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ABSTRACT: Atmospheric amines can enhance methanesulfonic
acid (MSA)-driven new particle formation (NPF), but the
mechanism is fundamentally different compared to that of the
extensively studied sulfuric acid (SA)-driven process. Generally, the
enhancing potentials of amines in SA-driven NPF follow the
basicity, while this is not the case for MSA-driven NPF, where
structural effects dominate, making MSA-driven NPF more
prominent for methylamine (MA) compared to dimethylamine
(DMA). Therefore, probing structural factors determining the
enhancing potentials of amines on MSA-driven NPF is key to fully
understanding the contribution of MSA to NPF. Here, we
performed a comparative study on DMA and MA enhancing
MSA-driven NPF by examining cluster formation using computa-
tional methods. The results indicate that DMA−MSA clusters are more stable than the corresponding MA−MSA clusters for cluster
sizes up to (DMA)2(MSA)2, indicating that the basicity of amines dominates the initial cluster formation. The methyl groups of
DMA were found to present significant steric hindrance beyond the (DMA)2(MSA)2 cluster and this adds to the lower hydrogen
bonding capacity of DMA, making the cluster growth less favorable compared to MA. This study implies that several amines could
synergistically enhance MSA-driven NPF by maximizing the advantage of different amines in different amine−MSA cluster growth
stages.

■ INTRODUCTION
Aerosols have significant effects on the global climate, visibility,
and human health.1−6 Atmospheric new particle formation
(NPF) through gas-to-particle conversion constitutes over half
of the global aerosol budget.1−12 It is widely accepted that
gaseous sulfuric acid (SA) formed from SO2 oxidation plays a
key role in atmospheric NPF,3,5,6,13−22 and a broad variety of
atmospheric compounds such as ammonia, amines, and
organic acids efficiently enhance SA-driven NPF by stabilizing
the newly formed molecular clusters.3,13,14,20,23−28 However,
significant gaps remain between the observed particle
formation rates in the field and laboratories and the rates
predicted by simulations.6,11,19,28−32 Therefore, there is a need
to consider the involvement of other gaseous precursors in
NPF to reduce the gaps between experiments and simulations.
Methanesulfonic acid (MSA) has been identified to be

another potentially important precursor driving NPF in both
coastal and continental atmospheres.29,31,33−36 With the
implementation of stricter regulations on anthropogenic SO2
emissions, the contribution of MSA to NPF will be higher in
the future.29,35,37 The oxidation of organosulfur compounds
(OSCs), mainly emitted from marine organisms, forest
vegetation, agricultural and domestic activities, and even
human breath, is the main source of MSA.31,35,38−40 The
gaseous MSA concentration typically ranges from 10 to 100%

of that of SA (the latter is about 105 to 107 cm−3 in the
atmosphere).29,31,41 Because the two-component MSA−H2O
system does not form particles efficiently under typical
atmospheric conditions,31 the contribution of MSA to NPF
has been found to highly depend on the participation of other
vapors to enhance NPF.29,31,41−43 Therefore, to fully under-
stand the contribution of MSA to NPF, it is crucial to reveal
structure-enhancing potential relationship of atmospheric
vapors and further identify novel atmospheric species with
strong enhancing potential on MSA-driven NPF.29,43

Although SA-driven NPF has been extensively stud-
ied,2,3,5,13,14,23,44−47 research on chemical species that can
efficiently enhance MSA-driven NPF has been relatively
limited. The Finlayson-Pitts group and Benny Gerber group
have however performed several experimental and simulation
studies, respectively, to assess the enhancing potentials of
common atmospheric bases such as ammonia, methylamine
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(MA), dimethylamine (DMA), and trimethylamine
(TMA).10,31,34,42,43,48−54 MA was found to be the strongest
enhancing species on MSA-driven NPF,10,43 in contrast to
DMA being the most effective enhancer for SA-driven
NPF.14,27 Our recent computational study suggests that the
enhancing potential of monoethanolamine (MEA) should be
even higher than that of MA.29 Thus, it has been established
that the enhancing potential of investigated atmospheric bases
does not simply follow the order of their gas-phase basicity
[gas-phase basicity (GB) for DMA is 896.5 kJ mol−1 and for
MA is 864.5 kJ mol−1 and for MEA is 896.8 kJ mol−1],
although acid−base reactions occur between atmospheric
bases and MSA in NPF.29,43,55 This implies that the enhancing
potential of bases in MSA-driven NPF is highly dependent on
the exact molecular structure of the amine.
The only structural difference between DMA and MA is the

