 1f* 1TSs* 1(
i

ns,i* ms,i*

1F2poVo* 1TSo* 1(
i

no,i* mo,i G
2F2poV1(

i
ntot,i* mo,i1TS 11

Vf*

Vo*
D So* G ,

~9!

wherentot,i* 5nf ,i* 1no,i* 1ns,i* is the total number of molecule
of speciesi, andV5Vf* 1Vo* is the total volume. The com
bination of the terms in square brackets can be readily in
preted. The expression in the first square brackets is sim
the energy of the original phase in the presence of crit
cluster. The expression inside the second square bracke
the energy the original phase would have in the absenc
the critical cluster, but at the same pressurepo , chemical
potentialsmo,i and temperatureT. The combination takes the
form dEo5TdSo2podVo1( imo,idno,i with dVo52Vf* ,
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dSo52Vf* /so where so5So* /Vo* is the constant entropy
density, anddni ,o5no,i* 2ntot,i . SodEo is the change in en
ergy of the original phase caused by the loss of volume to
final phase cluster. We end up with the simple result

S ]~W* /T!

]T D
m

o,i*
52~Ef* 1Es* 1dEo!/T2

52Eexcess–original* /T2, ~10!

whereEf* and Es* are the internal energies of the final an
surface phases. The temperature derivative of the nuclea
work divided byT is seen to be essentially the difference
internal energy between the system with the cluster an
homogeneous system of the original phase, which is wri
Eexcess–original* .

Using the Gibbs–Duhem relations keepingT constant
yields in a similar fashion the first nucleation theorem16

S ]W*

]mo,i
D

T

52Dni* , ~11!

where Dni* 5(12ro,i /r f ,i* )nf ,i* 1ns,i* 'nf ,i* 1ns,i* , and the
densities of the final and the original phase arero,i

5no,i* /Vo* andr f ,i5nf ,i* /Vf* , and the last approximate form
applies for gas-liquid nucleation if the vapor is dilute (ro

!r f* ).

B. Nucleation theorems for two component
gas–liquid nucleation

In analyzing nucleation data for vapor–liquid nucleatio
saturation ratios are more useful variables than the chem
potentials. The saturation ratio for componenti is defined as
Si5pi /pi ,pure

s , wherepi is the partial pressure of compone
i, andpi ,pure

s is the saturation vapor pressure above a poo
liquid of pure substancei. The final phase is now liquid, an
the original phase is vapor. Suffixv will now be used in
place of suffixo, and suffixl will take the place of suffixf.

Using the first nucleation theorem we can transform
second theorem into the form

S ]~W* /T!

]T D
S1 ,S2

5
2Eexcess–vapor*

T2
2

Dn1*

T S ]mv,1

]T D
S1 ,S2

2
Dn2*

T S ]mv,2

]T D
S1 ,S2

. ~12!

If we make the usual assumption that the vapor phase i
ideal mixture of ideal gases, the chemical potential of co
ponent i in the vapor is given bymv,i5mv,i

s (T)1kT ln Si ,
wheremv,i

s is the chemical potential of a saturated pure va
andk is the Boltzmann constant.

The Gibbs–Duhem relation~6! for the pure vapori and
the Clausius–Clapeyron equation

dpi ,pure
s

dT
5

hv,i
s 2hl ,i

s

T~vv,i
s 2v l ,i

s !
, ~13!

can be used to express the temperature derivative of the e
librium chemical potentialmv,i

s in the form
e

on

a
n

,
al

f

e

an
-

r

ui-

dmv,i
s

dT
5

vv,i
s ~hv,i

s 2hl ,i
s !

T~vv,i
s 2v l ,i

s !
2sv,i

s '
~hv,i

s 2hl ,i
s !

T
2sv,i

s , ~14!

