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In this paper we present a new form of the nucleation theorems applicable to heterogeneous
nucleation. These heterogeneous nucleation theorems allow, for the first time, direct determination
of properties of nanoclusters formed on pre-existing particles from measured heterogeneous
nucleation probabilities. The theorems can be used to analyze the size �first theorem� and the
energetics �second theorem� of heterogeneous clusters independent of any specific nucleation
model. We apply the first theorem to the study of small water and n-propanol clusters formed at the
surface of 8 nm silver particles. According to the experiments the size of the two-component critical
clusters is found to be below 90 molecules, and only less than 20 molecules for pure water, less than
300 molecules for pure n-propanol. These values are drastically smaller than the ones predicted by
the classical nucleation theory, which clearly indicates that the nucleating clusters are too small to
be quantitatively described using a macroscopic theory. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2723073�

I. INTRODUCTION

First-order phase transitions are crucial in many
branches of physics and chemistry. The formation of a new
phase can occur in a homogeneous parent phase or heteroge-
neously around some nucleation seeds such as impurities or
particle surfaces.1 In the case of gas-to-particle transition,
condensation growth, evaporation, and heterogeneous chem-
istry are processes that define the fate of the newborn liquid
or solid clusters after nucleation has occurred.2 Nanoparticles
have received intensive attention in many branches of tech-
nology, and heterogeneous nucleation is an important part of
their formation processes. Atmospheric nanoparticles can af-
fect human health, and when they grow to larger sizes they
also reduce visibility and play a role in determining the
Earth’s radiation budget and thus climate change.3–6 Re-
cently, heterogeneous nucleation was suggested to be impor-
tant in atmospheric nanoparticle formation.7 We investigate
the size of small clusters formed at the surface of a pre-
existing aerosol particle. The number of molecules in a criti-
cal cluster—acting as a starting point of phase transition—
can be obtained using the first nucleation theorem, which we
derive here for heterogeneous nucleation. We also derive the
second heterogeneous nucleation theorem, which gives the
binding energy of the critical cluster, although experimental
data for the application of this theorem does not yet exist.
General forms for the nucleation theorems have been pre-
sented earlier,8 but the lack of a specific form applicable to
analysis of heterogeneous nucleation probability data has
been hampering the use of these powerful analytical tools.

In Sec. II we review the general form for the first theo-
rem, with temperature constant and varying gas-phase activi-
ties, in the case of heterogeneous nucleation, and in Sec. III
we derive the general form for the second theorem studying
a case where only temperature varies, but gas-phase activi-
ties are constant. In Secs. IV and V we show that the classi-
cal heterogeneous nucleation theory, and especially the geo-
metric factors used in it, obey the form of the theorems.
Section VI shows how the theorems are expressed in terms
of the measurable nucleation probability, and Sec. VII dis-
cusses estimation of the role of the kinetic pre-factor. Section
VIII describes the experimental results and how they are ana-
lyzed, and Sec. IX contains the results of the data analysis. In
Sec. X we finally give conclusions.

II. GENERAL FORMALISM: FIRST THEOREM

Kashchiev8 has shown that for the isothermal case the
nucleation theorem for heterogeneous gas-liquid multicom-
ponent nucleation is

� ��Ghet
*

��g,i �
T,�g,j�i

= − �Nhet,i
* , �1�

where �Ghet
* is the formation free energy of the heteroge-

neous critical cluster, �g,i is the gas-phase chemical potential
of component i, T is the temperature, and

�Nhet,i
* = Nhet

l,i + Ng,l,het
surf,i + Nl,sol

surf,i − Ng,sol,Al,sol

surf,i − Vhet
l �g,i, �2�

is the excess number of molecules of component i in the
critical cluster. Nhet

l,i is the number of molecules in the bulk
liquid phase of the cluster, Ng,l,het

surf,i and Nl,sol
surf,i, are the numbers

of molecules on the gas-liquid and liquid-solid surfaces of
the cluster, Ng,sol,Al,sol

surf,i is the number of molecules on a gas-
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solid surface which has the same area Al,sol as the liquid-solid
interface of the cluster, Vhet

l is the volume of the cluster, and
�g,i is the number density of component i in the gas phase.
For gas-liquid surface and the liquid phase we have used the
subscript het to explicitly indicate that we are dealing with the
heterogeneous cluster, since also the homogeneous cluster
has a gas-liquid interface and liquid phase core. In most
cases we have omitted the superscript * referring to the criti-
cal cluster in the interest of simplifying the notations. All the
quantities we deal with are those of the critical cluster unless
otherwise stated.

In practice, experiments provide nucleation rate, or
nucleation probability, as a function of gas-phase activities
Ag,i. The nucleation rate is proportional to
exp�−�Ghet

* / �kT��, and the gas-phase activity is connected to
the gas-phase chemical potential �g,i by

�g,i = �g,i,pure�psat
i,pure� + kT ln Ag,i, �3�

which is valid for an ideal mixture of ideal gases. The chemi-
cal potential of saturated pure vapor i, �g,i,pure�psat

i,pure� de-
pends only on temperature, and k is the Boltzmann constant.
Using Eq. �3� the nucleation theorem �1� can be written as

� �� −�Ghet
*

kT �
� ln Ag,i

�
T,Ag,j�i

= �Nhet,i
* . �4�

For one-component systems �Nhet,i
* given by �2� takes a sim-

pler form �Nhet,i
* =Nhet

l,i −Vhet
l �g,i since the dividing surfaces

between the phases can be chosen to be the equimolar
surfaces,9 and thus the numbers of surface molecules are
zero. The homogeneous case is readily obtained as a special
case of the heterogeneous theorem by setting the numbers of
molecules on the gas-solid and liquid-solid interfaces as
zero.

III. GENERAL FORMALISM: SECOND THEOREM

The formation free energy of a heterogeneous critical
cluster is

�Ghet
* = �Pg − Pl�Vhet

l + � , �5�

where Pl and Pg are the pressure in the liquid cluster and the
gas-phase pressure, respectively, and the effective surface
energy8 is

� = �l,sol + �g,l,het − �g,sol,Al,sol
, �6�

where �l,sol is the contribution of the liquid-solid surface,
�g,l,het is the contribution of the gas-liquid surface, and
�g,sol,Al,sol

is a contribution of a gas-solid surface which has
the same area Al,sol as the liquid-solid surface. The tempera-
ture derivative of the formation free energy is

��Ghet
*

�T
= Vhet

l ��Pg − Pl�
�T

+ �Pg − Pl�
�Vhet

l

�T
+

��

�Vhet
l

�Vhet
l

�T

+ � ��

�T
�

Vhet
l

. �7�

The general expression for the formation free energy of a not
necessarily critical cluster is9–11