additional methyl (−CH3) group in DMA compared to an H
atom in MA. Finlayson-Pitts et al. proposed that the lower
hydrogen bond (H-bond) capacity is the main reason that
DMA (one −NH bond site) has a lower enhancing potential
than MA (two −NH bond sites).43 Recently, we confirmed
that the H-bond capacity plays an important role in
determining the enhancing potentials of amines on MSA-
driven NPF.29 In fact, the change from an H atom to a −CH3
group leads to not only lower H-bond capacity but also higher
steric hindrance in DMA compared to MA.56,57 Because MSA
also contains an additional −CH3 group compared to SA, the
role of steric hindrance of −CH3 groups of DMA should be
more pronounced when DMA interacts with MSA, especially
in clusters with several DMA and MSA molecules.56,57

However, to the best of our knowledge, no previous study
has addressed how steric hindrance interplays with H-bond
capacity and basicity in determining the enhancing potentials
of amines on MSA-driven NPF.
In this study, we performed a comparative study on DMA

and MA enhancing MSA-driven NPF to probe the role of
−CH3 groups of DMA in the enhancing potential of gaseous
species by examining the formation of DMA−MSA and MA−
MSA clusters. We have obtained the global minimum
structures of (DMA)m(MSA)n (m = 1−4, n = 1−4) clusters.
The corresponding thermodynamics data, together with
previously reported results for pure (MSA)1−4, (DMA)1−4
clusters and (MA)1−4(MSA)0−4 clusters (lower energy
structures for some cases are obtained in this work),29,44,58

were used as inputs to the atmospheric cluster dynamic code
(ACDC) to obtain the cluster distribution dynamics and
growth pathways for both the DMA−MSA and MA−MSA
systems.59

■ COMPUTATIONAL DETAILS
Configurational Sampling. The pure (MSA)1−4,

(DMA)1−4, and (MA)1−4 clusters are from previous stud-
ies.29,44,58 Here, a multistep global minimum sampling scheme
was employed to determine the global minima of
(DMA)m(MSA)n (m = 1−4, n = 1−4) clusters. This approach
has been applied in our previous studies addressing
atmospheric cluster formation.13,23,29 The scheme can be
described as a gradual screening process using a series of
theoretical methods. Around 10,000 initial configurations were
randomly generated for each cluster, and subsequently, the
geometries were optimized at the semiempirical PM6 level of
theory. Based on single-point energy calculations at the
ωB97X-D/6-31+G(d) level of theory calculated for the

geometries obtained at the PM6 level of theory, the lowest
100 conformers were selected for full geometry optimization
and vibrational frequency calculations at the ωB97X-D/6-31+
+G(d,p) level of theory. Single-point energy calculations at the
DLPNO-CCSD(T)/aug-cc-pVTZ level of theory were further
performed on selected low-free energy conformations at the
ωB97X-D/6-31++G(d,p) level of theory. Finally, the con-
formation with the lowest Gibbs free energy (combining
single-point energy at the DLPNO-CCSD(T)/aug-cc-pVTZ
level with Gibbs free energy correction at the ωB97X-D/6-31+
+G(d,p) level of theory) was selected as the global minimum
for a given cluster. All calculations employing the semi-
empirical PM6 and density functional theory (ωB97X-D
functional) methods were performed with the GAUSSIAN 09
program package,60 and the DLPNO-CCSD(T)/aug-cc-pVTZ
single-point energy calculations were performed with the
ORCA 4.0.0 program with tight PNO and SCF convergence
criteria.61 The DLPNO-CCSD(T)/aug-cc-pVTZ//ωB97X-D/
6-31++G(d,p) level of theory was chosen as it has been shown
to yield accurate thermochemistry for atmospheric molecular
clusters compared to higher level methods.62 In addition, we
also conducted a global minimum search for the previously
studied MA−MSA system using the same scheme as that for
the DMA−MSA cluster system. For all (MA)1−4(MSA)1−4
clusters except for the (MA)1(MSA)1 and (MA)4(MSA)4
clusters, lower-energy conformations were identified compared
to those published by Chen et al.,43 and the lowest free energy
structures found were used in this study. The formation free
energy (ΔG) for each cluster was obtained by subtracting the
Gibbs free energy of the constituent monomers from that of
the cluster at 298.15 K, and the ΔG values at other
temperatures were also calculated, assuming that the enthalpy
and entropy change (ΔH and ΔS) stays constant under the
studied temperature range (258.15−298.15 K).

ACDC Simulations. The ACDC was employed to study
the cluster formation rates, steady-state cluster concentrations,
and cluster growth pathways.59 The detailed description of the
ACDC program is presented in a previous study.59 The
employed basic formula of the ACDC is presented in the
Supporting Information. Here, the simulated system for
clusters is (DMA)m(MSA)n (m = 0−4, n = 0−4), that is, the
maximal number of base (DMA) and acid (MSA) molecules in
the clusters is set to 4. The (DMA)4(MSA)5 and
(DMA)5(MSA)5 were defined to be stable enough to
contribute to the cluster formation rate (see detailed
discussion on the judgement of the cluster stability and
selection of boundary clusters in the Supporting Information).
The concentration of DMA and MSA monomers was set to be
1 ppt (∼2.50 × 107 cm−3), 10 ppt (∼2.50 × 108 cm−3), and
100 ppt (∼2.50 × 109 cm−3) and 105, 106, 107, and 108 cm−3,
respectively. The simulations were mainly performed at 278.15
K, with additional runs at 258.15, 268.15, 288.15, and 298.15
K, to investigate the effect of temperature. Because the value of
the coagulation sink coefficient (Ccoag) for MSA vapor is not
reported, a constant Ccoag of 2.60 × 10−3 s−1, corresponding to
a typical value observed in the boreal forest, was chosen as a
sink term in the ACDC simulations.29,59 Moreover, the effect
of Ccoag on results was also examined, by additional runs with
various values covering cases of clean and haze days (6 × 10−4

to 6 × 10−2 s−1).63,64 For the (MA)x(MSA)y (x = 0−4, y = 0−
4) clusters, the (MA)4(MSA)5 and (MA)5(MSA)5 clusters
were set as boundary clusters, with the remaining settings also
identical to the DMA−MSA system. To investigate the effect
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of the studied cluster size on the difference in cluster formation
rate and steady-state cluster concentrations between the
DMA−MSA and MA−MSA systems, ACDC simulations
were also performed for systems with the maximal number
of acid and base molecules in the cluster set to 2 and 3.
Evaporation rates of clusters, as the fundamental data for
understanding the results of ACDC simulations, are presented
in the Supporting Information (Figure S5) with their
corresponding evaporation pathways (Table S1).
Analysis of the Steric Hindrance Effect. For isolated

molecules, steric hindrance can be estimated in the form of the
deformation energy. The deformation energy can be calculated
as the difference in energy between that of the global minimum
structure and the deformed conformer.65,66 However, as the
clusters are held together primarily via H-bonds and
electrostatic interactions, no analogical method exists to
directly calculate the deformation energy in molecular clusters.
In fact, the cluster geometry was determined as a result of
making a compromise between the steric hindrance and
attractive interaction such as H-bonds and electrostatic forces.
In this view, repulsive interaction energy (Erep) should be
greater, average intermolecular C−C distance (DC−C) between
−CH3 and −CH3 should be shorter, and average H-bond
length (LH) should be longer for the system with the steric
hindrance than those for a similar system without the steric
hindrance, respectively. Therefore, here, three parameters
including Erep, DC−C, and LH were employed to indirectly
probe the effect of steric hindrance. Erep was calculated using
energy decomposition analysis based on a classical force field
(EDA-FF) using Multiwfn software (see computational details
in the Supporting Information).67−71 The average C−C

distance was calculated for all intermolecular carbon atoms
in a given cluster. For the average LH calculation, the H-bond is
defined by the following configurational criteria: distance
between the two heavy atoms X and Y is below 3.5 Å (X, Y =
N or O and X ≠ Y), the X−Y−H or Y−X−H angle is smaller
than 30°, and the distance for X−H···Y or Y−H···X is shorter
than 2.45 Å.72 In addition, intermolecular N−N distance
(DN−N), S−S distance (DS−S), O−O distance (DO−O), and the
cluster density (ρ) were calculated to check the effect of steric
hindrance on the intermolecular spacing of clusters (Figure
S7). Multiwfn software was employed to calculate ρ values
based on the theory mentioned in the refs 67, 73.

■ RESULTS AND DISCUSSION
Cluster Structures. The obtained global minima of

(DMA)m(MSA)n (m = 1−4, n = 1−4) clusters and
(MA)x(MSA)y (x = 1−4, y = 1−4) clusters [(MA)1(MSA)1
and (MA)4(MSA)4 cluster structures are from Chen et al.’s
work] are presented in Figures 1 and S8, respectively. Because
the pure (DMA)1−4, (MA)1−4, and (MSA)1−4 clusters have
been discussed in previous studies,29,44,58 we mainly focus on
the heteromolecular (base)1−4(MSA)1−4 (base = DMA/MA)
clusters. Generally, the base−acid clusters are stabilized by
both intermolecular H-bonds and electrostatic interactions
between positive and negative ions formed by proton transfer
reactions from MSA to bases. For all heteromolecular
(DMA)1−4(MSA)1−4 clusters, proton transfers are observed.
When NDMA ≥ NMSA (NDMA and NMSA represent the number of
DMA and MSA monomers in a cluster, respectively), all
protons in MSA molecules are transferred to DMA molecules,
and (NDMA−NMSA) DMA molecules remain unprotonated.

Figure 1. Lowest Gibbs free energy conformations of the (DMA)m(MSA)n (m = 1−4, n = 1−4) clusters at the DLPNO-CCSD(T)/aug-cc-pVTZ//
ωB97X-D/6-31++G(d,p) level of theory. The red balls represent oxygen atoms, blue ones are for nitrogen atoms, gray ones are for carbon atoms,
and white ones are for hydrogen atoms. Dashed red lines indicate H-bonds (defined by the configurational criteria).
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When NDMA < NMSA, all DMA molecules are protonated and
(NMSA−NDMA) MSA molecules are intact. Therefore, the
number of proton transfers in a heteromolecular DMA−MSA
cluster is equal to the lowest number of NDMA and NMSA and is
equal to either NDMA or NMSA in cases where there are equal
numbers of bases and acids in the cluster (NDMA = NMSA). The
proton transfer pattern for the DMA−MSA clusters is similar
to that of the MEA−MSA clusters in our previous study.29 The
proton transfer pattern for the MA−MSA system is almost the
same as that for the DMA−MSA system except for the
(MA)1(MSA)1 cluster, where proton transfer did not occur.
This can be attributed to the lower basicity of MA, compared
to DMA. The formation free energy difference of the
(MA)1(MSA)1 cluster with and without proton transfer was
discussed in our previous study.29

Another common structural feature observed in all
heteromolecular (base)1−4(MSA)1−4 clusters in both systems
is that all protonated or unprotonated amino groups (−NH
and −NH2

+ for DMA and −NH2 and −NH3
+ for MA) of bases

at least participate in one H-bond formation as H-bond
donors. In some cases [the (DMA)2−4(MSA)1 and
(DMA)4(MSA)2−3 clusters and the (MA)2−4(MSA)1,
(MA)3(MSA)2, and (MA)4(MSA)2−3 clusters], the unproto-
nated amino groups can act as H-bond acceptors to form
extended H-bonded networks with protonated amino groups.
However, within the studied maximum cluster size of four
acids and four bases, the number of H-bonds (Table S2) in the
DMA-containing clusters is less than that in the corresponding
MA-containing clusters except for the (DMA)1−2(MSA)1−2
clusters. This is caused by the fewer available H-bond sites in
DMA compared to MA. With increasing cluster size, the
discrepancy in the number of formed H-bonds in the DMA−
MSA clusters and the corresponding MA-MSA clusters
becomes more pronounced. This is consistent with recently
reported lower H-bond capacity of DMA compared to that of
MA.43 Such a difference in the number of formed H-bonds was
also found in the DMA−SA and MA-SA systems (Table S2).44

In addition, DMA−MSA clusters tend to form a spindle-like
structure with increasing cluster size, in contrast to the
spherical three-dimensional structure for MA−MSA clusters.
The formation of a spindle-like structure results from both
having less H-bond sites available and the steric hindrance
caused by the additional −CH3 group in DMA, compared to
MA.
Cluster Formation Free Energy Surface. The formation

free energy surface at 298.15 K for the DMA−MSA system is
shown in Figure 2A, along with that for the MA−MSA cluster
system as a comparison (Figure 2B). The corresponding ΔH

and ΔS values are presented in Table S3. Figure 2 shows that
most heteromolecular DMA−MSA clusters have lower ΔG
than the corresponding MA−MSA clusters, within a difference
in the range of 0.94−6.06 kcal mol−1. However, the ΔG value
for the (DMA)4(MSA)2 cluster is higher than that of the
corresponding (MA)4(MSA)2 cluster. As the smallest
(DMA)1(MSA)1 and (MA)1(MSA)1 clusters have a negligibly
small structural effect from bases (as discussed in the Steric
Hindrance Effect section), the ΔG difference between
(DMA)1(MSA)1 and (MA)1(MSA)1 mainly results from the
difference in gas-phase basicity of the DMA and MA
c om p o u n d s . T h e d i ff e r e n c e i n ΔG v a l u e s
(ΔΔG(DMA−MSA)−(MA−MSA)) between DMA−MSA clusters
and the corresponding MA−MSA clusters would increase
(meaning more negative) significantly with increasing cluster
size, if no additional structural factor plays a role. As expected,
we find that the ΔΔG(DMA−MSA)−(MA−MSA) value increases
significantly from cluster size 1:1 to 2:2 along the growth
pathway (see the Formation Pathways section) of the DMA−
MSA clusters. However, above the 2:2 cluster size,
ΔΔG(DMA−MSA)−(MA−MSA) starts to decrease. Such a change in
ΔΔG(DMA−MSA)−(MA−MSA) with cluster size along the growth
pathway leads to a similar cluster stability change of the
DMA−MSA system, compared to the MA−MSA system. As
indicated by evaporation rates shown in Figure S5, the DMA−
MSA cluster is much stable than the corresponding MA−MSA
cluster within the 2:2 cluster size; however, the trend is
reversed for most clusters above the 2:2 cluster size. These
imply that the specific molecular structure of the amines
becomes important as the cluster formation potential does not
simply follow the basicity of the base with increasing cluster
size.

Steric Hindrance Effect. As discussed above, the limited
number of H-bond sites in the DMA molecule is an
unfavorable structural factor for the cluster formation free
energy of the DMA−MSA system compared to the MA−MSA
system. Beyond this, steric hindrance of the additional −CH3
groups in the DMA−MSA clusters counteracts the strong
enhancing potential originating from the high basicity of DMA.
To look further into the effect of steric hindrance, the diagonal
(DMA)z(MSA)z and (MA)z(MSA)z (z = 1−4) clusters were
selected for further analysis, as they are essential clusters in the
growth pathways for both the DMA−MSA and MA−MSA
cluster systems.
As can be seen in Figure 3, the Erep increases with the cluster

size for both the DMA−MSA and MA−MSA systems. In all
cases, except the (base)2(MSA)2 cluster, the Erep-DMA is
higher than Erep-MA and the difference increases for the larger

Figure 2. Formation free energy (ΔG) (kcal mol−1) of the (DMA)0−4(MSA)0−4 clusters (A) and (MA)0−4(MSA)0−4 clusters (B) calculated at the
DLPNO-CCSD(T)/aug-cc-pVTZ//ωB97X-D/6-31++G(d,p) level of theory. The calculations are performed at 298.15 K and 1 atm.
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3:3 and 4:4 clusters. Because the only structural difference in
DMA and MA is the position of an additional −CH3 group in
DMA compared to an H atom in MA and that the number of
−CH3 groups increases with the cluster size, the increased
difference between Erep-DMA and Erep-MA with the cluster size
originates from the steric hindrance effect of the additional
bulky −CH3 groups. This indicates that the steric hindrance
effect of −CH3 groups presents another unfavorable factor for
the cluster formation free energy of the DMA−MSA system,
compared to the MA−MSA system. For the (DMA)2(MSA)2
cluster, the H atom of the −CH3 group of DMA forms an
intermolecular interaction with one O atom of MSA with a
distance of H···O of about 2.4 Å and the −CH3 group has
enough space to avoid the repulsive interaction of the −CH3
groups in DMA with other groups, as shown in Figure 1,
decreasing the steric hindrance in the (DMA)2(MSA)2 cluster.
Figure 4A presents the DC−C for the selected clusters. With

increasing cluster size, DC−C increases in both systems. DC−C-
DMA is shorter than the corresponding DC−C-MA except the
(base)1(MSA)1 cluster. Notably, the difference in DC−C
becomes larger at larger sizes between DMA−MSA and
MA−MSA systems. This is another indication that steric
hindrance is more prominent in the DMA−MSA system as the
bulky −CH3 groups have to be closer to each other while still
attempting to form strong H-bonds.
The change in the LH with cluster size for the DMA−MSA

system is presented in Figure 4B, along with one for the MA−
MSA system as a comparison. In the view of cluster structures
(Figure 1), for the small cluster of size 1:1 and 2:2 for the

DMA−MSA system, the steric hindrance effect of −CH3
groups of DMA can effectively be avoided because −CH3
groups have enough space to point to various directions.
However, with an increase in the cluster size such as 3:3 and
4:4, the clusters become very crowded, and the −CH3 groups
have to approach their neighbor molecule to make NH or
NH2

+ form H-bonds with MSA. Therefore, the LH of the small
cluster at sizes 1:1 and 2:2 for the DMA−MSA system can be
considered as the reference for evaluating the steric hindrance
of −CH3 groups for large clusters. As can be seen from Figure
4B, the LH-DMA of the large cluster at sizes 3:3 and 4:4 is
much longer than that of reference clusters, indicating the
steric hindrance effect of −CH3 groups of DMA in forming
large clusters.
The comparison in the LH between DMA−MSA and MA−

MSA systems further presents the steric hindrance effect of
−CH3 groups of DMA. For the MA−MSA system, except the
(MA)1(MSA)1 cluster, the LH-MA almost does not vary with
the cluster size. For the (MA)1(MSA)1 cluster, proton transfer
does not occur, making its H-bond type different from that of
proton-transferred cases. This is one reason why the average
H-bond length of (MA)1(MSA)1 is much shorter than that in
other considered clusters. In addition, three −NHs of each
protonated MA interact with O atoms of MSA in
(MA)2(MSA)2, (MA)3(MSA)3, and (MA)4(MSA)4 clusters
(Figure S8), even though some NH···O interactions do not
form H-bonds as defined by the configurational criteria, as
mentioned in the Computational Details section. This is totally
different from the DMA−MSA case, where only two -NHs of
each protonated DMA interact with MSA. Actually, the
existence of three NH···O interactions in MA-MSA clusters
should elongate the LH-MA, compared to only two-NH···O
interaction cases because the protonated MA has to adjust its
orientations to make more -NHs to interact with O atoms of
MSA. Even though the existence of three NH···O interactions
in the MA−MSA cluster elongates the LH-MA, the LH-MA is
still shorter than the LH-DMA at cluster sizes of 3:3 and 4:4,
further proving the steric hindrance effect of −CH3 groups of
DMA on forming large clusters. The analysis for all considered
three parameters including Erep, DC−C, and LH suggests that the
steric hindrance of the −CH3 groups is another unfavorable
structural factor besides the available number of H-bond sites,
which hinders the cluster growth in the DMA−MSA system
compared to the MA−MSA system. In addition, it was found
that the ρ value for all considered DMA−MSA clusters is
smaller than that of the corresponding MA−MSA cluster
(Figure S7). However, the difference in the ρ value between
the DMA−MSA cluster and the corresponding MA−MSA

Figure 3. Repulsive energy (Erep) (kcal mol−1) obtained from EDA-
FF analysis for the (DMA)z(MSA)z and (MA)z(MSA)z clusters (z =
1−4).

Figure 4. Variation in average intermolecular carbon−carbon distance (DC−C) between −CH3 and −CH3 (Å) (A) and average H-bond lengths
(LH) (Å) (B) with cluster size for the (DMA)z(MSA)z and (MA)z(MSA)z clusters (z = 1−4).
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cluster does not present a regular change with cluster size as
that in DC−C. Such an irregularity is consistent with the
comprehensively irregular variation in the difference in the
atom−atom distance (including DN−N, DS−S, and DO−O, Figure
S7) between two systems with cluster size. This implies that
the steric repulsion could primarily affect the orientation of the
−CH3 groups and not the overall intermolecular spacing.
Steady-State Cluster Concentrations and Cluster

Formation Rates. The steady-state concentration of all
clusters including the MSA dimer (∑[(MSA)2]) and cluster
formation rates (J) can be used to evaluate the enhancing
potential of a given amine in MSA-driven NPF.13,14,23−25

Figure 5 presents both ∑[(MSA)2] and J as a function of the
concentration of the MSA (105 to 108 cm−3) and base (DMA/
MA, 1−100 ppt), simulated for clusters containing up to four
acid and four base molecules for both systems. ∑[(MSA)2] of
the DMA−MSA system is significantly higher than that of the
MA−MSA system in all considered MSA and base
concentration ranges. However, J in the DMA−MSA system
is very close to that in the MA−MSA system and is found to
even be lower than that of the MA−MSA system at lower MSA
concentrations (below 107 cm−3) and higher base concen-
trations (10 and 100 ppt). In addition, the selection of Ccoag
almost has no effect on the trend for ∑[(MSA)2] and J of the
DMA−MSA system compared to MA−MSA (Supporting
Information). It should be noted that J values for both systems
are negligibly small under all considered conditions except the
highest MSA and amine concentration. It has been shown
earlier that as indicators of the enhancing potential, the
concentration of all clusters that include the acid dimer
(∑[(acid)2], acid = SA/MSA) and J yield a consistent trend
for a given amine.13,14,23,29 However, this is not the case for
DMA when MA is selected as a reference for evaluating its
enhancing potential. The different trends mainly result from
that ∑[(MSA)2] at higher concentrations cannot efficiently

facilitate the growth to larger cluster in the DMA−MSA system
because of the unfavorable ΔG of the larger cluster as
discussed in the Cluster Formation Free Energy Surface
section. This is supported by the findings that the difference in
∑[(MSA)2] only varies slightly and that J is significantly
decreased (or even reversed) between the MA−MSA and
DMA−MSA systems, when increasing the largest simulated
cluster size from 2:2 to 4:4 (Figures S9, S10 and 5). The trend
of decreasing differences (even reversed in some cases for a
system with 4:4 as the largest cluster size) in J with increasing
maximal cluster implies that MA would show a significantly
higher enhancing effect than DMA on MSA-driven NPF when
larger cluster sizes are studied, consistent with previous
experimental findings.43 Therefore, combining all the above-
mentioned analysis, it can be concluded that the basicity of
amines is the determining factor that affects the formation of
small (DMA/MA)1−2(MSA)1−2 clusters; however, the struc-
tural factors become more important in their further growth.

Formation Pathways. Figure 6 shows the cluster
formation pathways for the DMA−MSA system obtained
under conditions with 278.15 K, [MSA] = 106 cm−3, and
[base] = 10 ppt. The cluster formation pathways are also
shown for the MA−MSA system as a comparison. As shown in
Figure 6A, the formation of the (DMA)1(MSA)1 cluster is the
first step of the cluster growth for the DMA−MSA system with
the (MSA)2 cluster only having a minor contribution. This
mechanism is similar to that of the initial cluster growth in the
MEA−MSA system.29 Both the (DMA)1(MSA)1 and (MSA)2
clusters grow to form (DMA)1(MSA)2 by colliding with MSA
and DMA, respectively. After the formation of the
(DMA)1(MSA)2 cluster, the cluster growth mainly proceeds
via alternately adding one DMA monomer and one MSA
monomer until the formation of the (DMA)3(MSA)3 cluster.
The (DMA)3(MSA)3 cluster directly grows to form the
(DMA)5(MSA)5 cluster via collision with (DMA)2(MSA)2.

Figure 5. Simulated steady-state MSA dimer concentration (Σ[(MSA)2]) (cm
−3) (A) and cluster formation rate (J) (cm−3 s−1) (B) as a function of

monomer concentrations at 278.15 K.

Figure 6. Cluster formation pathways for the DMA−MSA system (A) and the MA−MSA system (B) at 278.15 K, [MSA] = 106 cm−3, and [DMA/
MA] = 10 ppt. For clarity, pathways contributing less than 5% to the flux of the cluster are not shown.
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Such a unique growth pathway directly from (DMA)3(MSA)3
to the (DMA)5(MSA)5 cluster mainly results from the high
stability of (DMA)2(MSA)2 and instability of (DMA)4(MSA)4,
as shown by their ΔG values (Figure 2) or equivalent
evaporation rates (Figure S5). For the formation of the
(DMA)3(MSA)3 cluster, the collision of (DMA)2(MSA)2 with
(DMA)1(MSA)1 has 22% contribution, with the dominant
contribution being from the collision of (DMA)2(MSA)3 with
a DMA molecule.
Overall, the growth pathway of the DMA−MSA system is

different from that of the MA−MSA system. Three significant
differences that deserve mentioning are as follows: (1) The
initially formed cluster for the MA−MSA system is (MSA)2
and not the (base)1(MSA)1 as for the DMA−MSA system. (2)
The (base)1(MSA)2 cluster in the MA−MSA system has two
equivalently important growth pathways: either adding one
MA monomer or one MSA monomer to further form the
larger (base)2(MSA)3 cluster. (3) The main growth pathway of
the (base)3(MSA)3 cluster proceeds via a stepwise addition of
MSA and base monomers for the MA−MSA system. This is a
similar growth pathway as that in most other studied acid−
base systems,13,23,29 in contrast to the direct addition of a
(base)2(MSA)2 cluster as found for the DMA−MSA system.
The last difference implies that in the DMA−MSA system, the
(base)3(MSA)3 cluster cannot efficiently grow to larger cluster
sizes because the concentration of the (base)2(MSA)2 is much
lower than that of MSA or the base monomer. Except for the
difference, there is also one common feature for both systems
in the growth pathway: the addition of MSA is more favorable
than that of the base for the cluster with an equal number of
acids and bases. This mainly come from the fact that
(base)z(MSA)z+1 (z = 1−3) clusters are significantly more
stable than the corresponding (base)z+1(MSA)z (z = 1−3)
clusters (based on the evaporation rates in the Supporting
Information). This is consistent with the recent finding that
small particles below 9 nm from MSA and MA are acidic.74 In
addition, the dominant growth pathways for both systems are
kept when Ccoag is changed (Supporting Information).
Atmospheric Implications. This study reveals that

besides the H-bond capacity, the steric hindrance of the
additional −CH3 group in DMA is another structural factor
that contributes to its lower enhancing potential on MSA-
driven NPF, compared to MA. We noted that the number of
the formed H-bonds for the protonated DMA with SA in the
DMA−SA system is the same as that of the H-bonds for the
protonated DMA with MSA in the corresponding DMA−MSA
system (Table S2)44 and no obvious additional steric repulsive
energy was caused by the −CH3 group of DMA in SA-driven
NPF (Figure S11). In addition, both experimental and
simulation studies confirm that DMA has much higher
enhancing potential than MA on SA-driven NPF.14,46 There-
fore, although the lower H-bond capacity is an unfavorable
factor in determining the enhancing potential of DMA on SA-
driven NPF, it cannot counteract the increased enhancing
potential caused by its higher gas-phase basicity compared to
MA. One could argue that the lower H-bond capacity of DMA
could be made up by the high H-bond capacity of SA. In fact,
the number of H-bonds between SA and SA in the DMA−SA
system is similar to that in the MA-SA system for
(base)z(acid)z (z = 2−4)44 key clusters in their growth
pathways. Therefore, in the view of H-bond formation, SA
itself has little contribution to the difference in the enhancing
potential between DMA and MA. Given the same number of

the formed H-bonds for the protonated DMA in DMA−SA
and DMA−MSA systems, the unfavorable contribution of the
lower H-bond capacity on the enhancing potential in DMA−
SA and DMA−MSA systems is roughly similar. Therefore, the
additional steric hindrance caused by the additional −CH3
group in DMA is responsible for reversing the trend in the
enhancing potential of DMA and MA on MSA-driven NPF.
This implies that the steric hindrance of the additional −CH3
group of DMA plays an important role in determining its lower
enhancing potential on MSA-driven NPF although it is difficult
to directly estimate the contribution of the −CH3 group.
Together with the H-bond capacity and the basicity, the effect
of potential steric hindrance should also be taken into account
when screening species with high enhancing potential on MSA-
driven NPF.
This study also reveals that the smallest DMA−MSA clusters

are still more stable than the corresponding MA−MSA clusters
within the 2:2 cluster size, indicating that the basicity of amines
remains the dominant factor in the initial cluster formation. In
the real ambient atmosphere, a broad variety of amines such as
MA, DMA, TMA, and diamines likely coexist.75 Therefore,
MSA may initially bond with amines with strong basicity such
as DMA or TMA to form stable small clusters, and then,
amines with high enhancing potential when accounting for the
steric hindrance, H-bond capacity, and basicity can further
bond with the stable small clusters. In this way, atmospheric
amines can synergistically enhance MSA-driven NPF and
therefore further increase the role of atmospheric amines in
MSA-driven NPF. It should be noted that a very recent
experimental study has confirmed the synergetic effect of NH3
in amine in enhancing MSA-driven NPF.42 Given the
significant role of amines in MSA-driven NPF, the synergetic
effect of various amines, especially MA, DMA, and TMA, in
enhancing MSA-driven NPF deserves further investigation. In
addition, previous studies found the synergetic effect of MSA
and SA in NPF in the presence of DMA and of atmospheric
base in SA-driven NPF.76 Because atmospheric bases, MSA,
and SA can coexist over a broader range of current
atmospheric conditions,2 the NPF of mixed amines, ammonia,
MSA, and SA could be important from the view of more
realistic atmospheric conditions and is also warranted for
future study.
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J.; Nieminen, T.; Ortega, I. K.; Wagner, R.; Adamov, A.; Amorim, A.;
Bernhammer, A.-K.; Bianchi, F.; Breitenlechner, M.; Brilke, S.; Chen,
X.; Craven, J.; Dias, A.; Ehrhart, S.; Flagan, R. C.; Franchin, A.; Fuchs,
C.; Guida, R.; Hakala, J.; Hoyle, C. R.; Jokinen, T.; Junninen, H.;
Kangasluoma, J.; Kim, J.; Krapf, M.; Kürten, A.; Laaksonen, A.;
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