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We have performed Monte Carlo simulations of homogeneous and heterogeneous nucleations of
Lennard-Jones argon clusters. The simulation results were interpreted using the major concept
posing a difference between the homogeneous and heterogeneous classical nucleation theories—the
contact parameter. Our results show that the multiplication concept of the classical heterogeneous
nucleation theory describes the cluster-substrate interaction surprisingly well even for small
molecular clusters. However, in the case of argon nucleating on a rigid monolayer of fcc�111�
substrate at T=60 K, the argon-substrate atom interaction being approximately one-third as strong
as the argon-argon interaction, the use of the classical theory concept results in an underestimation
of the heterogeneous nucleation rate by two to three orders of magnitude even for large clusters. The
main contribution to this discrepancy is induced by the failure of the classical theory of
homogeneous nucleation to predict the energy involved in bringing one molecule from the vapor to
the cluster for clusters containing less than approximately 15 molecules. © 2006 American Institute
of Physics. �DOI: 10.1063/1.2358343�

I. INTRODUCTION

Heterogeneous nucleation is a candidate for triggering
atmospheric aerosol activation processes.1 For practical at-
mospheric applications it is important to predict the hetero-
geneous nucleation rate theoretically.2 Usually the predic-
tions are made using the classical heterogeneous nucleation
theory �CHNT�.3 It is based on the same principles as the
classical homogeneous nucleation theory �CNT�;4–7 molecu-
lar clusters are treated as liquid droplets with bulk liquid
values for density and surface tension. When the interaction
of a droplet with a substrate surface is taken into account,
only one macroscopic parameter, namely, the contact angle
between the nucleating droplet and the surface, is needed.
There has been an attempt to substitute the macroscopic con-
tact angle with a microscopic fit.8 In atmospheric sciences
there exist a number of studies where CHNT has been
applied.9–20

Besides the classical theory, there exist a number of
other methods available for the calculation of the major
quantities in nucleation, namely, nucleation rate and free en-
ergy of formation. These methods include density functional
approaches and molecular dynamics �MD� simulations. The
density functional approaches,21–25 based on the capillarity
theory,26 enable the determination of the free energy of for-
mation from approximate free energy functionals. Using MD
simulations it is possible to study the dynamical behavior of
nucleating supersaturated vapor.27–33

With the development of computers the statistical me-
chanics �molecular� approach34 to nucleation has become
possible. It allows one to calculate straightforwardly the
nucleation rate for homogeneous nucleation with Monte

Carlo �MC� simulations. However, the practical application
of the molecular approach is limited because of the complex
nature of the intermolecular interaction. Most of Monte
Carlo simulations related to nucleation are performed for
argon35–41 because of the simplicity of the intermolecular
potential. On the other hand, experiment on the nucleation of
argon is rather difficult,42–48 and comparison of the theory
and experiment does not allow conclusions on the validity of
various nucleation theories. A recent experimental study by
Fladerer and Strey,49 suggesting a vast 30 orders of magni-
tude difference between experimental and theoretical nucle-
ation rates, gives an extensive data set for future comparison.
Aside from argon, experiments for homogeneous nucleation
of water give more data for analysis. Neither CNT nor simu-
lation results agree well with experimental values of nucle-
ation rate, but the MC simulations reproduce the experimen-
tal temperature dependence while CNT fails to do so.50–52

Heterogeneous nucleation has not been studied as exten-
sively as homogeneous nucleation using Monte Carlo tech-
niques. There exist, however, some reports on molecular MC
simulations of heterogeneous nucleation. The majority of the
studies dealing with vapor-liquid or ice nucleation investi-
gate either Lennard-Jones53–56 or water57–60 clusters interact-
ing with a variety of substrate surfaces. The scope of these
studies has been mainly to investigate either the structure of
the cluster or the effect of the substrate structure on the free
energy.

Recently, we have developed a molecular approach to
heterogeneous nucleation.61 Special attention was paid to pe-
culiarities in the usage of the Monte Carlo simulations for
studying heterogeneous nucleation. In the present study we
utilize our simulation approach and compare the results to
the classical heterogeneous nucleation theory concept of thea�Electronic mail: antti.lauri@helsinki.fi
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multiplication of the homogeneous nucleation barrier height
by the contact parameter. The simulated model system is an
argon cluster on platinum substrate. Our main question is
whether it is enough to know just the contact angle between
the cluster and the substrate and the homogeneous nucleation
rate in order to calculate the heterogeneous nucleation
rate.

II. THE ENERGY BARRIER IN THE CLASSICAL
NUCLEATION THEORY

In order to understand the features of the CHNT a brief
presentation of the CNT is needed. Thus we first summarize
the calculation of the formation free energy for homogeneous
clusters.62,63

Consider a cluster consisting of n molecules suspended
in supersaturated vapor where the temperature is T and the
vapor pressure is pg. The cluster is treated as an incompress-
ible, uniform spherical liquid droplet of radius r, area A
=4�r2, and volume Vhom=4/3�r3. Let �l be the number den-
sity in the liquid. The total number of molecules in a cluster
is then n=�lVhom. The free energy of formation in homoge-
neous nucleation for a one-component cluster is given by

�Ghom = A�lg − �lVhomkT ln S , �1�

where �lg is the vapor-liquid surface tension, k is the Boltz-
mann constant, and S= pg / ps is the saturation ratio, where ps

is the saturation vapor pressure. Definition of the critical ra-
dius r* as the maximum point of the formation free energy
���Ghom

* /�r*=0� leads to

r* =
2�lg

�lkT ln S
. �2�

In heterogeneous nucleation the shape and nature of the
substrate surface play an important role. In this study we
concentrate on the most simple shape of the substrate—a flat,
insoluble surface. Consider a critical embryo formed from
the vapor phase on the surface. As in the homogeneous case,
the cluster is thought to consist of incompressible, uniform
liquid. The shape of the cluster is a segment of a sphere with
the base attached to the insoluble surface. The angle � be-
tween the embryo surface and the substrate surface is called
the contact angle. A schematic picture in the upper part of
Fig. 1 shows the geometry of the system. Now the volume
�Vhet�, base area �Asl�, and cap area �Alg� of the embryo can
be expressed as functions of the embryo radius and contact
angle as

Vhet =
�

3
r3�2 + cos ���1 − cos ��2, �3�

Alg = 2�r2�1 − cos �� , �4�

Asl = �r2�1 − cos2 �� . �5�

The ratio of the volumes of the droplet on the substrate and

a spherical droplet is

Vhet

Vhom
= f�m� =

nhet

nhom
, �6�

where f�m�= �2+m��1−m�2 /4 is called the contact parameter
and m=cos �.