�Ghet = �Pg − Pl�Vhet
l + � + �

i

��l,i − �g,i�Nhet
l,i

+ �
i

��l,sol
surf,i − �g,i�Nl,sol

surf,i + �
i

��g,l,het
surf,i

− �g,i�Ng,l,het
surf,i − �

i

��g,sol
surf,i − �g,i�Ng,sol,Al,sol

surf,i . �8�

The critical cluster satisfies the condition
���Ghet /�Vhet

l �Nhet
l,i ,Nl,sol

surf,i,Ng,sol
surf,i,Ng,l,het

surf,i ,T=0, where the derivative
is taken with respect to the location of the dividing surface,
but keeping the actual physical cluster unchanged.12 This
leads to the generalized Laplace equation

�Pg − Pl� +
��

�Vhet
l = 0, �9�

which is valid for the critical cluster, and any choice of the
dividing surface,10 and thus Eq. �7� reduces to

��Ghet
*

�T
= Vhet

l ��Pg − Pl�
�T

+ � ��

�T
�

Vhet
l

. �10�

For each surface phase we use the Gibbs’ adsorption equa-
tion, which in a nonisothermal case reads

�d��A = − Ssurf = dT − �
i

d�surf,iNsurf,i, �11�

where S stands for entropy, and for the bulk liquid and gas
we have the Gibbs-Duhem equations

Vhet
l dPl = Shet

l dT + �
i

d�l,iNhet
l,i �12�

and

Vhet
g dPg = SgdT + �

i

d�g,iNhet
g,i , �13�

where Vhet
g is the gas-phase volume and Nhet

g,i =Vhet
g �g,i is the

number of gas molecules. Assuming that keeping the volume
constant also keeps the surface area constant �in other words
the shape of the cluster is unchanged� Eq. �10� can then be
written as

��Ghet
*

�T
=

Vhet
l

Vhet
g �Sg + �

i

Nhet
g,i ��g,i

�T �
− �Shet

l + �
i

Nhet
l,i ��l,i

�T �
− �Sl,sol

surf + �
i

Nl,sol
surf,i��l,sol

surf,i

�T �
− �Sg,l,het

surf + �
i

Ng,l,het
surf,i ��g,l,het

surf,i

�T �
+ �Sg,sol,Al,sol

surf + �
i

Ng,sol,Al,sol

surf,i ��g,sol
surf,i

�T � , �14�

where Sg,sol,Al,sol

surf is the entropy of a gas-solid surface which
has area Al,sol.
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The critical cluster is in a metastable equilibrium with
the vapor, and thus the chemical potentials are equal
throughout the system

�l,sol
surf,i = �g,l,het

surf,i = �g,sol
surf,i = �l,i = �g,i. �15�

If the gas-phase chemical potentials are kept constant while
taking the derivative with respect to temperature, the second
nucleation theorem is simply

� ��Ghet
*

�T
�

�g,i
= − Shet

l − Sl,sol
surf − Sg,l,het

surf +
Vhet

l

Vhet
g Sg + Sg,sol,Al,sol

surf .

�16�

In Eq. �16�, the combination of the negative terms give the
total entropy of the heterogeneous critical cluster, and the
positive terms the entropy that the space which the cluster
occupies �volume Vhet

l and the surface area Al,sol� when filled
with the gas phase, and thus the equation can be written

� ��Ghet
*

�T
�

�g,i
= − �S*. �17�

In practical applications it is however more convenient to
keep the gas-phase activities, rather than the chemical poten-
tials, constant and Eq. �3� together with the Gibbs-Duhem
equation and Clausius-Clapeyron equation allow then the
temperature derivative of the gas-phase chemical potential to
be expressed as13

�d�g,i

dT
�

Ag,i

	
�g,i

T
−

hpure
l,i

T
	

�g,i

T
−

epure
l,i

T
, �18�

where hpure
l,i and epure

l,i are the enthalpy and energy, respec-
tively, per molecule in a pure bulk liquid i. In deriving the
first equality of result �18�, the partial molecular volume in
the liquid has been assumed negligible compared to the par-
tial molecular volume in the gas. Using �15� and �18� in Eq.
�14� results in

� ��Ghet
*

�T
�

Ag,i

=
1

T
Vhet
l

Vhet
g �TSg + �

i

Nhet
g,i ��g,i − epure

l,i �� − �TShet
l + �

i

Nhet
l,i ��l,i − epure

l,i �� − �TSl,sol
surf + �

i

Nl,sol
surf,i��l,sol

surf,i − epure
l,i ��

− �TSg,l,het
surf + �

i

Ng,l,het
surf,i ��g,l,het

surf,i − epure
l,i �� + �TSg,sol,Al,sol

surf + �
i

Ng,sol,Al,sol

surf,i ��g,sol
surf,i − epure

l,i ��� . �19�

For the derivative of the nucleation rate �or the nucleation probability� we need again the derivative of −�Ghet
* / �kT� which,

using the critical cluster formation energy given by Eq. �5�, can be written as

� �
−�Ghet

*

kT

�T
�

Ag,i

=
− 1

kT
� ��Ghet

*

�T
�

Ag,i

+
�Ghet

*

kT2 =
1

kT2
�Ghet
* − T� ��Ghet

*

�T
�

Ag,i

�
= 
− Vhet

l

Vhet
g �− PgVhet

g + TSg + �
i

Nhet
g,i ��g,i − epure

l,i �� + �− PlVhet
l + TShet

l + �
i

Nhet
l,i ��l,i − epure

l,i ��
+ ��l,sol + TSl,sol

surf + �
i

Nl,sol
surf,i��l,sol

surf,i − epure
l,i �� + ��g,l,het + TSg,l,het

surf + �
i

Ng,l,het
surf,i ��g,l,het

surf,i − epure
l,i ��

− ��g,sol,Al,sol
+ TSg,sol,Al,sol

surf + �
i

Ng,sol,Al,sol

surf,i ��g,sol
surf,i − epure

l,i ��� 1

kT2 . �20�

With the help of the total energy of a surface phase

Usurf = � + TSsurf + �
i

�surf,iNsurf,i, �21�

and the energies of liquid and gas phases

Ul = − PlVhet
l + TSl + �

i

�l,iNl,i,

Ug = − PgVhet
g + TSg + �

i

�g,iNhet
g,i , �22�

Equation �20� can be written as

� �� −�Ghet
*

kT �
�T

�
Ag,i

=
1

kT2�Uhet
l + Ug,l,het

surf + Ul,sol
surf −

Vhet
l

Vhet
g Ug

− Ug,sol,Al,sol

surf − �
i

epure
l,i Nhet

l,i

− �
i

epure
l,i Ng,l,het

surf,i − �
i

epure
l,i Nl,sol

surf,i

+
Vhet

l

Vhet
g �

i

epure
l,i Nhet

g,i + �
i

epure
l,i Ng,sol,Al,sol

surf,i � .