Here hv,i
s and hl ,i

s are the molecular enthalpies of saturat
vapor and liquid, respectively,sv,i

s is the molecular entropy
in the saturated vapor, andvv,i

s and v l ,i
s are molecular vol-

umes in the saturated vapor and equilibrium liquid, resp
tively, for pure speciesi. The last form follows when the
liquid is much denser than the gas,v l ,i

s !vv,i
s . Using mv,i

s

5hv,i
s 2Tsv,i

s for the equilibrium chemical potential and ap
proximatinghl ,i

s 'el ,i
s , whereel ,i

s is the molecular energy in
pure equilibrium liquidi, we get

S ]~W* /T!

]T D
S1 ,S2

5
2Eexcess–vapor*

T2
2

Dn1*

T2
~mv,12el ,1

s !

2
Dn2*

T2
~mv,22el ,2

s !. ~15!

Using the form implied by Eqs.~9! and ~10! for Eexcess–vapor*
and assuming that 11Vf* /Vo* '1 andV5Vf* 1Vo* 'Vo* , we
end up with

S ]~2W* /kT!

]T D
S1 ,S2

5
1

kT2 FEf* 1Es* 2(
i

~nl ,i* 1ns,i* !el ,i
s G

5
Eexcess–liquid*

kT2
, ~16!

whereEexcess–liquid* ~which will hereafter be shortened toEx* )
is the difference between the internal energy of the clus
and the energy the molecules would have as constituen
pure equilibrium liquids. Thus, both the surface contributi
and the bulk mixing energy are included in the excess
ergy.

The first nucleation theorem in terms of saturation rat
Si is given by

S ]~2W* /kT!

]Si
D

T

5
Dni*

Si
. ~17!

C. The nucleation rate

For multicomponent systems an exact expression for
nucleation rate~analogous to the one used by Ford10,11 to
obtain the derivatives of the nucleation rate in one com
nent systems! is not available. Instead, we shall use a for
suggested by approximate treatments,22–24 where the nucle-
ation rateJ takes the form

J5c0* expS 2
W*

kT DRav* Z, ~18!

wherec0* exp(2W* /(kT)) is the concentration of critical nu
clei, Rav* is the average growth rate of the critical nucleu
andZ is the Zeldovich factor.

For the cluster size distribution we use the form pr
posed by Wilemskiet al.25 @their Eq.~53!#, which gives the
coefficientc0* as
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c0* 5~r1,pure
s !(12x* )~r2,pure

s !x* , ~19!

where r i ,pure
s is the density of saturated pure vapori, and

x* 5nl ,2* /(nl ,1* 1nl ,2* ) is the mole fraction of component 2 i
the critical cluster. The vapor phase is assumed to be i
and thusr i ,pure

s 5pi ,pure
s /(kT).

According to Stauffer23 the average growth rate has th
form

Rav* 5
b1* b2*

b1* sin2 w1b2* cos2 w
, ~20!
ve
f
f

ie
o

ica
ua

e

t

al

whereb i* 5Sipi ,pure
s A* /A2kTpmi is the rate at which mol-

ecules of componenti are added to the critical cluster,mi is
the mass of a molecule of typei, andA* is the surface area
of the critical cluster. The presented form forb i* is valid
under the assumption that the mass and the volume of
critical cluster are much larger than those of a single m
ecule. w is the direction of the nucleation flow in th
(nl ,1 ,nl ,2)-plane and in the steepest descent approximatio
is given by tanw5x* /(12x* ). The pre-factor J0

[c0* Rav* Z, therefore, takes the form
J05
ZS1S2A* ~p1,pure

s !22x* ~p2,pure
s !11x* @x* 21~12x* !2#

A2p~kT!3/2@S1p1,pure
s Am2x* 21S2p2,pure

s Am1~12x* !2#
. ~21!

D. Derivative of the pre-factor with respect to supersaturation

First we want to see how much the pre-factor contributes to the derivative of lnJ with respect to the supersaturationsS1 .
We get

S ] ln J0

]S1
D

S2 ,T

5
1

S1
1

1

A*

]A*

]S1
1

1

Z

]Z

]S1
1S ]x*

]S1
D

S2 ,T
F ln

p2,pure
s

p1,pure
s

1
4x* 22

2x* 222x* 11
G

2
~1/S1! 1 ~2/x* ! ~]x* /]S1!S2 ,T@11 ~~x* 21!S2p2,pure

s Am1!/~x* S1p1,pure
s Am2!#

11 @~x* 21!2S2p2,pure
s Am1/x* 2S1p1,pure

s Am2#
. ~22!