In the classical theory the energy barrier for heteroge-
neous nucleation is given by62

�Ghet = �l��l − �v�Vhet + �lgAlg + ��sl − �sg�Asl, �7�

where � is the chemical potential, � is the interfacial free
energy per unit area, Vhet is the volume of the cluster, and A
is the surface area of the cluster. Subscripts l, g, and s cor-
respond to the liquid and vapor phases and the substrate
surface, respectively.

Inserting Eqs. �3�–�5� for volume and areas into Eqs. �1�
and �7� we get

�Ghet = �Ghomf�m� . �8�

Thus, according to the classical nucleation theory the free
energies of formation in homogeneous and heterogeneous
nucleations differ by the factor of the contact parameter. The
critical radius in heterogeneous nucleation is exactly the
same as in homogeneous nucleation. It should be noted that
the contact parameter f�m� is the same for the volume and
energy barrier �Eqs. �6� and �8�� only if the substrate is
planar.20

In order to find the difference between the work of for-
mation of an n cluster and that of an �n−1� cluster we will
need to express the work of formation in terms of the number
of molecules n. Using Vhom=n /�l we get

�Ghom�n� = − nkT ln S + �n2/3, �9�

where �= �36��1/3�l
−2/3�lg. Differentiating the work of

FIG. 1. A schematic picture of the geometry of a liquid embryo on a flat
solid substrate. The angle � is the contact angle. The picture also shows the
connection between the classical droplet model and the equimolar radius
obtained from the density distribution of the cluster.
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formation over the number of molecules we get

��Ghom�n�
�n

= − kT ln S +
2

3
�n−1/3. �10�

The approximated difference between the work of formation
of an n cluster and that of an �n−1� cluster is now given
by

�Ghom�n� − �Ghom�n − 1� �
��Ghom

�n
�n , �11�

where �n=1. However, instead of using the derivative we
should define the work of bringing one molecule from the
vapor to the cluster. For this purpose we use the increment of
the work of formation, given by

�Ghom�n� − �Ghom�n − 1�

= 3
2shom�n2/3 − �n − 1�2/3� �n � 2� , �12�

where shom is the slope of the �linear� derivative function.
Figure 2 demonstrates the difference between the derivative
of the work of formation with respect to the number of mol-
ecules in the cluster and the increment for an arbitrary slope
shom. As it can be seen, Eq. �11� represents a good approxi-
mation for large clusters, but for small clusters there is a
slight deviation between the derivative and the increment. In
the data analysis of this study we have ignored this differ-
ence.

Using Young’s equation

�lgm = �sg − �sl, �13�

Vhet=n /�l=4/3�r3f�m�, and Eqs. �4�, �5�, and �7� the differ-
ence between the work of formation of an n cluster in het-
erogeneous nucleation and that in homogeneous nucleation
becomes

�Ghet�n� − �Ghom�n� = ��f1/3�m� − 1�n2/3. �14�

III. THE THEORY BEHIND THE SIMULATION
METHOD

In this section we will summarize our molecular ap-
proaches for both homogeneous and heterogeneous nucle-
ations.

A. Homogeneous nucleation

The most frequently used model for the imperfect gas
considers the gas as a mixture of ideal gases, each of them
representing clusters of a certain size. The clusters are as-
sumed to be noninteracting with the monomers and with
each other. For some simple pair potentials the equilibrium
cluster distribution can be found analytically, while for the
vast majority of cases computer simulations, especially
Monte Carlo simulations, are used. There are different Monte
Carlo approaches to the simulation of vapor nucleation. They
can be divided into two categories. The first one is a direct
simulation of vapor to observe clustering.36,38,41 The second
type is the simulation of an isolated cluster to calculate the
cluster free energy,34,39,51,52,64,65 the method presented also
here. The simulations of the second type correspond strictly
to the imperfect gas model described above. At first sight the
direct vapor simulation seems to be more rigorous than the
simulation of an isolated cluster. However, all the cited meth-
ods of the first type assume the validity of the following
equilibrium cluster distribution:66–71

Nn = N1 exp�−
�Ghom�n�

kT
� , �15�

where Nn is the number of n clusters and �Ghom�n� is often
referred to as the reversible work of formation of an n clus-
ter. From statistical mechanics we know that if an equilib-
rium cluster distribution exists, then the cluster concentration
can be calculated through the cluster partition function. It
means that the only more general feature of the direct vapor
simulation is that the cluster partition function in that case
takes the cluster-monomer and cluster-cluster interactions
into account. As shown by Oh and Zeng,72 their contribu-
tions are negligibly small unless the saturation ratio is ex-
tremely high. Comparisons between the prediction of the
nucleation rate by methods of different types have been done
earlier.72–74 At similar conditions different simulation meth-
ods give nearly identical results. Simulations of an isolated
cluster are much less time consuming by two reasons. First,
they do not need very large number of molecules in the
simulated system. Second, more importantly, while simulat-
ing the isolated cluster one does not need to input the satu-
ration ratio as a parameter. As we shall see later, the depen-
dence of the work of formation on the saturation ratio is fully
described by the term proportional to �n−1�kT ln S. The lat-
ter fact makes our study much easier, since our main goal is
to check the validity of the CHNT prediction of the work of
cluster formation in the heterogeneous case. CHNT predicts
that the work of formation can be obtained through the work
of a cluster formation in the homogeneous case and the con-
tact parameter obtained via macroscopic consideration, when
the interaction of the cluster molecules between each other
and with the substrate molecules is described by a pair po-
tential.