�23�

In Eq. �23� the first three terms give the total energy of the
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heterogeneous cluster; the next two terms represent the en-
ergy that the space occupied by the cluster would have if
filled with gas; the last five terms give the energy the cluster
molecules would have in pure bulk liquids, and the energy
the molecules in the gas-filled cluster volume and on the
gas-solid surface would have in pure bulk liquids. Thus a
simple form for the second nucleation theorem reads

� �� −�Ghet
*

kT �
�T

�
Ag,i

=
���pure,lU

*�
kT2 , �24�

where �pure,l refers to the difference compared to pure liq-
uids, and the first � refers to the difference between the
cluster and the same space occupied by gas phase. For one-
component system the theorem �23� can be simplified, since
by using equimolar surfaces as the dividing surfaces the
numbers of molecules on the surfaces can be set to zero. The
homogeneous case is again obtained as a special case of the
heterogeneous theorem by setting the energies and numbers
of molecules related to the gas-solid and liquid-solid inter-
faces as zero. For comparison with earlier forms of
second homogeneous nucleation theorem, see remarks after
Eq. �55�.

IV. CLASSICAL FORMALISM: FIRST THEOREM

In the classical heterogeneous nucleation theory the
nucleating cluster is treated as a cap-shaped embryo with
radius r* forming on a spherical seed particle with radius Rp,
and the contact angle between the cluster and the underlying
surface is denoted by �. Figure 1 shows the geometry of the
situation. This geometry is a special case of a more general
situation governed by the results in the preceding sections.
We also want to show that the well-known geometric
factors14 arising in this special case can explicitly be manipu-
lated so that we arrive in the heterogeneous nucleation theo-
rems.

In the same gas-phase activities and temperature, the
radius of the heterogeneous cluster is the same as that of the
homogeneous one, and it is given by the Kelvin equation

r* =
2vl,i�g,l

kT ln Ag,i/Al,i
, �25�

where vl,i and Al,i are, respectively, the liquid phase partial
molecular volume activity of component i, �g,l is the gas-
liquid surface tension, k is the Boltzmann constant and T is
the temperature. The critical cluster composition can be
solved from equation

vl,i

kT ln Ag,i/Al,i
=

vl,j

kT ln Ag,j/Al,j
. �26�

For the homogeneous critical cluster the formation energy
can be written as

�Ghom
*

kT
=

4�r*2�g,l

3kT
. �27�

The first homogeneous nucleation theorem10 gives the excess
�compared to the cluster volume filled with vapor� number of
component i molecules in the critical cluster as

− �Nhom,i
* = � ���Ghom

*

kT �
� ln Ag,i

�
T,Ag,j�i

=
4�r*2�g,l

3kT
� 2

r*

�r*

� ln Ag,i
+

1

�g,l

��g,l

� ln Ag,i
� .

�28�

The formation energy for a heterogeneous critical cluster
can be expressed with the help of the homogeneous forma-
tion energy as14

�Ghet
* = fG�Ghom

* . �29�

The geometric factor fG can be expressed as14

fG =
1

2
�1 + �1 − Xm

g
�3

+ X3
2 − 3�X − m

g
�

+ �X − m

g
�3� + 3X2m�X − m

g
− 1�
 , �30�

where g=�1+X2−2Xm,

X =
Rp

r* , �31�

and the contact parameter is m=cos �. Young’s equation15

relates the contact parameter to the surface tensions between
gas and solid ��g,sol�, liquid and solid ��l,sol�, and gas and
liquid ��g,l� as

m = cos� =
�g,sol − �l,sol

�g,l
. �32�

The number of molecules in the liquid phase of the hetero-
geneous critical cluster is connected to the homogeneous
case by Nhet

l,i = fNNhom
l,i , where fN is the ratio of heterogeneous

and homogeneous cluster volumes, Vhet
l and Vhom

l , assuming
the same liquid density in both cases14,16

fN =
Vhet

l

Vhom
l =

1

4
�2 + 3�1 − Xm

g
� − �1 − Xm

g
�3

− X3
2 − 3�X − m

g
� + �X − m

g
�3�
 . �33�

For a planar pre-existing surface X→	 and fG= fN, but for a
spherical condensation nucleus fG� fN.

Using the equality of chemical potentials �15�, gas-phase
chemical potential �3� and �=A�, Gibbs adsorption Eq. �11�
at constant temperature leads to equations

FIG. 1. Geometry of a cluster �cap-shaped part of a sphere with radius r*�
forming on a spherical seed particle with radius Rp. � is the contact angle.
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Al,sol
��l,sol

� ln Ag,i
= − kTNl,sol

surf,i, �34�

Al,sol
��g,sol

� ln Ag,i
= − kTNg,sol,Al,sol

surf,i , �35�

Ag,l
hom ��g,sol

� ln Ag,i
= 4�r*2 ��g,sol

� ln Ag,i
= − kTNg,l,hom

surf,i , �36�

where the surface area of the homogeneous cluster is

Ag,l
hom = 4�r*2. �37�

The gas-liquid surface area in the heterogeneous case is

Ag,l
het = 2�r*2�1 −

mX − 1

g
� . �38�

The liquid-solid interface area is

Al,sol = 2�Rp
2�1 −

X − m

g
� , �39�

and thus the derivative of the factor fG with respect to con-
tact parameter m can be expressed as

4�r*2

3

� fG

�m
= 2�Rp

2�X − m

g
− 1� = − Al,sol. �40�

Young’s Eq. �32� gives

�m

� ln Ag,i
=

1

�g,l
� ���g,sol − �l,sol�

� ln Ag,i
− m

��g,l

� ln Ag,i
� , �41�

and Eq. �31�

�X

�r* = −
Rp

r*2 = −
X

r* . �42�

The dependence of the heterogeneous cluster formation
free energy on the gas-phase activity Ag,i is given by

� �� −�Ghet
*

kT �
� ln Ag,i

�
T,Ag,j�i

= − fG

���Ghom
*

kT �
� ln Ag,i

−
�Ghom

*

kT
� � fG

�X

�X

�r*

�r*

� ln Ag,i
+

� fG

�m

�m

� ln Ag,i
�

= fG�Nhom
* +

�Ghom
*

kT
� X

r*

� fG

�X

�r*

� ln Ag,i
+

m

�g,l

� fG

�m

��g,l

� ln Ag,i
−

1

�g,l

� fG

�m

���g,sol − �l,sol�
� ln Ag,i

�
= fG�Nhom

* +
X

2

� fG

�X

4�r*2�g,l

3kT
� 2

r*

�r*

� ln Ag,i
+

1

�g,l

��g,l

� ln Ag,i
� +

4�r*2

3kT 
�m
� fG

�m
−

X

2

� fG

�X
� ��g,l

� ln Ag,i

−
� fG

�m

���g,sol − �l,sol�
� ln Ag,i

� , �43�

where in the last stage we have added and subtracted term
4�r*2 / �3kT��X /2���fG /�X����g,l /� ln Ag,i� to be able to
identify the last form of Eq. �28�. Using Eqs. �28�, �34�–�36�,
and �40�, Eq. �43� can be transformed to read