The derivative of the pre-factor with respect toS2 reads

S ] ln J0

]S2
D

S1 ,T

5
1

S2
1

1

A*

]A*

]S2
1

1

Z

]Z

]S2
1S ]x*

]S2
D

S1 ,T
F ln

p2,pure
s

p1,pure
s

1
4x* 22

2x* 222x* 11
G

2
@~x* 21!2p2,pure

s Am1/x* 2S1p1,pure
s Am2# 1 ~2/x* ! ~]x* /]S2!S1 ,T~11 @~x* 21!S2p2,pure

s Am1/x* S1p1,pure
s Am2# !

11 @~~x* 21!2S2p2,pure
s Am1!/~x* 2S1p1,pure

s Am2!#
. ~23!
ntial

c-
of

g
he
Our aim is to estimate how significant the derivati
of the pre-factor J0 is compared to the derivative o
exp(2W* /(kT)). Since the Zeldovich factor is known to be o
the order of unity in two component systems, and it var
slowly with system conditions, we neglect the derivative
the Zeldovich factor.

To obtain the composition and surface area of the crit
cluster and their derivatives we make use of the Kelvin eq
tions ~see, e.g., Refs. 26–28!

Dm i~x* ,T,S1 ,S2!5
22g~x* ,T!v l ,i~x* ,T!

R*
, ~24!

whereDm i5mv,i(T,S1 ,S2)2m l ,i(pv ,x,T), g is the surface
tension andR* the radius of the critical cluster. The surfac
area is given byA* 54pR* 2. If the liquid density is again
assumed to be much larger than the vapor density, and
s
f

l
-

he

vapor phase is assumed ideal, then the chemical pote
difference takes the formDm i5kT ln(Si /ai), where the activ-
ity ai5ai(x,T)5pi

s(x,T)/pi ,pure
s (T) is the ratio of the satu-

ration vapor pressure over a liquid solution with mole fra
tion x to the saturation vapor pressure over a pure liquid
componenti.

The critical cluster composition is identified by solvin
the following equation, which can be obtained by taking t
ratio of the Kelvin equations for components 1 and 2:

Dm1~x* ,T,S1 ,S2!v l ,2~x* ,T!

5Dm2~x* ,T,S1 ,S2!v l ,1~x* ,T!. ~25!

If we take the derivative of Eq.~25! with respect toS1
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keepingS2 and T constant, we find an expression for th
derivative of the composition of the critical cluster

S ]x*

]S1
D

S2 ,T

5
v l ,2*

S1
F2S ]v l ,2

]x D
T

*
lnS S1

a1*
D 1S ]v l ,1

]x D
T

*

3S S2

a2*
D 1S ]a1

]x D
T

* v l ,2*

a1*
2S ]a2

]x D
T

* v l ,1*

a2*
G21

,

~26!

where (]a2 /]x)T* [(]a2 /]x)Tux5x* The derivative of the
surface area of the critical cluster can be obtained by tak
the derivative of the Kelvin equation@Eq. ~24!#; for example,
for i 52:

1

A*
S ]A*

]S1
D

S2 ,T

52S ]x*

]S1
D

S2 ,T
F 1

g*
S ]g

]x D
T

*
~27!
n
n

r-
g

1
1

v l ,2*
S ]v l ,2

]x D
T

*
2

1

a2* ln~S2 /a2* !
S ]a2

]x D G
T

*
. ~28!

We have assumed that the surface tension is a func
of temperature and the mole fraction only, and does not
pend on the size of cluster. This is essentially the capilla
approximation and we shall find ultimately that the resulti
contribution to the nucleation theorems is small. We consi
it likely that use of a curvature dependent surface tens
would not change this situation.