In our molecular approach of homogeneous nucleation
we follow the formulation of Hale,39 Hale and DiMattio,52

and Hale and Ward64 with the specifications made by Lauri
et al.74 The same way as in the classical theory, the vapor is
considered as a mixture of ideal gases, each gas consisting of

FIG. 2. An illustration of the derivative of the work of formation with
respect to the number of molecules in the cluster �solid line� and the work of
formation increment, i.e., the work to bring one molecule from the vapor to
the cluster �crosses� for an arbitrary slope shom.

164712-3 Heterogeneous nucleation of Ar J. Chem. Phys. 125, 164712 �2006�

Downloaded 04 Nov 2006 to 128.214.182.159. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



clusters of one size, i.e., monomers make up one gas, dimers
another, etc. The starting point for the calculation of the work
of formation is Eq. �15�. The work of formation is given by

�Ghom�n� = − kT�ln�q�n�
n!

� − n ln q�1� − �n − 1�ln N1	 ,

�16�

where q�n� is the configurational integral of the n cluster,

q�n� =
 ¯

cluster

exp�−
Un�R1, . . . ,Ri, . . . ,Rn�

kT
�

	dR1 ¯ dRn. �17�

In Eq. �17� Ri is the position vector of the ith molecule in the
laboratory coordinates and Un is the potential energy of the
cluster.

The specific values of the configurational integral for
many-body systems such as molecular clusters are practi-
cally impossible to evaluate analytically. However, there ex-
ist computational methods able to measure the ratio of con-
figurational integrals of two systems related to each other.
Multiplying q�i� /q�i−1� over all cluster sizes up to n we get

q�n� =
q�n�

q�n − 1�
q�n − 1�
q�n − 2�

¯

q�2�
q�1�

q�1� . �18�

The logarithm of this product can be transformed to the form

ln q�n� = �
i=2

n

ln� q�i�
q�i − 1�� + ln q�1� . �19�

Now the work of formation of an n cluster is given by

�Ghom�n� = kT�
i=2

n �− ln
q�i�

q�i − 1�V
+ ln i − ln N1	 , �20�

since q�1�=V, where V is the volume of the system.
From this point onwards, the denominator q�i−1�V in

the logarithm inside the summation in Eq. �20� is treated
slightly differently from Hale and Ward, producing a dispar-
ity between the two approaches in the partition function of
the cluster.

After the transformation from the laboratory coordinates
R to the center of mass coordinates R� the expression of the
configurational integral for the n cluster becomes

q�n� = n3qc.m.�n��n�V , �21�

where

qc.m.�n��n� =
 ¯

n cluster

exp�−
Un�R1�, . . . ,Rn−1� �

kT
�

	dR1� ¯ dRn−1� . �22�

The term n3 is the Jacobian determinant of the coordinate
transformation, and


 dRc.m. = V . �23�

Similarly in the center of mass coordinates R� for an �n
−1� cluster

q�n − 1� = �n − 1�3qc.m.�n−1��n − 1�V , �24�

where

qc.m.�n−1��n − 1� = 
 ¯

�n−1� cluster

exp�−
Un−1�R1�, . . . ,Rn−2� �

kT
�

	 dR1� ¯ dRn−2� �25�

and


 dRc.m.� = V . �26�

Let us consider two systems labeled A and B. System A
consists of n molecules in a cluster. The center of mass of
system A is fixed. System B is otherwise exactly the same as
system A, but there is one free molecule, which does not
interact with the other molecules in the cluster. With this
definition, the configurational integral of system A is the
same as the configurational integral of the n cluster in the
center of mass coordinates:

qA�n� = qc.m.�n��n� . �27�

As we will describe later, our simulations produce the ratio
of the configurational integrals of systems A and B,
qA�n� /qB�n�. To get the relation between the configurational
integral of system B, qB�n�, and the configurational integral
of the �n−1� cluster in its center of mass coordinates needed
in Eq. �20�, we will consider the configurational integral in
more detail. Deciding that the nth molecule in the n cluster is
always the one not interacting with the other cluster mol-
ecules we can write the configurational integral for system B
in the center of mass coordinates of the n cluster simply as

qB�n� =
 ¯

n cluster

exp�−
Un�R1�, . . . ,Rn−1� �

kT
�

	dR1� ¯ dRn−1� , �28�

where Ri� is the coordinate of molecule i in the center of
mass coordinates of the n cluster. After the transformation to
the center of mass coordinates of a system of n−1 interacting
molecules �R�� the configurational integral becomes

qB�n� =
 ¯

n cluster

exp�−
Un�R1�, . . . ,Rn−2� �

kT
�

	 dR1� ¯ dRn−2� dRc.m.� �n − 1�3. �29�

The center of mass position is fixed according to the n clus-
ter. Thus, in system B the center of mass position includes
also the coordinates of the free molecule. Integration over the
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center of mass of the �n−1� cluster reflects the movement of
the center of mass in system B.

Instead of integrating over the center of mass coordinate
of the �n−1� cluster Rc.m.� we can integrate over the free
molecule, since

Rn� = − nRc.m.� ⇒ dRc.m.� =
dRn�

n3 , �30�

where 1/n3 is the Jacobian determinant of the transforma-
tion. The transformation leads to

qB�n� =
 ¯

n cluster

exp�−
Un�R1�, . . . ,Rn−2� �

kT
�

	 dR1� ¯ dRn−2� dRn�
�n − 1�3

n3 . �31�

Now we have to consider the boundary conditions of the
cluster definition. Whereas the cluster of n molecules is
forced to follow the cluster definition, the cluster of n−1
interacting molecules and one free molecule does not neces-
sarily fulfill the conditions required by the cluster definition
for the �n−1� cluster. To overcome this we will formally split
the configurational integral into two parts:

qB�n� = 
 ¯

�n−1� cluster

exp�−
Un�R1�, . . . ,Rn−2� �

kT
�

	 dR1� ¯ dRn−2� dRn�
�n − 1�3

n3

+ 
 ¯

n cluster

not�n−1� cluster

exp�−
Un�R1�, . . . ,Rn−2� �

kT
�

	 dR1� ¯ dRn−2� dRn�
�n − 1�3

n3 . �32�

The first integral in Eq. �32� includes only those configura-
tions of the cluster where n−1 interacting molecules form an
�n−1� cluster and together with the free molecule form an n
cluster. The second integral includes only configurations
where n molecules belong to the same cluster, but n−1 in-
teracting molecules cannot be considered as an �n−1� clus-
ter.