� �� −�Ghet
*

kT �
� ln Ag,i

�
T,Ag,j�i

= � fG −
X

2

� fG

�X
��Nhom

*

−
1

3
�m

� fG

�m
−

X

2

� fG

�X
�Ng,l,hom

surf,i

+ Nl,sol
surf,i − Ng,sol,Al,sol

surf,i

= fN�Nhom
* −

1

3
�m

� fG

�m
−

X

2

� fG

�X
�Ng,l,hom

surf,i

+ Nl,sol
surf,i − Ng,sol,Al,sol

surf,i , �44�

where we have used the following relation between the geo-
metrical factors:

� fG −
X

2

� fG

�X
� = fN. �45�

The excess number of molecules in the homogeneous cluster
consists of bulk liquid �Nhom

l,i � and surface phase �Ng,l,hom
surf,i �

contributions

�Nhom
* = Nhom

l,i + Ng,l,hom
surf,i − Vhom

l �g,i. �46�

Equation �44� can then be written as

� �� −�Ghet
*

kT �
� ln Ag,i

�
T,Ag,j�i

= fNNhom
l,i + 
 fN −

1

3
�m

� fG

�m
−

X

2

� fG

�X
��


Ng,l,hom
surf,i + Nl,sol

surf,i − Ng,sol,Al,sol

surf,i

− fNVhom
l �g,i. �47�

Using surface areas �37� and �38� we get

fN −
1

3
�m

� fG

�m
−

X

2

� fG

�X
� =

1

2
�1 − mX + g

g
� =

Ag,l
het

Ag,l
hom , �48�

and the first heterogeneous nucleation theorem takes the gen-
eral form �4�
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� �� −�Ghet
*

kT �
� ln Ag,i

�
T,Ag,j�i

= fNNhom
l,i +

Ag,l
het

Ag,l
homNg,l,hom

surf,i + Nl,sol
surf,i

− Ng,sol,Al,sol

surf,i − fNVhom
l �g,i

= Nhet
l,i + Ng,l,het

surf,i + Nl,sol
surf,i − Ng,sol,Al,sol

surf,i

− Vhet
l �g,i = �Nhet

* , �49�

where we have used relations Ag,l
het /Ag,l

homNg,l,hom
surf,i =Ng,l,het

surf,i ,
fNNhom

l,i =Nhet
l,i , and fNVhom

l =Vhet
l . This result concludes that the

classical Fletcher14 theory for heterogeneous nucleation, and
the frequently used geometrical factors involved, are consis-
tent with the first nucleation theorem.

V. CLASSICAL FORMALISM: SECOND THEOREM

The second homogeneous nucleation theorem13 relates
the temperature derivative of the formation free energy to the
excess energy of the critical cluster compared to the same
molecules in pure bulk liquids

− �Uhom
*

kT2 = � ���Ghom
*

kT �
�T

�
Ag,i

=
4�r*2�g,l

3kT
� 2

r*

�r*

�T
+

1

�g,l

��g,l

�T
−

1

T
� . �50�

Using equality of chemical potentials �15� and formula �18�
for the temperature derivative of the chemical potential in the
Gibbs adsorption Eq. �11� in a nonisothermal case with �
=A� thus leads to equation

A� ��

�T
�

Ag,i

= − Ssurf − �i
Nsurf,i� ��surf,i

�T
�

Ag,i

= −
1

T�TSsurf + �i
�surf,iNsurf,i − �i

epure
l,i Nsurf,i�

= −
1

T�Usurf − A� − �i
epure

l,i Nsurf,i� , �51�

where we have used Eq. �21� for the surface phase energy.
Young’s Eq. �32� gives

�m

�T
=

1

�g,l
� ���g,sol − �l,sol�

�T
− m

��g,l

�T
� . �52�

The temperature derivative of the formation free energy
is

� �� −�Ghet
*

kT �
�T

�
Ag,i

= − fG

���Ghom
*

kT �
�T

−
�Ghom

*

kT
� � fG

�X

�X

�r*

�r*

�T
+

� fG

�m

�m

�T
�

= fG

�Uhom
*

kT2 +
�Ghom

*

kT
� X

r*

� fG

�X

�r*

�T
+

m

�g,l

� fG

�m

��g,l

�T
−

1

�g,l

� fG

�m

���g,sol − �l,sol�
�T

�
= fG

�Uhom
*

kT2 +
X

2

� fG

�X

4�r*2�g,l

3kT
� 2

r*

�r*

�T
+

1

�g,l

��g,l

�T
−

1

T
� +

4�r*2�g,l

3kT2

X

2

� fG

�X
+

4�r*2

3kT



�m
� fG

�m
−

X

2

� fG

�X
� ��g,l

�T
−

� fG

�m

���g,sol − �l,sol�
�T

� , �53�

where we have added and subtracted terms 4�r*2 / �3kT��X /2���fG /�X���1/�g,l����g,l /�T�−1/T� to be able to identify the last
form of Eq. �50�. Using Eqs. �50�, �45�, �40�, �37�, and �51� for homogeneous gas-liquid and heterogeneous gas-solid and
liquid-solid surfaces, Eq. �53� can be written as

� �� −�Ghet
*

kT �
�T

�
Ag,i

= � fG −
X

2

� fG

�X
��Uhom

*
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1

3kT
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−
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2