E. Derivative of the pre-factor with respect to
temperature

The contribution of the pre-factor to the temperature d
rivative of nucleation rate is
lecule,
position
S ] ln J0

]T D
S1 ,S2

5~22x* !
L1

kT2
1~11x* !

L2

kT2
2

3

2T
1

1

A*
S ]A*

]T D
S1 ,S2

1
1

Z S ]Z

]TD
S1 ,S2

1S ]x*

]T D
S1 ,S2

F ln
p2,pure

s

p1,pure
s

1
4x* 22

2x* 222x* 11
G

2
~L1 /kT2! 1 ~L2 /kT2!~~x* 21!2S2p2,pure

s Am1!/~x* 2S1p1,pure
s Am2!

11 @~~x* 21!2S2p2,pure
s Am1!/~x* 2S1p1,pure

s Am2!#

2
~2/x* ! ~]x* /]T!S1 ,S2

~11 ~~x* 21!S2p2,pure
s Am1!/~x* S1p1,pure

s Am2!

11 @~~x* 21!2S2p2,pure
s Am1!/~x* 2S1p1,pure

s Am2!#
. ~29!

We have used the Clausius-Clapeyron equation@Eq. ~13!# and the approximationvv,i
s /(vv,i

s 2v l ,i
s )'1 to express the

derivatives of the saturation vapor pressures of pure substances in terms of latent heats of evaporation per moLi

5hv,i
s 2hl ,i

s , for pure liquids. The remaining task is to obtain the temperature derivatives of the surface area and com
of the critical cluster by taking the derivatives of Eqs.~24! and ~25!.

For the mole fraction we get

S ]x*

]T D
S1 ,S2

5F2
1

v l ,2* a2*
S ]a2

]T D
x

*
1

1

v l ,1* v l ,2*
S ]v l ,1

]T D
x

*
ln

S2

a2*
1

1

v l ,1* a1*
S ]a1

]T D
x

*
2

1

v l ,1* v l ,2*
S ]v l ,2

]T D
x

*
ln

S1

a1*
G Y

F 1

v l ,2* a2*
S ]a2

]x D
T

*
2

1

v l ,1* v l ,2*
S ]v l ,1

]x D
T

*
ln

S2

a2*
2

1

v l ,1* a1*
S ]a1

]x D
T

*
1

1

v l ,1* v l ,2*
S ]v l ,2

]x D
T

*
ln

S1

a1*
G , ~30!

and finally for the surface area

1

A*
S ]A*

]T D
S1 ,S2

52H 1

g* F S ]g

]TD
x

*
1S ]g

]x D
T

* S ]x*

]T D
S1 ,S2

G1
1

v l ,2* F S ]v l ,2

]T D
x

*
1S ]v l ,2

]x D
T

* S ]x*

]T D
S1 ,S2

G
2

1

T
2

1

a2* ln~S2/a2* ! F S ]a2

]T D
x

*
1S ]a2

]x D
T

* S ]x*

]T D
S1 ,S2

G J . ~31!
or
ctiv-
po-
-

III. RESULTS

There are not many sources that present experime
binary nucleation rates at different temperatures. We a
lyzed the data of Schmittet al.,21 who measured the supe
saturations of ethanol (Se) and water (Sw) required to pro-
tal
a-

duce nucleation rates of 103/(cm3 s!, 104/(cm3 s) and
105/(cm3 s) at temperatures 263, 273, 283, and 293 K. F
consistency, we used the same fits for surface tension, a
ity coefficient, saturation vapor pressures of pure com
nents and density as Schmittet al. Latent heats of evapora
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tion were taken from the work of Schmeling and Strey29,30

for ethanol and from Preininget al.31,32for water. We fitted a
fourth order polynomialSw(Se ,T, ln J)5A1BSe1CSe

21DSe
3

1ESe
4 to presentSw as a function ofSe at constant nucleation

rate and temperature. The coefficients of the polynom
A, B, C, D and E were fitted up to second order a
functions of lnJ and T ~for exampleA(T, ln J)5a11a2 ln J
1a3 ln J21a4T1a5T

21a6T ln J), to obtainSw as a function
of temperature, nucleation rate andSe . Figure 1
shows the experimental points and the polynomial fits aT
5273 K.