Furthermore, integration over the position of the nth
molecule gives the volume available for the free molecule.
Now we will mark the sum of the two integrals in Eq. �32� as

qB�n� = �I1 + I2�
�n − 1�3

n3 = I1�1 + 
�n��
�n − 1�3

n3 , �33�

where 
�n� accounts for the configurations in system B,
which do not fulfill the conditions required by the cluster
definition for the �n−1� cluster.

Since I1= �Vfreeqc.m.�n−1��n−1�, where �Vfree is the ca-
nonically averaged volume available for the free molecule,
when it forms an n cluster together with a cluster of n−1
interacting molecules, we will end up at

qB�n� =
�Vfreeqc.m.�n−1��n − 1��n − 1�3

n3 �1 + 
�n�� . �34�

Using Eqs. �27� and �34� the ratio between the configu-
rational integrals of clusters of sizes n and n−1 is

qc.m.�n��n�

qc.m.�n−1��n − 1�
=

qA�n��Vfree�n − 1�3�1 + 
�n��
qB�n�n3 . �35�

Using the conventional relation between the Helmholtz free
energy difference between two systems, FA�n�−FB�n�, and
the configurational integral ratios of the same systems,
qA�n� /qB�n�,

FA�n� − FB�n� = − kT ln�qA�n�
qB�n�

� , �36�

and inserting Eqs. �21�, �24�, and �35� into Eq. �20� we will
end in the expression for the reversible work of formation of
an n cluster,

�Ghom�n� = �
i=2

n �FA�i� − FB�i� − kT ln�1 + 
�i��

+ kT ln
i

�sv�Vfree�i�
− kT ln S� , �37�

where we have used the relation of the monomer density to
that in the saturated vapor ��sv�,

N1

V
= �svS . �38�

B. Heterogeneous nucleation

Our recent formulation of the reversible work of forma-
tion in heterogeneous nucleation61 also starts from the equi-
librium cluster distribution, now in the presence of a sub-
strate surface the cluster is interacting with. This equilibrium
cluster distribution can be given in a similar form as in the
homogeneous case �Eq. �15��,

Nna = N1a exp�−
�Ghet�n�

kT
� , �39�

where index a indicates the presence of a substrate. This
formulation corresponds to equilibrium cluster distribution in
the classical approach.75 A similar approach has been em-
ployed earlier by Ward et al. for water clusters on AgI
substrate.57 Our formulation enables us to evaluate the work
of formation in the heterogeneous case by61

�Ghet�n� = �Fhet�n� − Fhom�n�� − �Fhet�1� − Fhom�1��

+ �Ghom�n� , �40�

where F�n� is the Helmholtz free energy of an n cluster in a
volume near the substrate surface, where the interaction be-
tween the cluster and the substrate is significant. We will
describe the definition of this volume in the next section.
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IV. SIMULATION METHOD AND COMPUTATIONAL
DETAILS

We applied the overlapping distribution method76 in our
simulations. This method provides an accurate way to deter-
mine the energy barriers in both homogeneous and heteroge-
neous nucleations. The general idea of this method is to com-
pare two closely related systems by producing potential
energy difference distributions. Simulation of each cluster
size involves one separate simulation for both these systems.

All the interactions in our systems were described by the
Lennard-Jones pair potential

�ij�Rij� = 4����LJ

Rij
�12

− ��LJ

Rij
�6	 , �41�

where Rij is the distance between molecules i and j�i� j� and
� and �LJ are the energy and distance parameters of the se-
lected potential, respectively. The values for the interaction
between two cluster molecules were chosen to be �
=119.4 K and �LJ=3.4 Å, whereas the values for the inter-
action between a cluster molecule and a substrate molecule
were �=43.8 K and �LJ=3.085 Å, corresponding to argon-
platinum interaction.77 We carried out simulations with a
truncated and shifted potential with a cutoff radius of 2.5�LJ.

The reversible work of formation of an n cluster in ho-
mogeneous nucleation is given by a sum of contributions
over all cluster sizes smaller than n, as shown in Eq. �37�.
The work of formation in heterogeneous nucleation is ob-
tained by adding four terms to the homogeneous work of
formation �Eq. �40��. This will allow us to determine the
absolute values of formation energies for clusters on sub-
strate surface and thus the energy barrier in heterogeneous
nucleation by a chain of simulations. First we calculate the
energy barrier up to n molecules in homogeneous nucleation
and then add the four terms in each point of the barrier in
order to get the barrier for heterogeneous nucleation. The
schematic picture of the procedure is shown in Fig. 3.

In the simulation of homogeneous nucleation the two
systems correspond to ensembles A and B described in Sec.
III A. When simulating system A �cluster with n interacting
molecules�, the molecules in both systems were moved ac-

cording to the Metropolis scheme78 corresponding to the po-
tential energy difference of system A. The potential energy
difference between the systems was recorded in a probability
distribution �histogram�. Another probability distribution was
generated during the simulation of system B �cluster with n
−1 interacting molecules and one free molecule�, where the
acceptance of the Metropolis moves corresponded to the po-
tential energy difference of system B. In both simulations of
systems A and B the n-molecule center of mass position was
kept fixed. The overlapping region of the two probability
distributions gives the Helmholtz free energy difference be-
tween the two systems:

FA�n� − FB�n� = UA�n� − UB�n�

+ kT ln�PA�UA�n� − UB�n��
PB�UA�n� − UB�n��� , �42�

where UA�n�−UB�n� is the total potential energy difference
between systems A and B.

Besides the Helmholtz free energy difference, Eq. �37�
contains two unknown values. The term ln�1+
� includes the
effect of the configurations breaking the cluster definition in
system B. Vfree is the canonically averaged volume available
for the free molecule, when it forms an n cluster together
with a cluster of n−1 interacting molecules. The values of
ln�1+
� and Vfree were obtained from the same simulations
as the probability distributions. Their calculation depends on
the cluster definition. In our simulations we used the cluster
definition of Stillinger79 with the connectivity distance of
1.5�LJ.