� fG

�X
�Ag,l

hom��g,l

�T
+
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hom�g,l

3kT2

X

2

� fG

�X
+

Al,sol

kT

���g,sol − �l,sol�
�T

= fN

�Uhom
*

kT2 −
1

3kT2�m
� fG

�m
−

X

2

� fG

�X
� 
 �Ug,l,hom

surf − Ag,l
hom�g,l − �

i

epure
l,i Ng,l,hom

surf,i � +
Ag,l

hom�g,l

3kT2

X

2

� fG

�X

−
1

kT2�Ug,sol,Al,sol

surf − Al,sol�g,sol − �
i

epure
l,i Ng,sol,Al,sol

surf,i − Ul,sol
surf + Al,sol�l,sol + �

i

epure
l,i Nl,sol

surf,i�
= fN

�Uhom
*

kT2 −
Ug,l,hom

surf − �i
epure

l,i Ng,l,hom
surf,i

3kT2 �m
� fG

�m
−

X

2

� fG

�X
� −

1

kT2m�g,lAl,sol −
1

kT2Al,sol�− �g,sol + �l,sol�

− �Ug,sol,Al,sol

surf − �i
epure
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� +
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epure
l,i Nl,sol

surf,i

kT2 . �54�
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The combination of terms proportional to Al,sol equals zero
according to Young’s Eq. �32�. The excess energy of the
homogeneous cluster consists of bulk liquid �Uhom

l � and sur-
face phase �Ug,l,hom

surf,i � contributions

�Uhom
* = Uhom

l + Ug,l,hom
surf −

Vhom
l

Vhom
g Ug − �

i

epure
l,i Nhom

l,i

− �
i

epure
l,i Ng,l,hom

surf,i +
Vhom

l

Vhom
g �

i

epure
l,i Nhom

g,i . �55�

In the previous versions13,17,18 of the second homogeneous
nucleation theory, the terms proportional to Vhom

l /Vhom
g have

been omitted as negligible, or because the reference state
used has been an empty system rather than the cluster vol-
ume filled with gas. These terms represent the energy of the
molecules that the cluster space would have if filled with gas,
and the energy those molecules in pure bulk liquids, and are
indeed small, since the cluster occupies a tiny portion of the
total volume of the nucleating gas, but we have included
these terms here to be consistent with our general formalism.

Using result �48� and relations Ag,l
het /Ag,l

homNg,l,hom
surf,i =Ng,l,het

surf,i ,

Ag,l
het /Ag,l

homUg,l,hom
surf =Ug,l,het

surf , fNNhom
l,i =Nhet

l,i , fNVhom
l =Vhet

l , and

fNUhom
l =Uhet

l we get the result

� �� −�Ghet
*

kT �
�T

�
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= fN�Uhom
l − �i

epure
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−
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l
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g Ug +
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l
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g �i
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g,i

kT2
� + 
 fN −

1

3
�m

� fG
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−

X

2

� fG

�X
��



Ug,l,hom

surf − �i
epure

l,i Ng,l,hom
surf,i

kT2 − �Ug,sol,Al,sol

surf − �i
epure

l,i Ng,sol,Al,sol

surf,i

kT2
� +

Ul,sol
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epure
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surf − �i
epure

l,i Ng,l,hom
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surf − �i
epure

l,i Ng,sol,Al,sol

surf,i

kT2
� +

Ul,sol
surf − �i

epure
l,i Nl,sol

surf,i
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1

kT2�Uhet
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surf + Ul,sol
surf −

Vhet
l

Vhom
g Ug − Ug,sol,Al,sol

surf − �
i

epure
l,i Nhet

l,i − �
i

epure
l,i Ng,l,het

surf,i − �
i

epure
l,i Nl,sol

surf,i

+
Vhet

l

Vhom
g �

i

epure
l,i Nhom

g,i + �
i

epure
l,i Ng,sol,Al,sol

surf,i � , �56�

which is equal to formula �23� since we study the homoge-
neous and heterogeneous nucleation in the same vapor, and
thus Nhom

g,i /Vhom
g =Nhet

g,i /Vhet
g =�g,i. Thus, we have explicitly

shown that the Fletcher14 theory is also consistent with the
second nucleation theorem.

VI. THEOREMS IN TERMS OF THE NUCLEATION
PROBABILITY

So far, the forms of nucleation theorems presented in the
literature have only linked the behavior of the nucleation rate
to the critical cluster properties. In heterogeneous nucleation
experiments the quantity of prime interest is, however, the
nucleation probability, which tells the fraction of pre-existing
particles that have a nucleated cluster growing on the sur-
face. We want to link this directly observable quantity to the
properties of the clusters. From the definition of the nucle-
ation probability P in a time period t �see, for example, Ref.
19�

P = 1 − exp�− Jhet · t� , �57�

we get

ln Jhet = ln�ln� 1

1 − P
�� − ln t , �58�

where Jhet is the nucleation rate per pre-existing particle per
unit time �units 1 /s�. To obtain the nucleation probability as
functions of the gas phase activities as in Fig. 2 the experi-
mentalist count the number of pre-existing particles which
have activated as nucleation centers and started to grow after
a certain fixed time. To get the probability curve as a func-
tion of the vapor activity, the latter is changed, but the time
period after which the probability measured is kept constant.
Thus, we can keep t constant when analyzing this kind of
experimental data. We take the differential of Eq. �58� with
respect to ln Ai,g and T using the fact that the nucleation rate
is connected to the formation energy by Jhet=K exp
�−�Ghet /kT�, where K is a kinetic pre-factor. We can express
the heterogeneous nucleation theorems as
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� � ln�ln 1
1−P�

� lnAg,i
�

T,Ag,j�i

� � �F

� ln Ag,i
�

T,Ag,j�i

= � � ln Jhet

� ln Ag,i
�

T,Ag,j�i

= �Nhet,i
*

+ � � ln K

� ln Ag,i
�

T,Ag,j�i

, �59�

� � ln�ln 1
1−P�

�T
�

Ag,i

� � �F

�T
�

Ag,i

= � � ln Jhet

�T
�

Ag,i

= ���pure,lU
*� + � � ln K

�T
�

Ag,i

, �60�

which link experimentally accessible nucleation probability
P to quantitative properties of critical clusters growing on
particle surfaces. We have defined F� ln�ln 1 / �1− P�� to
shorten the notation later in this paper. Note that F only has
meaningful values when the nucleation probability is greater

than zero but less than one, and this is the range of experi-
mental results we can use to obtain critical cluster properties.

VII. KINETIC PRE-FACTOR

In the multicomponent nucleation the contribution of the
pre-factor K cannot be exactly calculated,18 but the classical
form of the kinetic pre-factor K can be used to estimate the
effect of the kinetics on the nucleation theorems. According
to the classical theory the pre-factor �for nucleation rate per
pre-existing particle, units 1 /s� reads

K = 4�Rp
2Ravcs,tot

ads Z . �61�

The total number of molecules adsorbed on the pre-
existing particle surface is cs,tot

ads =cs,1
ads+cs,2

ads, and the expres-
sions for cs,i

ads �1/m2� are calculated using a steady state be-
tween incoming and outgoing molecule fluxes20

cs,i
ads =

pg,i

�i
�2�kTmi

exp�− �Fdes,i

kT
� , �62�

where mi is the mass of a molecule, pg,i is the pressure in the
nucleating vapor, �i is the vibration frequency of a molecule
on the surface, and �Fdes,i is the desorption energy for com-
ponent i.