The fourth-order polynomial produced the best polyn
mial fit to the data, and the fit remains monotonic over
whole range of experimental points. We used our fit to obt
the derivatives of lnJ with respect toSe , Sw , andT at ex-
perimental points. Clearly the disconnectedness of the
results in some uncertainty in the derivatives obtained fr
the fit, and all the presented results are subject to this un
tainty. We did not evaluate any results in the regions
tween the experimental points since we felt that the unc
tainty would be too large. A physically more well-grounde
fitting formula would be the scaled formula for binary sy
tems presented by Haleet al.33 However, this formula would
require a knowledge of the bulk mole fractionx* of the
critical cluster which cannot be extracted from the expe
mental data. Thus we felt that a direct fit to the experimen
points is more appropriate. The saturation ratios of water
clearly lower pure water than for the water–ethanol mixtu
This causes problems in the parametric fit, and we chos
fit the pure water cases separately. For pure water we fi
ln J as a second order polynomial ofSw and the coefficients
were fitted as third-order polynomials ofT. The pure ethano
data of Schmittet al.21 were not incorporated into this study

The derivatives of the nucleation rate were interpre
using Eqs.~16! and~17! for the derivative of the exponentia
function in the nucleation rate, Eq.~18!, together with the
estimates of the derivatives of the pre-factor.

The molecular numbers in the critical cluster are giv
by

FIG. 1. The saturation ratio of water (Sw) as a function of the saturation
ratio of ethanol (Se) needed to produce a certain nucleation rate. The
permost of the triple dots corresponds toJ5105/(cm3 s), the middle one
J5104/(cm3 s) and the lowest oneJ5103/(cm3 s). The figure shows the
experimental points and our polynomial fits.
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Dni* 5S ] ln J

]Si
D

Sj ,T

Si2S ] ln J0

]Si
D

Sj ,T

Si , ~32!

and the excess energy of the critical cluster~compared to the
energy of its molecules in pure bulk liquids! is given by

Ex* 5S ] ln J

]T D
Si

kT22S ] ln J0

]T D
Si ,

kT2, ~33!

where the derivatives of the pre-factorJ0 are estimated by
the classical equations@Eqs.~22!, ~24!, and~29!#.

Figures 2 and 3 show the relative lack of importance
the pre-factor in evaluating numbers of molecules in
critical cluster. They also compare the classical predictio
for these numbers and the ones obtained from experime
data. On thex axis is the number obtained from experimen
data. The curve representing experimental data is of cour
straight line indicating one to one correspondence. T
points forDni* obtained assumingJ0 is constant shows tha
the contribution of the pre-factor is seen to be almost ne
gible, as expected. Although our estimates for the derivati

-

FIG. 2. The number of ethanol molecules in the critical cluster. The dat
arranged as a function of the number obtained from experimental data.
solid line represents one to one correspondence. The error bars termi
by cross bars are related to the experimental values, and the ones w
cross bars to the classical values.

FIG. 3. The number of water molecules in the critical cluster. The dat
arranged as a function of the number obtained from experimental data.
solid line represents one to one correspondence. The error bars termi
by cross bars are related to the experimental values, and the ones w
cross bars to the classical values.
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of the pre-factor are based on a clearly inadequate clas
theory, we can safely conclude that uncertainty in the p
factor is not important in using the first nucleation theore
We have estimated the sensitivity of the results to the fo
of the fitting function by using third-order polynomials in
stead of fourth order polynomials@i.e., by settingE(T, ln J)
[0]. The resulting change in the excess numbers is indica
as error bars terminated by crossbars in Figs. 2 and 3. We
that the results are reasonably insensitive to the change in
fitting function.

In the classical theory the cluster reference state is m
eled as a spherical droplet that has sharp Gibbs dividing
face between liquid and vapor phases. The difference
tween the number of molecules possessed by the true cl
and the reference state of uniform liquid encompassed by
dividing surface~referred to as the core! is the surface exces
number. Two classical values of molecular number are p
sented in Figs. 2 and 3: one represents the number of m
ecules in the core of the cluster and the other is the t
number of molecules including surface excess molecu
Once the mole fraction in the core is obtained from Eq.~25!,
the molecular numbers in the core can be solved from
~24! using V* 54pR* 3/35nl ,1* v l ,1(x* )1nl ,2* v l ,2(x* ). The
method for evaluating the surface excess numbers is
scribed by Laaksonenet al.20,28 The total number represen
the actual number of molecules belonging to the cluster;
also the one that can be extracted from experimental d
The core numbers are purely hypothetical and depend on
choice of the dividing surface between the liquid and va
phases. We take the dividing surface to be the surface
tension, as usual. The error estimates for the classical va
are obtained by using slightly modified fits for surface te
sion, density and activities. It must be noted that the mod
cations to ethanol and water activities can not be perform
independently, since the activities have to satisfy the Gib
Duhem equation. Not only the absolute values of these qu
tities, but also their temperature and composition derivati
must be modified to perform a relevant sensitivity analys
At most, the uncertainty in activities was taken to be 10
and the density as well as surface tension were modified
5%.

For water, the classical theory generally overestima
the molecular numbers. The core numbers are far off
experimental results, but taking the surface excess into
count improves the situation considerably. For clusters w
only a few ethanol molecules the classical theory undere
mates the number of ethanol molecules in the critical clu
severely, and for clusters having many ethanol molecules
predictions oscillate between underestimation and overe
mation. The surface excess numbers for ethanol are gene
much smaller than for water. These results point out the
portance of surface excess numbers in surface active sys
such as water–alcohol mixtures.

Viisanenet al.19 have analyzed their experimental da
for water–ethanol mixtures atT5260 K for J5107/ cm3 s.
They present the molecular content of the nuclei as a fu
tion of normalized activity fraction defined as
cal
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xnorm5
Se /Se0

Se /Se01Sw /Sw0
, ~34!

where Se0 and Sw0 are the saturation ratios which lead
nucleation rateJ5107/cm3 s for pure ethanol and water, re
spectively. Although the lowest temperature we studied
263.15 K, we use the valuesSe0 andSw0 which are valid for
T5260 K, and are taken from Fig. 2 of Viisanenet al.19 The
highest nucleation rate measured by Schmittet al.21 is J
5105/cm3 s. To enable qualitative comparison with V
isanenet al.,19 Fig. 4 shows our deduced molecular conte
of the nuclei as a function of normalized activity forT
5260 K andJ5105/cm3 s. When comparing with Fig. 3 o
Viisanen et al.,19 we conclude that our results agree we
with the earlier ones.

Figure 5 shows a comparison between the classical
diction for the excess energy of the critical cluster and
experimental results. Also the contribution of the pre-fac
is indicated. The energy is expressed in unitskT0 , where
T05273.15 K. On thex axis is the number obtained from
experimental data. The curve representing experimental
is of course a straight line indicating one to one corresp

FIG. 4. Molecular content of critical clusters. The symbols show the num
of ethanol and water molecules and the total number of molecules in
critical cluster. The solid lines are a guide to the eye.

FIG. 5. The excess energy of the critical cluster. The data is arranged
function of the number obtained from experimental data. The solid
represents one to one correspondence. The horizontal error bars term
by cross bars are related to the experimental values, and the ones w
cross bars to the classical values.
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dence. The contribution of the pre-factor is between 32kT0

and 38kT0 for all the cases, including pure water, and ca
not simply be neglected.

The classical excess energy is evaluated using a t
perature derivative ofW* /kT54pR* 2s* /3, whereR* is
given by the Kelvin equation@Eq. ~24!#. The error bars are
produced as was done for the excess numbers. Vertical e
bars are related to the classical values and are quite sig
cant, since the excess energy as a derivative of the free
ergy is very sensitive to changes in the composition a
temperature dependence of the activities. Horizontal e
bars with end bars refer to experimental values and show
the energies are fairly insensitive to the specific form of
fitting function. It should be noted, that the experimental a
classical energies compared in this Figure are not relate
clusters of the same size: The experimental energy on tx
axis corresponds to certain conditions (Sw ,Se ,T), and the
classical energy is the excess energy of a cluster that is
sidered critical in these conditions according to the class
theory. We found that the error in classical predictions c
sists of two factors: The critical size is in error, and so is
energy of a given size. It is seen that most often class
theory overestimates the excess energy of a critical clus

Figures 6 and 7 show the excess energy of the crit
cluster as a function of the number of ethanol and wa
molecules in the cluster for a number of points derived fr
the experimental data. The clusters rich in water are sho
in Fig. 6 and the ones dominated by ethanol in Fig. 7; it tu
out that the data produce two separate groups of points. D
representing different temperatures were found to be con
tent with a single surface and thus they are all combined
one picture.

Figures 6 and 7 give an indication of a fairly smoo
energy surface describing various molecular composition
the cluster. The dominating terms in Eq.~29! are the ones

FIG. 6. The experimental excess energy of the critical cluster as a func
of the number of ethanol and water molecules in the cluster, for water-
clusters.
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involving latent heats. The surface area derivative produc
small correction, and all the other terms are almost ne
gible. The latent heats of evaporation for water and etha
are quite close to each other, and so from Eq.~29! the major
contribution of the pre-factor to the second nucleation th
rem is fairly independent of the mole fraction of the critic
cluster. This diminishes the error caused by the inaccu
prediction of critical cluster mole fraction by the classic
theory.

IV. CONCLUSIONS

We have derived a multicomponent version of the s
ond nucleation theorem which allows us to analyze exp
mental data on the nucleation of droplets from metasta
mixtures of vapors. The result of this analysis is informati
on the binding energies of small clusters consisting of onl
few molecules of each species. The theorem is based p
on thermodynamic identities, and partly on an approxim
analysis of the growth kinetics of clusters. Together with t
multicomponent first nucleation theorem16–20 we are then
able to produce a plot of energy against molecular conten
the cluster. This approach provides valuable and unique
sight into the binding characteristics of small molecular clu
ters. We also present an estimate for the significance of
kinetic factor in the multicomponent nucleation theorems

We have applied the analysis to data on the nucleatio
droplets from a mixture of water and ethanol vapors.21 We
extract information about clusters which happen to fall in
two groups: those consisting mostly of water with a re
tively minor component of ethanol, and vice versa. The la
est cluster studied contained 143 molecules, 29 of wh
were water, and the smallest contained 0 ethanol and
water molecules. The temperatures of the surrounding va
ranged from 263 to 293 K, so that the clusters are proba

n
hFIG. 7. The experimental excess energy of the critical cluster as a func
of the number of ethanol and water molecules in the cluster, for ethanol-
clusters.
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liquidlike. We find that the contribution of the pre-factor
negligible for the first theorem, but in the case of the seco
theorem it has to be taken into account. We have compa
the cluster energies with the predictions of the capillar
approximation, which imposes macroscopic droplet prop
ties upon small molecular clusters. This model can only
considered a very rough approximation, but it is often us
in theoretical studies of droplet nucleation. We have p
duced plots of energy against cluster content for compar
with our data. We find that the cluster properties extrac
from the data differ from the capillarity predictions, thoug
not by orders of magnitude. The critical cluster sizes o
tained from experimental data agree well with the results
Viisanenet al.19

The picture of binding energies for various sizes a
composition of water–ethanol molecular clusters we h
presented is a first glimpse of the energetics of these tiny
ephemeral structures. This information, readily extrac
from experimental nucleation rate data, can be used to
models of intermolecular interactions.
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