When using the Stillinger definition, the boundary con-
dition discussed in the context of the second integral in Eq.
�32� is constituted of such configurations where the free mol-
ecule in an n cluster forms the only link between two parts of
the cluster. Thus, the exclusion of the free molecule would
break the �n−1� cluster in two parts. The idea of the over-
lapping distribution method can be used for the calculation
of the term ln�1+
� as well. When simulating system B, the
configurations where the free molecule is the only link be-
tween two parts of the cluster are not forbidden. Instead, we
introduce system C, which is exactly the same as the system
B, but where the configurations breaking the cluster defini-
tion in system B are either forbidden or have very high posi-
tive energy. Applying an “imaginary overlapping distribution
method,” the idea shown in Fig. 4, we are able to formulate
the additional term. The ratio between the configurational
integrals of the two systems �i.e., their free energy differ-
ence� is then obtained as the ratio PC /PB at the only over-
lapping point ��U�UC−UB=0�. By means of the term 1
+
�n� in Eq. �33� this difference is now given by

1 + 
�n� =
N�n�

N�n� − Ne�n�
, �43�

where N�n� is the total number of sampled configurations of
an n cluster and Ne�n� is the number of the configurations, in
which the noninteracting molecule is the only link between
two parts of the cluster. In practice Ne is calculated when
simulating system B. Thus, there is no need to simulate sys-
tem C separately.

FIG. 3. A schematic picture of the procedure to obtain the complete energy
barrier in homogeneous and heterogeneous nucleations. First each point in
the energy barrier in homogeneous nucleation �upper curve with arrows� is
calculated by the sum shown in Eq. �37�, and each point in the heteroge-
neous nucleation barrier �dashed curve� is obtained by adding the Helmholtz
free energy difference values �arrows pointing down� to the corresponding
homogeneous nucleation barrier values according to Eq. �40�. The critical
cluster sizes and formation energies, corresponding to the maxima of the
energy barriers, are denoted by n* and �G*, respectively.
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During the simulations a numerical value for the canoni-
cally averaged volume �Vfree available for the free molecule
was done by a set of simple brute force Monte Carlo runs.
For each randomly chosen configuration we placed a sphere
centered in the center of mass position of the �n−1� cluster.
The radius of the sphere was the connectivity distance of the
cluster definition added to the distance between the center of
mass and the molecule furthest from the center of mass.
Evenly distributed random points inside this sphere were se-
lected for the configuration during the simulation of en-
semble A, and the number of points belonging to the cluster
according to the cluster definition was counted. Then the
available volume was obtained by multiplying the volume of
the sphere and the fraction of the points belonging to the
cluster. Averaging was done over 2000 configurations.

When simulating heterogeneous nucleation, the two
simulated systems correspond to the ensemble which in-
cludes the cluster interacting with the substrate and the en-
semble where the cluster does not interact with the substrate.
The substrate was represented by a monolayer of rigid mol-
ecules set in the shape of a fcc�111� lattice. The nearest
neighbor distance was set to 2.77 Å, representing the surface
of a platinum crystal. The substrate size was 20
	20 molecules. In order to represent a seemingly infinite
substrate we restricted the center of mass position of the
cluster to lie on the normal of the middle unit cell of the
lattice. If the center of mass moved outside the middle unit
cell boundaries, periodical boundary conditions were ap-
plied. Again, one probability distribution was produced from
simulations of each ensemble, and Helmholtz free energy
difference was obtained from the overlapping region of the
probability distributions. The system where the cluster does
not interact with the substrate is equivalent to system A. This
information was utilized to calculate the explicit value of the
work of formation in heterogeneous nucleation.

In both simulations of homogeneous and heterogeneous
nucleations we used a factor  to distinguish the two com-
pared systems. In simulations of homogeneous clusters the
factor  was used to control the interaction between the free

molecule and other cluster molecules. Value =1 corre-
sponds to system A with n interacting molecules, while value
=0 is equivalent to system B with �n−1� interacting mol-
ecules and one free cluster molecule. Following the same
idea, in heterogeneous cluster simulations value =1 corre-
sponds to full interaction between the cluster and the sub-
strate, while =0 implies that there is no interaction between
the cluster and the substrate. In order to have a reasonable
overlapping range of the probability distributions we per-
formed the heterogeneous nucleation simulations in several
stages, using intermediate values =0.05, =0.2, and 
=0.5.

Particularly when simulating ensembles where the clus-
ter molecules do not interact either with the substrate or each
other, i.e., using =0, very high potential energy differences
between the systems arise due to molecules getting very near
each other, weakening the ensemble average. To prevent this
disturbance we restricted the nearest allowed distance be-
tween two molecules to the value of 0.83�LJ, reasoned in our
earlier work.61

A volume where the interaction between the cluster and
the substrate is significant has to be defined for the hetero-
geneous nucleation simulations.61 This volume is character-
ized by a limiting height hlim. During the simulations the
cluster molecules are not allowed to exceed this height. In
our simulations we used the height where the potential en-
ergy between the cluster and the substrate equals 10−4 times
the maximum mean interaction. In this study the value of this
height varies between 7.5 Å for a monomer and 20.3 Å for a
cluster of 195 molecules.

In order to equilibrate the systems we always generated
2n	105 configurations, where n is the number of molecules
in the cluster. We used further n	106 configurations to ac-
cumulate the histograms. During the equilibration we gener-
ated the subsequent configurations by performing translation
trials, which were accepted following the Metropolis algo-
rithm. In simulations of heterogeneous nucleation a full in-
teraction between the cluster molecules and the substrate
molecules was applied throughout the equilibration.

We made all the simulations in temperature T=60 K,
which is above the triple point for the truncated and shifted
potential we used.80 It should be noted that often the liquid-
vapor coexistence properties can be applied also below the
triple point, since small nucleating clusters have been noticed
to behave liquidlike even in very low temperatures �see, e.g.,
the work of Fladerer and Strey49 and the references within�.

V. RESULTS AND DISCUSSION

We carried out a series of Monte Carlo simulations. One
set of simulations was run to obtain the work of formation in
homogeneous nucleation for clusters of size of 2-900, and
another one for calculating the difference between the work
of formation of the clusters in homogeneous nucleation and
that in heterogeneous nucleation for clusters of size of 1-195.

According to the classical theory heterogeneous nucle-
ation is closely related to homogeneous nucleation; the con-
tact parameter is the only quantity needed to obtain the work
of the droplet formation in heterogeneous nucleation from

FIG. 4. A schematic picture of the idea of the “imaginary overlapping dis-
tribution method” to obtain a numerical value for the term ln�1+
� in Eq.
�37�. The bars indicate the number of configurations in ensembles B and C
described in the text. The potential energy difference �U between en-
sembles B and C is different only for clusters breaking the cluster definition
in ensemble B. Ensemble C is not simulated separately, but the number of
configurations that break the cluster definition in ensemble B is recorded
during the ensemble B simulation.
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the work of formation in the homogeneous case. Next we
specify some consequences of this theory. First, the classical
nucleation theory is based on the assumption that the density
of the droplets is identical for the same substance nucleating
in homogeneous and heterogeneous conditions. Second, the
ratio of the number of molecules in the critical cluster in the
heterogeneous and homogeneous cases gives the contact pa-
rameter according to Eq. �6�. Furthermore, the ratio of the
critical work of formation in heterogeneous nucleation and in
homogeneous nucleation also equals the contact parameter
�Eq. �8��. Thus, the curve of the work of formation versus the
cluster size in the homogeneous case can be matched with
the same curve in the heterogeneous case if the axes of the
former curve are multiplied by the contact parameter. Third,
the increment of the work of formation in the homogeneous
case is given by Eq. �10�. If ��Ghom/�n is plotted versus
n−1/3, we obtain a straight line with a slope shom= 2

3�. Ac-
cording to Eq. �14� �Ghet�n�−�Ghom�n� also produces a
straight line with a slope shet=��f1/3�m�−1� if plotted versus
n2/3. The ratio of the slopes is thus

shet

shom
= 3

2 �f1/3�m� − 1� . �44�

We performed simulations in order to check the validity
of these classical relations. During the simulations we ana-
lyzed the shape and density of the clusters. The cluster den-
sities were calculated using two different methods. The first
way follows the proposal of Stillinger �1963�.79 In his paper
he suggested that the volume of a cluster should be consid-
ered as the total volume occupied by spheres with radius
given by half of the connectivity distance, which corresponds
to 0.75�LJ around each cluster molecule in our case. The
second method, used only for homogeneous clusters, is
based on a fit function of the form81

��r� = 1
2 ��l + �g� − 1

2 ��l − �g�tanh�2�r − R0�/D� , �45�

where �l and �g correspond to liquid and vapor phase densi-
ties, respectively, R0 is the equimolar radius, and D is the
surface thickness. The equimolar radius corresponds to the
radius of a spherical droplet with uniform density �l. In the
fit function �l, R0, and D were free parameters. The vapor
density was set to zero, since we did not simulate the sur-
rounding vapor. Equation �45� gives the droplet radial den-
sity, where r=0 is the center of the droplet. An example of a
radial distribution is shown in the lower part of Fig. 1 with
the equimolar radius R0 related to the classical droplet
model. In the case of the homogeneous cluster the center of
the cluster was set to the center of mass. The densities cal-
culated from the Stillinger volume of homogeneous and het-
erogeneous clusters and the bulk liquid value of the homo-
geneous cluster density in Eq. �45� are shown in Fig. 5.

From Fig. 5 we can see that the densities calculated ac-
cording to the Stillinger volume are practically identical for
homogeneous and heterogeneous cases. However, both are
lower than the density of the bulk liquid calculated for the
homogeneous clusters. Unfortunately we could not calculate
the bulk density from the simulations of the heterogeneous
clusters, because the shape of clusters is far from being sym-
metric due to the interaction with the substrate.

To study the role of the contact parameter we first simu-
late homogeneous clusters. We calculate the work of forma-
tion using Eq. �37�, where the term under the summation is
the increment of the work of formation from an �n−1� clus-
ter to an n cluster,

�Ghom�n� − �Ghom�n − 1�

= FA�n� − FB�n� − kT ln�1 + 
�n��

+ kT ln
n

�sv�Vfree�n�
− kT ln S . �46�

We observe that the only term independent of n in Eq. �46�
�−kT ln S� is exactly the same as in the classical theory �Eq.
�10��. Therefore, if the classical homogeneous nucleation
theory is valid, then the other terms altogether should have a
linear dependence on n−1/3. These terms correspond to the
surface energy in the classical nucleation theory. Therefore
we use the concept of surface energy difference between an n
and an �n−1� cluster, 
fsurf:


fsurf�n� � FA�n� − FB�n� − kT ln�1 + 
�n��

+ kT ln
n

�sv�Vfree�n�
� n−1/3. �47�

As described in Sec. IV, we obtain the Helmholtz free energy
difference FA�n�−FB�n�, the term 1+
�n�, as well as the vol-
ume available for the free molecule Vfree�n� from our simu-
lations. The only parameter remaining unknown in Eq. �47�
is the saturated vapor density �sv. Unfortunately there are no
simulated saturated vapor pressures or densities at 60 K for
the truncated and shifted Lennard-Jones potential. For higher
temperatures simulations show that �sv for the truncated and
shifted potential is different from the full Lennard-Jones po-
tential and from the experimental data for argon.82 We chose
the value of �sv�60 K�=3.56	10−4�LJ

−3 in our simulations.
This value was obtained using Wagner’s approach83 to cal-
culate the saturated vapor pressure, when the pressure and
temperature of the critical point are known:

FIG. 5. Densities of the simulated clusters. The dashed curve represents the
density of the Stillinger volume of the homogeneous cluster. The dash-
dotted curve corresponds to the density of the heterogeneous cluster. The
solid curve represents the bulk droplet density value �l of the homogeneous
cluster obtained from a fit of the form presented in Eq. �45�.
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ps = pC exp��− 5.904 188 529�1 −
T

TC
�

+ 1.125 495 907�1 −
T

TC
�1.5

− 0.763 257 912 6�1 −
T

TC
�3

− 1.697 334 376�1 −
T

TC
�6�	 , �48�

where pC and TC are the critical pressure and temperature,
respectively. We selected the values according to the trun-
cated and shifted potential values TC

* =1.085 and pC
*

=0.0908.82

In Fig. 6 we have plotted 
fsurf�n� vs n−1/3. Individual
simulation results are shown by dots. As we can see, the
surface energy difference does not follow a linear depen-
dence throughout the whole cluster size range. Nevertheless,
the differences can be approximated with two lines, one for
small clusters �n�16� and another for larger clusters �n
�16�. The slopes of the straight lines are shom

large

= �7.8±0.4�kT and shom
small=4.6kT for large and small clusters,

respectively. Earlier, Hale39 has observed a similar behavior
of the clusters of Lee et al.34 As noted in Fig. 2 and the
explanation within, a linear fit does not correspond exactly to
the work of formation increment �i.e., surface energy differ-
ence� but to the derivative of the work of formation with
respect to n−1/3. A small deviation for the derivative of the
surface term for small n is expected and is usually taken into
account in modified liquid drop models.84,85

As expected, the extrapolated straight line in Fig. 6 goes
to zero for infinitely large clusters �n−1/3=0�. According to
the classical theory the surface energy difference between an
n and an �n−1� cluster must go to zero when the cluster size
approaches infinity. It is natural to expect this also for the
molecular theory, because very large �infinite� clusters
should behave like bulk liquid.

The slopes representing larger clusters in Fig. 6 can be
transformed into a numerical estimate of surface tension. As
noted earlier, shom= 2

3�. Thus,

�lg = �l
2/3�32

3
��−1/3

shom. �49�

Using the droplet bulk liquid density �l
*�0.90 �Fig. 5� we

get �lg=0.016±0.001 N/m, which agrees well with the esti-
mation produced by the equation presented by Sprow and
Prausnitz,86

�lg = 0.037 78
N

m
�1 − �1 −

T

TC
�	1.277

, �50�

giving surface tension �lg=0.0168 N/m at T=60 K, when
TC

* =1.085. The slope representing clusters smaller than
16 molecules in size is more problematic to turn into a spe-
cific value for surface tension, since the density inside the
cluster becomes difficult to determine as practically all mol-
ecules are located on the surface of the cluster. Thus, we are
not providing a numerical estimation for the surface tension
of the smallest clusters.

Our heterogeneous nucleation simulation method61 uses
homogeneous nucleation as a reference point. Its outcome is
the difference between the work of cluster formation in the
heterogeneous case and that in the homogeneous case �Eq.
�40��. The simulations for each cluster size were run at four
stages, varying the parameter  describing the interaction
strength between the cluster and the substrate. An example of
a probability distribution pair is shown in Fig. 7. The Helm-
holtz free energy difference was calculated from the overlap-
ping part of the histograms using Eq. �42�.

We have plotted simulated values �Ghet�n�−�Ghom�n�
vs n2/3 in Fig. 8. It can be seen that the simulated data pro-
duce a straight line in these coordinates. Remembering that a
small cluster might deviate from the classical model we have
analyzed data also without clusters containing less than 16
atoms. Surprisingly, the slopes of the lines are almost iden-
tical with and without the 15 smallest clusters. The numerical
value of the slope is shet=−2.35kT.

The slope of the formation energy difference shet in Fig.
8 enables us to calculate the contact parameter f�m�, when
the slope of the surface energy difference between an n and
an �n−1� cluster in homogeneous nucleation shom is known.
Equation �44� is used for this purpose, yielding

FIG. 6. The simulated surface energy difference 
fsurf as a function of clus-
ter size �shown as n−1/3� in homogeneous nucleation calculations. The dots
correspond to values obtained from single simulation runs and the solid line
represents the two parts of the linear fit explained in the text. The dashed
lines are the error lines for large clusters.

FIG. 7. An example of the histograms produced in the simulations compar-
ing the formation free energy difference between homogeneous and hetero-
geneous nucleations. In this example the values of  corresponding to the
interaction strength between the cluster molecules and surface atoms are 
=0.5 and =0.2. The cluster consists of 195 argon molecules.
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f�m� = �2

3

shet

shom
+ 1�3

. �51�

Unlike the estimate for the surface tension, the contact pa-
rameter can be well estimated for both small and large clus-
ters: f�m�=0.28 �n�16� and f�m�=0.51±0.03 �n�16�.

We calculated the work of cluster formation in the ho-
mogeneous and heterogeneous cases using Eqs. �37� and
�40�, respectively. The size of the cluster that corresponds to
the maximum of the curve of the work of formation is the
critical cluster size. Work of formation curves for saturation
ratios of 10 and 3 are presented in Figs. 9 and 10, respec-
tively. The critical cluster size depends strongly on the satu-
ration ratio in both heterogeneous and homogeneous cases.
In S=10 the critical cluster sizes are nhom

* =27 and nhet
* =15.

In the lower saturation ratio S=3 the critical cluster sizes are
naturally larger, nhom

* =184 and nhet
* =94.

We multiplied the axes of the homogeneous formation
free energies in different saturation ratios by the ratio of the
simulated critical cluster sizes in heterogeneous and homo-
geneous nucleations. According to CHNT this ratio equals
the contact parameter �Eq. �8��. For high saturation ratios,
when the critical clusters are rather small, the mismatch of
the simulated and multiplied curves is clearly visible �see

Fig. 9�. For lower saturation ratios, when critical clusters are
rather large, the relative mismatch of the curves is much
smaller �see Fig. 10�.

At first sight it seems that the f�m� multiplication con-
cept of the classical heterogeneous theory is erroneous only
for small clusters, but works well for large clusters. How-
ever, even for large clusters there is a difference between the
simulated heterogeneous critical work of formation value
and the one obtained by multiplying the homogeneous criti-
cal formation energy by the contact parameter obtained as
the ratio of the critical cluster sizes. This difference defines
the ratio of the simulated heterogeneous nucleation rate and
the rate predicted from the homogeneous nucleation rate and
the value of the contact parameter. We have plotted this ratio
versus critical cluster size in Fig. 11. We calculated the en-
ergy barrier in homogeneous nucleation using the formation
energy increment corresponding to both two slopes in Fig. 6:
the steeper slope for large clusters �n�15� and the gentle
slope for clusters smaller than or equal to 15 molecules in
size. Two curves for the free energy of formation in hetero-
geneous nucleation were then obtained from the simulation
results: one using Eq. �40� and the other by multiplying the
homogeneous formation energy curves by the contact param-
eter. The ratio of the critical formation energies in heteroge-
neous nucleation is shown in Fig. 11. As expected, the ratio
approaches unity when the critical cluster size increases.
However, for the smallest clusters the critical formation en-
ergy obtained by multiplying the homogeneous cluster for-
mation energy by the contact parameter is almost eight times
the energy obtained from the simulations.

FIG. 8. The simulated difference �Ghet�n�−�Ghom�n� �circles� as a function
of the cluster size and a linear fit of the difference on n2/3 �solid line�.

FIG. 9. Work of formation as a function of cluster size for both homoge-
neous and heterogeneous nucleations. The simulated energy barrier of ho-
mogeneous nucleation is denoted by circles, whereas the crosses represent
the simulated heterogeneous nucleation energy barrier. The points marked
by diamonds represent the heterogeneous nucleation formation energy ob-
tained by multiplying both axes of the homogeneous nucleation barrier by
the contact parameter f�m�. S=10.

FIG. 10. Same as Fig. 9, but for S=3.

FIG. 11. Ratio of the critical formation energies obtained by the multiplica-
tion procedure and the simulations.
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The ratio of the nucleation rates given by the simulations
�Jhet

sim� and by the homogeneous nucleation energy barrier
multiplied by the contact parameter �Jhet

multi� is given by

Jhet
sim

Jhet
multi = exp��Ghet

multi* − �Ghet
sim*

kT
� . �52�

This ratio is shown as a function of the critical cluster size in
Fig. 12. We note that the nucleation rate calculated from the
work of formation obtained by the multiplication results in
an underestimation of the simulated nucleation rate. For
small clusters the difference is approximately two orders of
magnitude. However, the discrepancy does not decrease
when the critical cluster size increases. In fact, the ratio of
the nucleation rates even shows an increasing trend for larger
critical cluster sizes, approaching three orders of magnitude
for the largest clusters under investigation.

According to the classical theory the contact parameter
f�m� is the same for all critical cluster sizes �and thus differ-
ent saturation ratios�, as demonstrated by Eqs. �3�–�8�. We
calculated the simulated contact parameter using the ratio of
the critical cluster sizes in the heterogeneous and homoge-
neous cases. As Fig. 13 shows, the contact parameter is fairly
constant for critical cluster sizes larger than 20. However, for
decreasing critical cluster sizes there is a clear decreasing
trend of the contact parameter. This discrepancy with the

CHNT is not surprising, since the classical theory assumes
the same structure for critical clusters of all sizes. This as-
sumption is not made in the simulations.

The contact angle can be obtained also via visual analy-
sis. This was done by placing a circle going through three
points: the two molecules of the cluster lying furthest from
each other and the one having the furthest distance from the
substrate surface level. The center of the circle then defined
the center of a sphere having the same radius as the circle,
confining practically all the cluster molecules. Using Eq.
�45� we can determine surface thickness D, which defines the
radius range where the cluster density decreases from the
bulk value to zero. By subtracting D /2 from the radius of the
confining sphere we get the equimolar radius. The contact
angle was then defined as the angle between the plane
0.83�LJ over the substrate surface plane and the surface of
the sphere having the equimolar radius. The distance corre-
sponds to the nearest allowed distance between a cluster
molecule and a substrate atom. The description above is in
agreement with the classical droplet model. The contact pa-
rameter values corresponding to the visual contact angles are
shown as diamonds in Fig. 13. The visual values approach
the contact angle obtained from the ratio of the critical clus-
ter sizes, but only reach these values at cluster size around
100. In despite of this, the contact parameter obtained from
the ratio of the simulated critical free energies in heteroge-
neous and homogeneous nucleations can be successfully
used for critical clusters well below 100 in size.

VI. CONCLUSIONS

In this study we have used the molecular approach to
heterogeneous nucleation in Monte Carlo simulations in or-
der to see the performance of the f�m� multiplication concept
of the classical theory of heterogeneous nucleation. We stud-
ied Lennard-Jones argon nucleating on a monolayer of plati-
num ordered in the shape of a fcc�111� lattice.

Our results show that the classical nucleation theory
multiplication concept is able to describe the cluster interac-
tion with the substrate surprisingly well, even for small mo-
lecular clusters. However, calculation of the heterogeneous
nucleation rate using the homogeneous nucleation rate and
the contact parameter as the starting points gives a two to
three orders of magnitude underestimation of the nucleation
rate in our system at T=60 K. The major part of this differ-
ence arises from the failure of the classical theory of homo-
geneous nucleation to correctly reproduce the behavior of the
free energy in bringing one of the vapor molecules into the
cluster for clusters smaller than about 15 molecules. The dif-
ference is, however, not present only on high vapor super-
saturations, when the critical cluster size is small. Quite the
contrary, the underestimation gets even worse when the satu-
ration ratio is decreased.

Supposing that there exist experimental data for the ho-
mogeneous nucleation rate and contact angle, the heteroge-
neous nucleation rate can be estimated by two to three orders
of magnitude accuracy according to our results. The accu-
racy is, however, expected to be different for other sub-
stances as well as other pair potential interaction parameters.

FIG. 12. Ratio of the heterogeneous nucleation rates calculated using Eq.
�52�.

FIG. 13. The contact parameter obtained from the ratio of the critical cluster
sizes of heterogeneous and homogeneous nucleations �Eq. �6��. The param-
eters based on the two different slopes in Fig. 6 are shown by circles, and
the diamonds represent the contact parameters calculated from the visually
analyzed contact angle. The contact parameters obtained by Eq. �51� from
the slopes in Figs. 6 and 8 are shown by the star for the small clusters �n
�16� and the solid line for the large clusters �n�16� along with the error
lines denoted by the dashed line.
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