The average growth rate Rav is defined as

Rav =
�1

het�2
het

�1
het sin2 
 + �2

het cos2 

. �63�


 is the direction angle of the critical cluster growth vector
obtained as the eigenvector associated with the negative ei-
genvalue of the matrix product R* ·W*, where the growth
matrix containing the collision rates �i

het is

R* = ��1
het 0

0 �2
het� . �64�

Matrix W* is formed from the second derivatives of the
formation free energy

W* =��
�2�Ghet

�n1
2 �* � �2�Ghet

�n1n2
�*

� �2�Ghet

�n1n2
�* � �2�Ghet

�n2
2 �*� � �W11

* W12
*

W12
* W22

* � ,

�65�

with the derivatives performed with respect to the total num-
bers in the heterogeneous cluster.21 The total numbers of
molecules consist of bulk liquid contributions plus surface
excess corrections for both gas-liquid and liquid-solid inter-
faces.

The direct vapor deposition approach22 takes into ac-
count only the vapor monomers colliding directly with the
critical cluster, whereas the surface diffusion approach20 con-
siders only the monomers that have collided and adhered to
the surface of the pre-existing particle, after which they dif-
fuse to the cluster. The surface diffusion approach is used in
this model, and it gives 7–8 orders of magnitude higher col-
lision rates than the direct vapor deposition model. The col-
lision rates �i

het �1/s� are given as the product of the number

FIG. 2. The experimental nucleation probabilities �markers�, fit functions
for monodisperse 8 nm seed particles �solid lines� and integrated probabili-
ties for the actual experimental particle size distribution �dash-dotted lines�.
The top figure shows the water-rich cases, and the bottom figure the
n-propanol rich cases. Different markers are used for different gas-phase
fractions of n-propanol given in the legends. The x-axis shows the gas-phase
activity of water �top figure� or n-propanol �bottom figure�.
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of adsorbed molecules in position to join the germ, and the
frequency �i exp�−�Fsd,i /kT� with which they jump to join it

�i
het = 2�Rp sin �Dcs,i

ads�i exp�− �Fsd,i

kT
� , �66�

where D is the mean jump distance of a molecule, and �Fsd,i,

is the surface diffusion energy. The length of the circular
contact line between the gas, liquid and solid is calculated as
Rp sin �,14 with the angle � given by cos �= �X−m� /g.

The Zeldovich factor Z appearing in the formula �61� is
given by

Z =
− �W11

* + 2W12
* tan 
 + W22

* tan 
�
1 + tan 


1
��det W*�

. �67�

Detailed description of the kinetics of multicomponent het-
erogeneous nucleation is presented by Määttänen et al.,21 and
the parameters used for water-n-propanol mixture are the
same as used by Kulmala et al.23 In all classical calculations,
unless otherwise stated, we have used the microscopic con-
tact angle24

� =
35.82 ° �1 − x�
�1 + 61.62x�

, �68�

where x is the mole fraction of n-propanol in the liquid.

VIII. EXPERIMENTAL DATA

No experimental data so far is available for the applica-
tion of the second heterogeneous nucleation theorem; here
we demonstrate the power of the first theorem in a practical
application. In recent experiments Wagner et al.24 have ob-
tained nucleation probabilities for unary and binary hetero-
geneous nucleation of water and n-propanol vapors on silver
nanoparticles. Nearly monodispersed populations of Ag par-
ticles with a geometric mean particle diameter of 8 nm and
geometric standard deviation 1.035 were used as seed par-
ticles. This geometric standard deviation is somewhat
smaller as compared to the value reported previously.24 The
smaller geometric standard deviation of the seed particles has
actually been determined in the present study by more accu-
rate accounting for the transfer function of the electrostatic
aerosol classifier25 used in the experiments. The experiments
were conducted with several gas-phase activity fractions of
n-propanol

Xg = Ag,2/�Ag,1 + Ag,2� , �69�

Xg=0 �pure water�, 0.18, 0.225, 0.406, 0.541, 0.725, 0.819,
and 1 �pure n-propanol�. Although the Ag particles are quite
narrowly distributed, the influence of the finite width of the
particle size distribution on the measured nucleation prob-
abilities must be taken into account. For extracting the influ-
ence of polydispersity, we consider nucleation probability
functions P for strictly monodispersed particles, which, for a
constant activity fraction Xg can be approximately expressed
by the formula

P =
1

2
tanh��1Ag + �2� +

1

2
, �70�

where Ag=�Ag,2
2 +Ag,1

2 is used as a representative value cor-
responding to the gas phase activities in the binary vapor
mixture. The parameter �1 is related to the slope of the
nucleation probability P when plotted as a function of mean
gas-phase activity Ag. This slope is assumed to be indepen-
dent of the particle size over the narrow range of particle
sizes considered in the experiments. The ratio −�2 /�1 is the
onset saturation ratio corresponding to nucleation probability
P=0.5. This onset saturation ratio has been obtained as a
function of the particle diameter from additional nucleation
measurements performed for Ag particles with diameters
slightly above and below 8 nm. Integration of the nucleation
probability functions P for strictly monodispersed particles
over the actual experimental particle size distribution yields
an integrated nucleation probability function, which can be
directly compared to the experimental results. The experi-
mental data points can be fitted by appropriate choice of �1.
Each experimental gas-phase activity fraction Xg is thus as-
sociated with a ��1 ,�2� pair listed in Table I as a result of the
fitting. It should be noted that this procedure is not dependent
on any specific theoretical model.

Figure 2 shows the experimental data and the fitted
nucleation probability functions P for monodisperse 8 nm
seed particles �solid lines�. Integration of the nucleation
probability functions P over the actual experimental particle
size distribution results in integrated nucleation probability
functions �dashed lines� in good agreement with experi-
ments.

The numbers of molecules in the critical cluster �Nhet,i
*

are calculated from the experimentally determined nucle-
ation probability function P for strictly monodispersed par-
ticles, Eq. �70�. From the fit functions to the experimental
data, we can determine the derivative ��F /�Ag�Xg

which ac-
cording to Strey, Viisanen, and Wagner26,27 can be used to
calculate the derivatives needed in the first nucleation theo-
rem �59� as

� �F

� ln Ag,1
�

T,Ag,2

= Ag,1� �F

�Ag
�

Xg

· � �Ag,2

�Ag,1
�

F

·
�1 + � �Ag,2

�Ag,1
�F

− �Ag,2/Ag,1�2

� �Ag,2

�Ag,1
�F

− �Ag,2/Ag,1�
, �71�

TABLE I. Lambda values that fit Eq. �70� to the experimental data for
different gas-phase activity fractions Xg. The table also shows the mass
fractions of n-propanol XM,l in the liquid used to generate the nucleating
vapor.

Xg XM,l �1 �2

0.0 0 5.93 −10.09
0.18 0.376 23.86 −30.95
0.225 0.446 19.19 −24.69
0.406 0.653 27.11 −34.22
0.541 0.763 24.20 −31.16
0.819 0.926 42.05 −51.34
1.0 1.0 115.85 −150.37
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� �F

� ln Ag,2
�

T,Ag,1

= Ag,2 · � �F

�Ag
�

Xg

·
�1 + �Ag,2/Ag,1�2

�Ag,2/Ag,1� − � �Ag,2

�Ag,1
�F

,

�72�

with F defined as

F � ln�ln 1/�1 − P�� . �73�

We thus need the derivative ��Ag,2 /�Ag,1�F for the onset
curve with constant F �in other words constant nucleation
probability P�. Gas-phase activity Ag,2 as a function of Ag,1

for any constant P can be solved from Eq. �70� analytically
for the experimental gas-phase activity fractions. To obtain
the derivatives we need Ag,2�Ag,1� also for activity fractions
slightly off the experimental values, and we have used table
look-up linear interpolation scheme28 to obtain these inter-
mediate values. Figure 3 shows the onset curves for nucle-
ation probabilities 0.1, 0.5, and 0.9.

IX. RESULTS

The sub-plots of Fig. 4, each representing a constant
gas-phase activity fraction, show the numbers of molecules
in the critical cluster extracted from the experimental data
using the first nucleation theorem �59�. The molecular num-
bers are �with a couple of exceptions at the left end of the x
axis where P approaches zero� smooth monotonous func-
tions of gas-phase activities, as is physically reasonable. We
also show the classical theory predictions for comparison.
The classical theory gives orders of magnitude larger critical
cluster than the analysis of the experimental data. If the mac-
roscopic contact angles are used instead of the microscopic
ones, the classical clusters contain in some cases even more
molecules. We have limited the y-axes and thus left out some
classical values to better show the experimental results. It has
been shown earlier,24 that the classical theory predicts well
the onset conditions for heterogeneous nucleation but the
present analysis shows that the transition from nucleation
probability value 0 to value 1 is in reality not as steep as the
classical model prediction. We checked the correctness and
consistency of our data analysis by checking that at the one-
component limit, the two-component theorems also in prac-
tice give the results obtained by one-component analysis;

this check also assured us that the fit based on Eq. �70�
behaves well at the one-component limits.

Using classical formulas the derivative of the kinetic
pre-factor ln K with respect to ln Ag,i can be estimated nu-
merically. For the range of experimental conditions it yields
3–8 for pure water, 8–16 for pure n-propanol �this estimate is
obtained using the macroscopic contact angle 19.1°, micro-
scopic zero contact angle leads to infinite values and, for
example, �=1° leads to values 2–120�, and 2–11 for the
binary cases with the derivatives taken with respect to both
gas-phase activities. As a further check of our theorem, and
also the correctness of derivatives of the kinetic pre-factor,
we also have generated nucleation probability data with the
classical heterogeneous nucleation theory, applied the hetero-
geneous nucleation theorem to this data, and checked that the
resulting numbers of molecules in the critical cluster are
equal to the numbers of molecules given by the classical
theory.

Somewhat surprisingly, the kinetic contribution to the
first nucleation theorem is not in the range of 1–2 as in the
homogeneous one and two-component cases.13,17,18 This can
be understood, for simplicity in a one-component system, by
comparing Eq. �61� to the homogeneous counterpart

Khom = c1�homZhom, �74�

where c1 is the number of monomers in the nucleating vapor.
The monomer concentration is proportional to the gas-phase
activity, c1� pg�Ag, the collision rate between critical
clusters and monomers is proportional to the monomer
concentration and the surface area of the cluster,
�hom� pg4�r*2�Agr*, and the Zeldovich factor is inversely
proportional to the area of the cluster29 Zhom�1/r*2. In all
these cases the proportionality constants do not depend on
the gas-phase activity Ag. Thus the dependence of the kinetic
factor on the radius of the critical cluster cancels out,
Khom�Ag

2, and the contribution of the pre-factor equals 2
�Khom=c1�homZhom/Ag in the “1/S-version” of the classical
theory,30 in which case the contribution is 1�. In the hetero-
geneous �again for simplicity one-component� case Eq. �62�
gives, cs

ads�Ag, Eqs. �63� and �66� yield Rav=�het

�sin �cs
ads�sin �Ag,i, where cos �= �X−m� /�1−2mX+X2

and X=Rp /r*, and the Zeldovich factor also depends on the
critical cluster radius as31

Z � 1/r*2� 4

�2 +
�1−mX��2−4mX−�m2−3�X2�

�1−2mX+X2�3/2 �
. �75�

Thus the kinetic pre-factor depends on the gas-phase activity
Ag in a complicated way

K � Ag
2/r*2 sin �� 4

�2 +
�1−mX��2−4mX−�m2−3�X2�

�1−2mX+X2�3/2 �
, �76�

with X=Rp /r*, and r* depending on the gas phase activity
according to the Kelvin Eq. �25�. The nonspherical geometry
of the cluster, and the fact that the contact line between the
substrate and the cluster plays the same role in the collision
rate as the surface area of the cluster in the homogeneous
case, result in the dependency of K on r* not canceling out,

FIG. 3. Gas-phase activities that give a constant nucleation probability P.
The lowest curve is related to the lowest probability. The circles mark the
values obtained for experimental gas-phase activity ratio from Eq. �70�,
the dashed lines the results of the interpolation, and the crosses, which
accurately overlap the P=0.5 circles, are the measured experimental onset
activities for P=0.5.
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and thus the contribution of the pre-factor differs from the
homogeneous case. Test calculations show that the contribu-
tion of the pre-factor is sensitive to the critical cluster size, as
well as to the contact angle: the values obtained using the

classical theory for very large clusters are not applicable to
the experimental results with much smaller cluster sizes.
Subtraction of the classical values for the kinetic contribu-
tion from the results given by the data analysis would lead to

FIG. 4. �Color online� Numbers of molecules is the critical cluster obtained from the experimental data using the first nucleation theorem. Solid lines with
circles refer to water molecules, solid lines with squares to n-propanol. Classical theory predictions for water are indicated by dashed lines, and for n-propanol
by dot-dashed lines. The seven sub-plots show data for different gas-phase activity fractions �Xg� marked below each plot. The bottom x-axes show the
gas-phase activity of n-propanol, while the top x-axes give the gas-phase activity of water.
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negative numbers when the experiments indicate the clusters
to be small. Thus, in Fig. 4 the effect of the kinetic pre-factor
has not been taken into account. A more sophisticated model
for the kinetics is needed to estimate the role of the kinetic
pre-factor in the heterogeneous nucleation theorem.

For pure water the critical clusters contain less than 17
molecules, for pure n-propanol the largest clusters have
around 300 molecules. This difference in the critical cluster
sizes of pure components follows directly from the clearly
steeper slope of nucleation probability for pure n-propanol
compared to that of pure water in Fig. 2. For gas-phase ac-
tivity ratios Xg=0.18, 0.225, and 0.406 clusters contain more
water than n-propanol, for Xg=0.541 half of the cluster mol-
ecules are water, half n-propanol, and for Xg=0.819
n-propanol clearly dominates. The largest binary clusters
contain less than 90 molecules. Our analysis demonstrates
that the experimentally obtained heterogeneous nucleation
probability does not change too steeply as a function of the
gas-phase activity, thus allowing a meaningful data analysis.

X. CONCLUSIONS

The formation of new small clusters on seed particles
has earlier been studied in well-defined experiments.24 This
paper shows how these experiments can be utilized to iden-
tify the size of newly formed molecular clusters using the
first heterogeneous nucleation theorem. The clusters studied
typically contain only 10–100 molecules. The critical cluster
sizes obtained from the experiments using the heterogeneous
nucleation theorem are dramatically smaller than the predic-
tions by the classical nucleation theory. This result is related
to the fact that the slopes of the nucleation probability curves
given by the classical nucleation theory14 are generally found
to be considerably steeper compared to the experimental
data.24 The discrepancy between the classical theory and ex-
periments clearly indicates that the nucleating clusters are
too small to be quantitatively described using the macro-
scopic Fletcher theory.14 The clusters are on the verge of a
full quantum mechanical description to be computationally
feasible. The heterogeneous nucleation theorems provide di-
rect experimental access to nanocluster properties. In the fu-
ture, when heterogeneous nucleation experiments will be
conducted at various temperatures, the second nucleation
theorem provides the means to analyze the energetics of the
clusters, and aid the development of accurate models for mo-
lecular interactions between the nucleating molecules, and
between the cluster and the underlying surfaces. The appli-
cation of heterogeneous nucleation theorems leads to an im-
proved understanding of nanocluster formation.

ACKNOWLEDGMENTS

The assistance of Kai Ruusuvuori is gratefully acknowl-
edged. This work was supported by the Academy of Finland
and the Austrian Science Foundation, Project No. P16958-
N02. We thank Professor G. P. Reischl for his valuable help
with the determination of the experimental seed particle size
distribution.

1 P. Hamill, R. P. Turco, C. S. Kiang, O. B. Toon, and R. C. Whitten, J.
Aerosol Sci. 13, 561 �1982�.

2 H. Korhonen, K. Lehtinen, and M. Kulmala, Atmos. Chem. Phys. 4, 757
�2004�.

3 R. J. Charlson, S. E. Schwartz, J. M. Hales, R. D. Cess, J. A. Coakley, J.
E. Hansen, and D. J. Hofmann, Science 255, 423 �1992�.

4 P. A. Stott, S. F. B. Tett, G. S. Jones, M. R. Allen, J. F. B. Mitchell, and
G. J. Jenkins, Science 290, 2133 �2000�.

5 V. Ramanathan, P. J. Crutzen, J. T. Kiehl, and D. Rosenfeld, Science 294,
2119 �2001�.

6 S. Menon, A. D. Del Genio, D. Koch, and G. Tselioudis, J. Atmos. Sci.
59, 692 �2002�.

7 M. Kulmala, K. E. J. Lehtinen, and A. Laaksonen, Atmos. Chem. Phys.
6, 787 �2006�.

8 D. Kashchiev, Nucleation: Basic Theory with Applications �Butterworth-
Heinemann, Oxford, 2000�.

9 S. Toschev, Crystal Growth: An Introduction �North-Holland, Amster-
dam, 1973�.

10 D. W. Oxtoby and D. Kashchiev, J. Chem. Phys. 100, 7665 �1994�.
11 H. Reiss, Methods of Thermodynamics �Dover, New York, 1996�.
12 F. F. Abraham, Advances in Theoretical Chemistry �Academic, New

York, 1974�.
13 I. J. Ford, J. Chem. Phys. 105, 8324 �1996�.
14 N. Fletcher, J. Chem. Phys. 29, 572 �1958�.
15 T. Young, Philos. Trans. R. Soc. London 95, 65 �1805�.
16 A. Määttänen, H. Vehkamäki, A. Lauri, S. Merikallio, J. Kauhanen, H.

Savijärvi, and M. Kulmala, J. Geophys. Res. 110, E02002 �2005�.
17 I. J. Ford, Phys. Rev. E 56, 5615 �1997�.
18 H. Vehkamäki and I. J. Ford, J. Chem. Phys. 113, 3261 �2000�.
19 M. Lazaridis, M. Kulmala, and B. Z. Gorbunov, J. Aerosol Sci. 23, 457

�1992�.
20 H. R. Pruppacher and J. D. Klett, Microphysics of Clouds and Precipita-

tion �Kluwer, Norwell, Massachusetts, 1997�.
21 A. Määttänen, H. Vehkamäki, A. Lauri, I. Napari, and M. Kulmala, J.

Chem. Phys. �to be published�.
22 A. Inada, Ph.D. thesis, Kobe University, Japan �2002�.
23 M. Kulmala, A. Lauri, H. Vehkamäki, A. Laaksonen, D. Petersen, and P.

E. Wagner, J. Phys. Chem. B 105, 11800 �2001�.
24 P. Wagner, D. Kaller, A. Vrtala, A. Lauri, M. Kulmala, and A. Laak-

sonen, Phys. Rev. E 67, 021605 �2003�.
25 G. P. Reischl, J. M. Mäkelä, and J. Necid, Aerosol Sci. Technol. 27, 651

�1997�.
26 R. Strey and Y. Viisanen, J. Chem. Phys. 99, 4693 �1993�.
27 R. Strey, Y. Viisanen, and P. E. Wagner, J. Chem. Phys. 103, 4333

�1995�.
28 Matlab Reference Guide, Version 7.1.0.183 �R14� Service Pack 3 �The

MathWorks, Inc., MA, 2005�.
29 H. Vehkamäki, Classical Nucleation Theory in Multicomponent Systems

�Springer, Berlin, Heidelberg, 2006�.
30 H. Reiss, W. K. Kegel, and J. I. Katz, Phys. Rev. Lett. 78, 4506 �1997�.
31 H. Vehkamäki, A. Määttänen, A. Lauri, I. Napari, and M. Kulmala, At-

mos. Chem. Phys. 7, 309 �2007�.

174707-12 Vehkamaeki et al. J. Chem. Phys. 126, 174707 �2007�

Downloaded 07 May 2007 to 128.214.182.212. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp


