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ABSTRACT: Computational modeling of atmospheric molecular clusters requires a comprehensive understanding of their complex
configurational spaces, interaction patterns, stabilities against fragmentation, and even dynamic behaviors. To address these needs,
we introduce the Jammy Key framework, a collection of automated scripts that facilitate and streamline molecular cluster modeling
workflows. Jammy Key handles file manipulations between varieties of integrated third-party programs. The framework is divided
into three main functionalities: (1) Jammy Key for configurational sampling (JKCS) to perform systematic configurational sampling
of molecular clusters, (2) Jammy Key for quantum chemistry (JKQC) to analyze commonly used quantum chemistry output files
and facilitate database construction, handling, and analysis, and (3) Jammy Key for machine learning (JKML) to manage machine
learning methods in optimizing molecular cluster modeling. This automation and machine learning utilization significantly reduces
manual labor, greatly speeds up the search for molecular cluster configurations, and thus increases the number of systems that can be
studied. Following the example of the Atmospheric Cluster Database (ACDB) of Elm (ACS Omega, 4, 10965−10984, 2019), the
molecular clusters modeled in our group using the Jammy Key framework have been stored in an improved online GitHub
repository named ACDB 2.0. In this work, we present the Jammy Key package alongside its assorted applications, which underline its
versatility. Using several illustrative examples, we discuss how to choose appropriate combinations of methodologies for treating
particular cluster types, including reactive, multicomponent, charged, or radical clusters, as well as clusters containing flexible or
multiconformer monomers or heavy atoms. Finally, we present a detailed example of using the tools for atmospheric acid−base
clusters.

1. INTRODUCTION
Studying the formation and stability of molecular clusters has
been of interest in many scientific domains, such as
atmospheric chemistry,1−6 biology,7,8 astronomy,9,10 and
material science.11,12 A particularly illustrative example is the
study of molecular clusters formed in the atmosphere via gas-
to-particle conversion, which is the first step in the formation
of secondary atmospheric aerosol particles.13−20 Once formed,
these aerosols have a significant impact on climate and air
quality and thus also on human health.21−23

Molecular clusters can be experimentally detected,24−26 but
cluster observations are generally complicated due to a variety
of issues such as the typically very low concentrations (often
below the detection limit of instruments), the changes a cluster

undergoes inside the instruments,27,28 and clusters being too
small to detect. Many key properties strongly depend on the
cluster configuration, which is a priori unknown and is seldom
directly measurable. Hence, computational chemistry is an
important additional tool to study clusters. Typically, quantum
chemical calculations are required to obtain accurate cluster
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geometries, energies, charge distribution, and so on, which are
used to understand the cluster’s stability against fragmenta-
tion/evaporation or its potential growth into larger clusters/
particles. Unfortunately, quantum chemical (QC) calculations
are computationally expensive and the cost steeply grows with
cluster size. Configurational sampling, the process of searching
for the most relevant cluster configurations, is another
bottleneck in molecular cluster studies, as the configurational
space quickly grows in complexity with the size of the cluster
and the flexibility of its monomers. Several programs exist to
explore the vast configurational space of clusters (e.g.,
ABCluster,29,30 OGOLEM,31 and CREST32). Additionally,
many programs for performing different types of QC
calculations are available (e.g., Gaussian,33 ORCA,34,35

XTB,36−39 and Turbomole40). Configurations can be manually
passed from one program to another, but this is cumbersome
and error-prone. Therefore, we present the Jammy Key for
configurational sampling (JKCS) script that interfaces with the
most commonly used third-party programs in the molecular
cluster community, manages job submissions to computer
clusters via the SLURM job scheduler, and handles the
manipulation of the large number of files produced during the
process. It further offers tools for data storage and analysis such
as filtering, extraction of cluster properties from the output of
the QC programs, and QC postcorrection calculations.
Machine learning (ML) methodologies have proven to be

highly advantageous due to their capacity to replace time-
intensive QC calculations. Several recent studies have
harnessed ML techniques to investigate molecular clus-
ters.41−48 To assist in the creation of ML models for molecular
cluster studies, we introduce Jammy Key for machine learning
(JKML). JKML streamlines the training of ML models and
their various applications such as predictions of energy/forces
and even the creation of ML-based calculators. These
calculators can effectively replace QC programs, enabling
swift geometry optimization and molecular dynamics simu-
lations, closely replicating the potential energy surface that was
used to train the ML calculator. To train ML models, a
considerable database of training data is necessary. We have,
therefore, upgraded the Atmospheric Cluster Database
(ACDB), originally introduced by Elm.,49 to ACDB 2.0. In
the new ACDB 2.0, cluster properties are stored in a single

compressed file, which is easily manipulated by JKQC to use
within JKML. The combination of JKCS, JKQC, JKML, and
ACDB 2.0 provides the necessary tools to efficiently model a
large variety of molecular clusters.

2. METHODOLOGY
We summarize the working principles of the three main
functionalities of the Jammy Key framework: Jammy Key is
used for configurational sampling (JKCS), quantum chemistry
(JKQC), and machine learning (JKML). Additionally, we
discuss how the Jammy Key framework is used to create an
improved database for atmospheric clusters (ACDB 2.0).
2.1. Configurational Sampling. Direct examination of

complex cluster configurational spaces at a desired high level of
theory costs an immense amount of computational resources.
Hence, the most common general strategy for configurational
sampling (CS) is the so-called bottom-up approach, as
illustrated in (Figure 1).50 This approach is sometimes also
referred to as the “building up” principle, but should be
distinguished from strategies where the properties of the N-
cluster need to be known to calculate the properties of the
(N + 1)-cluster (an example of such a method is that
introduced by Kildgaard et al.52,53 to study hydration of dry
molecular clusters). The bottom-up approach explores the
configurational space using fast but less accurate methods,
where only promising candidates are carried through several
steps of reoptimization at higher levels of theory and filtering
up to the desired level of theory. This methodology determines
the workflow of the JKCS scripts.

2.1.1. System Setup. System setup involves preparation of
the input file (JKCS0_copy copies the default input file into
the working directory), where the cluster composition, charge,
and spin multiplicity are defined. Typically, individual
molecules, denoted as monomers, are used as the initial
building blocks. Depending on the type of exploration, either
flexible or rigid monomers are used. In the former case, only
one conformer for each species needs to be supplied. In the
latter case, including the lowest energy conformer of each
monomer is a good starting point but adding other conformers
and/or assorted protonation states improves the exploration.54

Figure 2 depicts such a combination of rigid monomers to

Figure 1. Schematic diagram of the bottom-up approach for conformational sampling.50 This figure has been adapted from the dissertation of
Kubecǩa.51
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construct the (H2SO4)3(NH3)3 cluster. JKCS contains these
building blocks for the most common atmospheric cluster
forming acid and base molecules and takes care of combining
all feasible monomer conformations and protonation states
while adhering to stipulated criteria regarding cluster size
(number of molecules) and charge. Further, JKCS1_prepare
creates one folder for the CS of each cluster type.

2.1.2. Exploration. Configurational space exploration is
generally performed at a low level of theory, that is, molecular
mechanics or semiempirical methods (e.g., GFN-xTB36−39).
JKCS (JKCS2_explore) currently communicates with two
commonly used configuration space exploration programs:
ABCluster29,30 and CREST.32 ABCluster employs the genetic
artificial bee colony algorithm55 and can be used with either
rigid or flexible monomers. Rigid monomer exploration, often
done at the molecular mechanics level, allows for inexpensive
and fast exploration of large configurational spaces. The
monomer rigidity guarantees that unwanted reactions do not
take place (at least at the exploration stage) but also prevents
proton transfers or conformational changes essential for cluster
stability. Hence, introducing a combination of various building
blocks in the system setup allows for a more thorough
exploration. Starting from flexible monomers, ABCluster offers
a slower exploration combining both cluster configuration and
monomer conformation, and this search is typically performed
using the GFN-xTB method. In CREST, the configurational
space is explored through metadynamics simulations, again
often using the GFN-xTB method. The choice of method is
highly dependent on the studied cluster. At the end of the
exploration, the energetically lowest-lying minimum structures
are saved for further refinement.

2.1.3. Refinement. The JKCS3_run script allows commu-
nication with QC programs to refine the cluster geometries
and energies. Since the number of trial structures obtained
from the exploration step can be enormous, the first
optimization step should ideally be performed using a
computationally affordable method. One of the extended
tight-binding (xTB) semiempirical methods implemented in
the XTB program36−39 is a robust choice for many systems,
though caution is needed for reactive and radical systems. The
PM656 and PM757 methods offer similar functionality.

Subsequent single-point energy refinement or geometry
reoptimization can be performed using composite electronic
methods such as B97-3c58 and r2SCAN-3c.59 For instance,
Engsvang et al.60,61 and Wu et al.62 showed the applicability of
these methods to large (up to 30 molecules) sulfuric acid and
ammonia clusters. Nevertheless, a higher level of theory is
often required to obtain accurate cluster geometries. For
instance, density functional theory (DFT) methods, such as
ωB97X-D/6-31++G(d,p),63 have been successfully used to
describe inorganic molecular clusters.6 JKCS communicates
with third-party programs such as XTB,36−39 ORCA,34,35 and
Gaussian33 and manages the calculation communication. The
Jammy Key framework allows us to perform jobs on the user’s
local/login computer or on a computer cluster via SLURM job
scheduler submission while offering various ways of job
distributions, serializations, and parallelizations.

2.1.4. Data Filtering. Filtering is needed to reduce the set of
structures passed on by each step as the computational cost per
structure can increase by many orders of magnitude from one
step to the next. Filtering should, at a minimum, remove
redundant (identical or nearly identical configurations) and
energetically high-lying configurations, as well as obviously
unphysical structures (e.g., clusters that have fragmented or
undergone unwanted reactions). Caution is advised when
applying energetic filtering using specific cutoff values. For
instance, low-level QC methods may predict the relative
energies incorrectly, and a good filtering algorithm should take
this into account. Therefore, the choice of appropriate filtering
criteria is as important as the choice of methods at different
levels of the bottom-up approach.
Here, the Jammy Key framework uses the JKQC script (as

further described in the next chapter). JKQC allows users to
filter structures based on both energetic and structural criteria,
for example, the radius of gyration can be used to filter out
molecular clusters that have fragmented during optimization.
One can, for instance, filter out all structures that have a radius
of gyration greater than 10 Å, and energy of x kcal/mol higher
than the lowest energy found. Appropriate values for x require
a benchmark examination, as they depend on the type of
system, the cluster size, as well as the level of theory used at the
step preceding the filtering. For example, Kubecǩa et al.54 used

Figure 2. Illustration of all possible building block structures when constructing any ammonia�sulfuric acid clusters. Color coding: H (white), S
(yellow), O (red), and N (blue).
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a threshold of 5M kcal/mol for filtering after the XTB
optimization step in their study on very strongly bound sulfuric
acid−guanidine clusters, where M is the number of molecules
in the cluster. However, lower values (e.g., 2.5M kcal/mol)
may be appropriate for more weakly bound clusters. The
energy threshold should use a high enough cutoff to account
for energy reordering due to differences between the different
QC methods and possible reordering due to postcorrections.
If two clusters have identical/similar properties, then only

one of the configurations should be passed to the next step.
This duplicate check can be done by comparing the chosen set
of cluster properties such as the radius of gyration Rg, cluster
energy E, or dipole moment μ. A slower but more accurate
option is to compare root-mean-squared displacement
(RMSD) between two identically oriented structures, which
utilizes a modified version of the ArbAlign program.64 Finally,
we provide the selection method introduced by Kubecǩa et
al.,54 which selects a subset of the most distinct configurations
from a large data set. This representative subset of
configurations might result in not finding exactly the global
minimum at the desired final level of theory; however, the best
of the selected structures will be close to the real global
minimum structure. Such a method is especially useful for large
clusters, for which many low-lying energy minima are
thermodynamically populated due to small energy gaps
between them.

2.1.5. Postcorrections. Another category of data analysis
performed via the JKQC script is the post-QC corrections.
These can be separated into several subgroups:

• Thermal corrections, performed using the same method
as used for geometry optimization, involve mainly
vibrational frequency calculations and their contribution
to the partition function along with the translational and
rotation partition function calculation. Here, JKQC
offers to check or correct for:
(1) Imaginary vibrational frequencies as they indicate

that the geometry was not optimized to a
minimum. In that case, we attempt several
geometry reoptimizations and, if unsuccessful,
discard the structure.

(2) Low-vibrational frequencies, as showed by
Grimme,65 are caused by treating the vibrations
as harmonic, and can lead to unrealistically low
free energies. The quasi-harmonic approximation
(QHA) corrects the rigid-rotor harmonic oscil-
lator (RRHO) by replacing low-vibrational
contributions to entropy with internal rotational
modes.

(3) Vibrational anharmonicity is often just corrected
by a scaling factor typical for each QC method
applied to all vibrations.66 We note that actual
anharmonic vibrational frequencies can be calcu-
lated with many QC programs, but this is
accompanied by numerical stability issues and is
rarely feasible or cost-effective for molecular
clusters.

(4) Temperature in QC programs is by default set to
298.15 K (adjustable). JKQC swiftly recalculates
thermal corrections at any temperature.

(5) The rotational symmetry number is often not
correctly recognized by QC programs due to
computer precision or too high symmetry

quantifier thresholds. Although often less impor-
tant for clusters, the thermodynamic properties of
monomers should be either calculated at the
correct symmetry or corrected for the rotational
symmetry error after QC programs. Here, we
recommend the SYMMOL67 program, which
suggests the maximum symmetry group at a
given tolerance.

• Electronic energy may need to be corrected by a single-
point electronic energy calculation. This is not needed if
a high-level method with a large enough basis set is used.
Although the DFT method of our choice, ωB97X-D/6-
31++G(d,p)63, provides accurate geometries and ther-
mal contributions, the electronic energy must be
corrected at a higher level of theory. For instance,
cost-effective domain-based local pair natural orbital
(DLPNO) variants of coupled cluster methods such as
DLPNO-CCSD(T0)/aug-cc-pVTZ

68−70 with Normal-
PNO criteria can be utilized to calculate Gibbs free
energies as52,66
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• Several energetically close but distinct configuration
minima may be populated. In such a case, the lowest free
energy minimum does not always sufficiently represent
the average cluster structure or its properties. The
entropy contribution of all energetically low-lying
minima can be accounted for using the Boltzmann
distribution, resulting in an average Gibbs free energy.71

Nevertheless, here we assume that clusters have a
crystal-like behavior and presume that the transition
between different minima has a minor effect on the free
energies. The problem of clusters with liquid-like
behavior, populating many different low-lying free
energy minima, should be addressed in future studies.

2.2. QC Data Handling, Storing, and Analysis. We
present the Jammy Key for Quantum Chemistry (JKQC)
Python script designed to store essential molecular cluster
information into a Pandas72,73 data frame. Structure parsing is
accomplished with ASE,74 while pertinent molecular properties
are directly extracted from QC output files. This approach
replaces numerous QC output files, potentially consuming
multiple gigabytes of memory, with a single compact file of a
few megabytes. Additionally, all the data filtering and
postcorrections elaborated in the previous section can be
easily performed using JKQC. JKQC is also automated to
create input for other programs such as the Ion Mobility
Software Suite (IMoS75) used to calculate collision cross
sections and ion mobilities and the Atmospheric Cluster
Dynamics Code (ACDC76,77) used to calculate cluster/particle
formation rates based on cluster population dynamics. This
automation reduces the human errors that accompany the
manual construction of these files.
Elm49 recently established the ACDB. This database

contains clusters composed of molecules responsible for
atmospheric new particle formation (NPF): acids (e.g., sulfuric
and nitric), bases (e.g., ammonia and dimethylamine), water,
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and, as of yet, only a few organic molecules. We gathered the
ACDB database alongside additional cluster structures and
properties from over 30 publications into a new database,
ACDB 2.0. Rather than the SDF files of the original ACDB,
ACDB 2.0 is constructed as compressed pickle files that
contain a large number of cluster properties and are easily read
and manipulated by JKQC. We will continuously update the
database with the most recently published data. The database
currently encompasses more than 1 million entries, spanning
various levels of theory. For instance, ∼100k single-point
energies are now available at the ωB97X-D/6-31++G(d,p)63
level of theory. ACDB 2.0 offers a comparison of different
properties between a large set of atmospherically relevant
clusters. Figure 3, for instance, depicts the lowest binding free
energies of ∼1.5k different cluster types at the DLPNO-
CCSD(T0)/aug-cc-pVTZ//ωB97X-D/6-31++G(d,p) level of
theory with NormalPNO criteria and with QHA and
anharmonicity corrections applied. Highlighting three specific
cluster types, the figure underscores the potential stability of
sulfuric acid−base molecular clusters, illustrating their central
contribution to atmospheric NPF. ACDB 2.0 furthermore acts
as a foundation for ML applications.
2.3. Machine Learning. 2.3.1. ML Model. The recent

explosion of ML utilization in quantum chemistry has shown
that ML potentials can mimic potential energy surfaces within
the chemical accuracy of QC methods. There are several ML
techniques for regression tasks, such as artificial neural
networks (NN),78 Gaussian process regression (GPR),79 and
kernel ridge regression (KRR),80 each with their own strengths
and weaknesses.81 The first task in creating an ML model is
choosing the molecular representation for the studied system.
Such a representation should be invariant to transformations
that do not change the particular property (translation,
rotation, mirroring, or nuclear permutation). It should
uniquely describe the system and be continuous and, ideally,
differentiable.82 Commonly used representations for molecular
systems are the Coulomb Matrix (CM),83 Bag of Bonds
(BoB),84 Many-Body Tensor Representation (MBTR),85

Smooth Overlap of Atomic Positions (SOAP),86 FCHL18/
19,87,88 and those integrated in NN architectures such as
SchNet89 and PaiNN.90 Several ML studies have already been

conducted for atmospherically relevant molecular systems.
Jaäs̈kelaïnen showed that ML approaches are useful to improve
cluster structure selection and sampling in general.48 NNs have
been used to model large sulfuric acid−dimethylamine
clusters47 and the NN potential ANI-2x91 has been
benchmarked for small dimer clusters.92 KRR/GPR has been
used to predict cluster binding energies,44−46,61 saturation
vapor pressures of organic molecules,41,42 and chemical
potentials of organic molecules in atmospherically relevant
solutions.43

Our ML-oriented subpackage, JKML, offers an interface
between the JKQC-constructed database files (e.g., those
stored in ACDB 2.0) and two ML programs, quantum machine
learning (QML93) and SchNetPack.94,95 In the procedure,
XYZ coordinates are extracted and together with the property
of interest (e.g., electronic energy, forces, or mobility) are
stored in a database. Subsequently, JKML uses QML or
SchNetPack to perform the training, validation, and testing of
the predicted property or its difference from a reference state.
In the case of energies, these can be atomization energies for
molecules, or binding energies for molecular clusters

=E E E
i

icluster
monomers (3)

In our previous work,44,46 we showed that utilizing Δ-ML,96
that is, predicting the difference in binding energy between a
low and high QC method, increases the accuracy of the model
compared to direct-ML. For instance, the difference in
electronic binding energy is calculated as

=|E E EHIGH LOW HIGH LOW (4)

KRR can potentially achieve higher accuracy than NN for
small databases. On the other hand, NN is accurate and fast for
large training databases. Since KRR becomes computationally
demanding with increasing database size, training an ML
model on energy gradient/forces, that is, 3N-times more
variables, seems more suitable for NN. However, several KRR-
based methods suitable for GPU/TPU also exist (e.g., QML-
lightning97 and sGDML98). For now, JKML allows for the
training of the aforementioned NN-based potential utilizing
the forces extracted from QC via JKQC. The trained model

Figure 3. Lowest binding free energies of all cluster types stored in the Atmospheric Clusters Database 2.0 at DLPNO-CCSD(T0)/aug-cc-pVTZ//
ωB97X-D/6-31++G(d,p) level of theory. Three cluster types are highlighted with different colors: where MSA = methanesulfonic acid, SA =
sulfuric acid, AM = ammonia, DMA = dimethylamine, MA, methylamine, and TMA = trimethylamine.
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can be used for geometry optimizations and fast MD
simulations. However, for accurate and fast modeling, a
training database must be constructed for the system at
hand. Additionally, the greater the number of atom types in the
studied system, the greater the required training database.

2.3.2. Categorization Trick. JKML allows multinode
parallelization for kernel construction within the KRR
calculations. However, even with this parallelization, it
becomes computationally demanding to train on more than
100,000 data points. For each test structure, we offer training
data set reduction based on structure similarity, thus removing
the need for training on redundant or unnecessary structures.
Here, we utilize the MBTR85 representation, as implemented
in the DScribe99 library, to calculate the distribution of atom-
specific bonds and bond angles ρMBTR of each structure xi.
Furthermore, we define the similarity between two structures
by calculating the overlap of the two distributions at given
bond lengths (r ∈ ⟨ 0.7, 2⟩ Å) and eventually also bond angles
(α ∈ ⟨ 0, 2π⟩ rad)

=x x x x( , ) ( ) ( ) di j

r

i j

,cos( )

MBTR, MBTR,
(5)

The MBTR representation is a discretized (we use a 100-
unit grid for bonds and a five-unit grid for angles) function
corresponding to a sum of Gaussian functions with a small
deviation of σ = 10−9, an exponential weighting function of 0.5,
and a minimum threshold of 3 × 10−3. Gaussian functions are
situated around each bond length and/or bond angle for
specific atoms. Thus, a value of Δ(xi, xj) = 0 indicates that the
structures are identical, and low values determine high
similarity. Consequently, one can speed up the ML modeling
of a target configuration by training only on a small data set.

3. APPLICATION AND DISCUSSION
3.1. Configurational Sampling Obstacles. Cluster

formation inevitably involves both enthalpy (ΔH) and entropy
(ΔS) changes, and hence the clustering free energy (e.g., ΔG =
ΔH − TΔS) increases with increasing temperature (T).
Weakly bonded clusters thus typically require a low temper-
ature and/or high vapor concentrations to form in the gas
phase, while strongly bonded clusters may also be formed at
room temperature and trace concentrations of the vapors.
Figure 4 illustrates several cluster systems ordered by their

binding strength. Examples include noble gas atomic clusters
(e.g., helium and argon) and molecular clusters like carbon
dioxide (CO2), which are stabilized by weak London
dispersion interactions. Other clusters composed of methanol
(CH3OH), butanol (C4H7OH), or water (H2O) are bound
relatively more strongly, primarily via hydrogen bonds. On the
opposite end, acid−base, NaCl salt, and ionic-liquid clusters
are bonded by robust ion−ion Coulomb interactions.

Neither the binding energy nor the reactivity (e.g., proton
transfer) alone is sufficient to determine how straightforward
the CS process is for a given clustering system. Over several
years, JKCS has been used to study various clusters and their
properties.3,6,44,46,54,62,100−113 Based on these studies, we
present typical examples of molecular cluster properties that
complicate CS compared to a reference case of a nonreactive,
one-component, crystal-like cluster with a single low-energy
configuration, formed from rigid, closed-shell monomers with
only one conformer. This reference case can be, for example, a
water cluster at a very low temperature, that is, an ice crystal.
Clusters fall into one or several of the following categories:

Multicomponent:
e.g., (H2SO4)x(NH3)y(CH3NH2)z((CH3)2NH)u(H2O)w.
JKCS can construct clusters with an arbitrary number of

components. However, the number of dimensions to study
increases with the number of components, especially when
various different combinations of {x, y, z, u, w} need to be
examined. There is no general solution to this problem. One
could potentially lump some monomers114 together based on
similarity or use ML methods to accelerate the CS.46,105

Another option would be to use a lower level of theory along,
e.g., the water (w) axis.

Reactive:
e.g. , (organic)x(H2O) y(O3), (R�O)1(R−OO ·)1 ,

(H2O)x(NH3)y.
Intra- and intermolecular reactions (e.g., oxidation, bond

breaking, but also proton transfer) can occur within clusters if
available through thermal fluctuations. Sampling potential
reactants and products of the relevant reactions separately,
utilizing reactive potentials within, for example, CREST,32 or
performing MD simulations are possible solutions. Transition
state conformers could also be searched by fixing the reactive
area.

Acid−base:
e.g., (H2SO4)x(NH3)y, (HNO3)x((CH3)2NH)y(H2O)z.
This is a subgroup of reactive clusters that undergo proton

transfer within the cluster. Using combinations of conformer/
protonation states in rigid monomer exploration enables a
thorough CS while accounting for all possible proton transfers.
An ABCluster29,30 search with rigid monomers could also be
followed by re-exploration around energetically low-lying
structures within the reactive potential via CREST.32

Multiconformer/flexible monomers:
e.g., (H2SO4)x(C2H4(NH2)2)y, (C4H9OH)x.
Some molecules can have a large number of conformers.

Including all or as many conformers as possible in a rigid
monomer exploration guarantees better exploration. We
recommend more conformer combinations, that is, more
parallel explorations, with short exploration times rather than
one long thorough exploration with one conformer combina-
tion. Typically, the ABCluster29,30 combined global-config-
uration and conformation search or CREST32 search are
suitable for this problem.

Metastable monomer conformers:
e.g., (organic)x(H2O)y, (HIO3)x(HIO2)y.
Monomers within clusters can take on configurations that

are not stable minima in the gas phase but can exist and even
dominate inside clusters, as they are stabilized by the cluster
environment. These metastable monomer conformers should
be manually constructed and included in the exploration step.
They should not be preoptimized as they would only revert to

Figure 4. Several examples of molecular clusters sampled by JKCS
sorted with respect to their binding energy. Color coding: H (white),
O (red), C (gray), S (yellow), N (blue), P (orange), F (lime).
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the gas-phase minimum structure. CREST32 might be, in some
cases, more suitable for this problem.

Heavy atom(s):
e.g., (HIO3)x(H2O)y, Kx[Pb(ligand)y].
Low-level theory energy evaluations may fail for clusters

containing heavy atoms (period five or higher in the periodic
table) since they might lack a description of relativistic effects,
polarization, or other heavy-element-related phenomena.
Heavy-atom-related effects should be accounted for in the
CS by at least including pseudopotentials during DFT
calculations or scalar relativistic Hamiltonians.

Liquid-like:
e.g., (H2SO4)x(NH3)y(H2O)z, or (Ar)x and (CO2)x at low

temperature.
The description of the thermodynamic properties of these

clusters is difficult since we cannot use the superposition
approximation of the lowest free energy minima. There is a
(cluster-type-dependent) threshold temperature above which

the energy barriers separating different local energy-minimum
conformations become easy to overcome by thermal
fluctuation. MD simulations can likely provide insight into
this problem; however, further research on this topic is still
required.

Charged clusters or ionized molecules:
e.g., Cl−(H2O)x, (CxHyOz)·NO3

−, (H2SO4)x(NH3)y.
Clusters may be charged or contain ionic monomers even

when the clusters or monomers are initially neutral (e.g., due
to proton transfer; see acid−base clusters). Charges present in
clusters cause inductive effects (electron flows) and charge
delocalization over several neighboring molecules. Hence,
additional polarization and diffuse basis set functions are
needed. Moreover, if we require the charge to be localized on a
specific cluster molecule (e.g., due to photoionization or
charge transfer), additional QC techniques might be necessary
such as constrained DFT and various fragmentation methods.

Unpaired electrons:

Table 1. Overview of Several Cluster Studies That Utilized the JKCS Package

single-component nonreactive clusters
Carbon dioxide clusters at ∼40−90 K.106 Achieving accurate binding energies required challenging QC calculations such as high-level theory (CCSD(T)) along
with diverse corrections because lower methods struggled to precisely capture the weak dispersion interactions.

Figure
5A

Butanol (C4H7OH) clusters.107 Butanol has multiple internal rotations, yielding multiple conformers. Clusters were formed through their random combinations.
Modern DFT or even some semiempirical methods provide sufficiently accurate formation thermodynamics for these hydrogen-bonded clusters, eliminating the
need for higher-level corrections.

Figure
5B

multicomponent nonreactive clusters
Butanol and water condensing onto NaCl seed.107,108 We used ABCluster conformation and configurational search. Note that CS of systems with more
nonmixing physical phases (e.g., cluster formation on a surface) is currently available within ABCluster after introducing restrictions for phase mixing.115

Figure
5C

Diethylene glycol around ionic-liquid clusters.109 Multiple conformers were introduced at the beginning of CS. With no proton transfer present, interactions were
well described by DFT methods with large basis sets.

Figure
5D

Clusters of sulfuric acid and organic molecules.110 A highly oxygenated organic molecule (HOM)116 was only represented by one conformer to speed up the CS.
Due to the inherent flexibility of organic molecules, employing multiple representative conformers (e.g., found via the Spartan program117) or using CREST32 is
advisable. Furthermore, assessing the reactivity within such clusters is crucial due to the presence of reactive functional groups, potentially participating in proton
transfer.

Figure
5E

clusters containing heavy atom and metastable monomer
Iodine-containing molecular clusters.3,100 Iodic acid has a metastable conformation in clusters. We constructed an extra building block with varied proton
orientations. Sequentially, advanced QC methods were used to account for relativistic effects. Conversely, a low level of theory was used for large clusters to obtain
approximate configurations for collision cross-section estimation.

Figure
5F

reactive organic clusters
Dimers of organic alkoxy radicals (formed in peroxy radical self-reactions).111,112 ABCluster with multiple conformers per monomer was used to obtain trial
structures further passed to higher-level theory, which is able to describe radical systems. Nevertheless, using CREST32 is advisable for future studies.

Figure
5G

Accretion reactions on dust particle.113 Dust particles were approximated by a representative molecule. Transition state modeling was performed at a high level of
theory to describe the reaction energy barriers.

Figure
5H

Figure 5. Examples of clusters corresponding to studies are presented in Table 1. Color coding: H (white), S (yellow), O (red), C (gray), I
(purple), Na (mauve), Cl (green), N (blue), P (orange), F (lime), Si (cream).
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e.g., [(CH3)3C−O·]2, (R−CO−OO·)1(H2O)x.
Radical systems can usually be described only by QC

methods (not force fields, FF). The potential energy surface
can still be explored using FF to obtain a broad set of initial
structures, but FF parameters should be carefully checked to
prevent, for example, radical centers from being treated as ions.
Nevertheless, exploration at, for example, the XTB level of
theory is more suitable. Further, high-level QC methods
should be used to describe these open-shell systems (freezing
problematic parts might be helpful, especially during initial
optimizations). The QC results should also be checked for spin
contamination, where relevant.
We advise readers to have a look at the articles gathered in

Table 1 and Figure 5. These articles used JKCS for various
cluster systems, and the CS of these systems is presented along
with technical details within the main text or the Supporting
Information. However, JKCS has so far found the most
applications for CS of atmospheric acid−base molecular
clusters, which we focus on in detail in the next section.
3.2. JKCS Workflow for Acid−Base Clusters. Under

atmospheric conditions, clusters that grow to nanoparticles or
aerosols from gas molecules often involve strong acids and
bases. After collision, these molecules undergo proton transfer
reactions forming strongly bound ion pairs (salt), exemplified
by cases such as (H2SO4)2(NH3)2 → (HSO4

−)2(NH4
+)2. To

accommodate the protonation states of monomers and
multiconformer sulfuric acid during CS, the provided building
blocks (Figure 2a) are employed. Also, an accurate QC
examination of thermodynamic properties necessitates a high
level of theory and extra-polarized and diffuse basis functions.
These methodologies were used for studies of acid−base
clusters such as sulfuric acid−ammonia clusters,61,62,102 sulfuric
acid−dimethylamine clusters,62,104 systems involving trime-
thylamine oxide,103 sulfuric acid−multibase clusters,46 and
even multiacid−multibase clusters.105 For these cluster types,
the CS procedure via a multistep funneling approach6,54 has
been well optimized. For instance, Knattrup et al.105 recently
used the workflow scheme depicted in Figure 6.

Clearly, this multistep procedure would be cumbersome to
do manually. Consequently, its full automation allowed us to
explore hundreds of cluster systems. Nevertheless, we
recommend that new users perform each command separately
and examine its outcome first. Several molecular cluster
benchmark studies45,66,118−121 can be used to choose a suitable
QC method. For instance, we currently use GFN1-xTB
implemented in the XTB program,36−39 DFT-3c such as
B97-3c or r2SCAN-3c implemented in ORCA,34,35 DFT such
as ωB97X-D/6-31++G(d,p)63 implemented in the Gaussian33
and ORCA programs, and DLPNO such as DLPNO-

CCSD(T0)/aug-cc-pVTZ
68−70 with NormalPNO criteria also

implemented in the ORCA program. Note that we typically
need to restart some DFT calculations, as the minimum was
not found. This can be caused by the calculations not
converging or by the presence of an imaginary vibrational
frequency. The filtering of redundant structures (nonunique,
fragmented, reacted, and with too high energy) and all
subsequent postcorrections is implemented within JKQC and
described in the manual.
Atmospheric molecular clusters often become quickly

solvated by a few water molecules due to high air humidity.
Therefore, the consideration of hydration becomes essential in
the study of atmospheric clusters, which introduce water as an
extra component, increasing the CS complexity. Water can also
function as both an acid and a base, potentially introducing
reactivity through proton transfer reactions. For simplicity,
hydration was often omitted in studies involving atmospheric
acid−base clusters. However, this introduces an additional
source of error in such studies, as the impact of water can
enhance cluster formation by up to 2 orders of magnitude.122

Rasmussen et al.101 demonstrated that for water-containing
clusters, the approach of Kildgaard et al.52,53 can outperform
the JKCS method presented here. Their technique requires
knowledge of low-energy structures for “dry” clusters and
involves sequentially inserting water between existing bonds or
around the cluster, exploring only a fraction of configurational
space. While both methods are able to find the global
minimum, JKCS demands significantly more computational
resources due to its exploration of a larger configurational
space. For sizable clusters with distinct predictable bonding
patterns, like large hydrate clusters, alternative approaches such
as Kildgaard’s method could offer faster CS. We encourage
future studies to incorporate water.
3.3. ML Potential. In our recent Clusterome paper,123 we

presented a large (∼250k), multiacid−multibase, atmospheri-
cally relevant, molecular cluster database (available in the
ACDB 2.0 repository, see the Supporting Information). Here,
we extract only ∼32k structures of the (H2SO4−
SA)0−2(bases)0−2 clusters (termed Clusteromics I), where
bases correspond to ammonia (AM), methylamine (MA),
dimethylamine (DMA), trimethylamine (TMA), and ethyl-
enediamine (EDA). We trained the KRR potential with the
FCHL1988 molecular representation (via JKML) to examine
whether Δ-ML r2SCAN-3c∥GFN1-xTB can substitute the
single-point r2SCAN-3c in the JKCS workflow mentioned in
the previous section. Hence, we selected 10 random
equilibrium (H2SO4)3(base)3 clusters from Xie et al.124 and
predicted their binding electronic energies with the ML model.
Figure 7 shows that the learning curve (orange line) rapidly
converges to a mean absolute error (MAE) of 1.11 kcal/mol,
corresponding to the model trained on the full Clusteromics I
(black dotted line). Hence, already 1k structures randomly
selected from the Clusteromics I database are enough to train
an accurate ML potential and replace the r2SCAN-3c step in
the ML workflow. The training on 1000 structures with a
subsequent test on 10 structures takes ∼5 CPU hours.
However, performing r2SCAN-3c itself takes only ∼1 CPU
hour. Since this QC method is computationally quite fast,
using ML does not speed up the process. More useful is, for
instance, Δ-MLωB97X‑D∥GFN1‑xTB as used in our previous work
on the CS of SA-multibase clusters46 or even Δ-
MLDLPNO∥ωB97X‑D as suggested in our recent perspective.81

However, as a proof of concept, we will use r2SCAN-3c in the

Figure 6. CS workflow used by Knattrup et al.105
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next section to show the potential ML speedup by the
categorization trick.

3.3.1. Fast ML. JKML offers two types of in-house
algorithms to speed up KRR modeling. The first, kernel
splitting (-split ⟨int⟩), employs multinode parallelization of
kernel matrix constructions. Hence, the same results are
obtained with the same computational resources but in a
shorter wall-clock time. Second, the “categorization trick”
(-categorize ⟨int⟩), compares the similarity between a test
structure and all training and predicts using an ML model
trained only on a subset of similar structures, where the
similarity is performed via bond (and bond angle) comparison.
This leads to faster predictions with an expected minor
decrease in accuracy. With more test structures, a new ML
model is trained for each tested structure. Another option
would be to combine the training subsets into one reduced
subset.
Figure 7 shows the learning curves for the selection via the

categorization trick (green and red curves). This smart
selection from the full database leads to approximately fivefold
lower MAEs compared to a random selection. It can even
reach lower values compared to the prediction on the full
database, as structures that do not resemble the test
structure(s) do not bias the model. When the training set
size grows, all learning curves converge to the MAE of the full
database. Further, we only use the categorization trick based
on bonds, as including angles does not seem to improve the
categorization trick.
Finally, to provide statistically accountable proof, we again

used the ∼32k (SA)0−2(bases)0−2 clusters (Clusteromics I) for
training and tested it on 5k (SA)3(bases)3 and 1k
(SA)4(bases)4 clusters from Kubecǩa et al.46 Table 2 shows
that the MAE of the predicted binding energies using the
model trained on the full database is similar to the errors of the
categorization trick with 100 and 200 trained structures for
each target structure. Here, it is worth noting that the MAE of
the ML predictions is less important for CS as we sort and
filter configurations based on relative energies. Hence, the
RMSD (i.e., span of errors) defines the quality of the ML
model. As an example of computational times, the training on
the full Clusteromics I took ∼152 CPU days and the

prediction of the (SA)3(base)3 set took an additional 103
CPU days (overall 255 CPU days). The equivalent process
using the selection trick with 100 and 200 structures took
overall only ∼13 and ∼43 CPU days, respectively. Clearly,
selecting only 200 training structures in the (SA)3(base)3
modeling is fast but we could reach even greater accuracy by
using ∼800 structures (based on Figure 7). However, this
would lead to ∼16 times slower modeling.
To summarize, Δ-ML is able to substitute the r2SCAN-3c

step in the CS workflow. This could be followed by filtering
10% of the lowest Δ-ML energies to the next step (e.g., DFT
optimization). Figure 8 shows the correlation between Δ-ML
predicted energies and r2SCAN-3c energies for the
(SA)3(DMA)3 cluster, which supports the use of a 200-
structure categorization trick. With this single-point energy
approach, fewer structures need to be taken to computationally
demanding DFT calculation as opposed to filtering straight on
the semiempirical energy ordering. With very large diverse
databases or training more parameters (e.g., forces), we also
recommend using other training data set reduction methods125

and/or using JKML coupled with SchNetPack94,95 for training
a NN potential.

4. CONCLUSIONS
In this work, we introduced the Jammy Key framework, a
collection of scripts designed for systematic CS of molecular

Figure 7. Learning curves, that is, mean absolute error (MAE) functions of the training set size, for the electronic binding energy predictions of 10
(H2SO4)3(base)3 clusters from Xie et al.124 The learning curves with different training subdatabase selection approaches (red, green, orange)
converge to the MAE of training on the full (∼32k) database (black dotted line). Error bars correspond to the standard deviation of the sample
mean.

Table 2. Test of the Categorization Trick (-categorize)
Method with 100 and 200 Most Similar Structures Selected
from the Clusteromics I and Errors in the Prediction of
Binding Energies of the Equilibrium (SA)3(base)3 and
(SA)4(base)4 Clusters (Where SA Is Sulfuric Acid)

train test methods
MAE ± RMSD
[kcal/mol]

Clusteromics I (SA)3(base)3 full database 0.8 ± 1.0
-categorize 100 1.4 ± 1.7
-categorize 200 1.2 ± 1.5

(SA)4(base)4 full database 3.3 ± 5.2
-categorize 100 3.6 ± 4.7
-categorize 200 2.6 ± 3.7
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clusters as well as their handling, storing, and subsequent
analysis. Notably, its core strengths are organized processing
and automated file administration. The toolkit interfaces with
commonly used third-party software such as ABCluster,
CREST, XTB, Gaussian, and ORCA for executing quantum
chemistry calculations while retaining adaptability for integra-
tion of alternative third-party programs. Its ultimate aim is to
identify a representative set of structures corresponding to the
lowest free energy minima. We demonstrated the application
of the JKCS to various systems, primarily focusing on
atmospheric molecular clusters, although the underlying
principles are universally applicable.
JKQC is another powerful tool that allows the extraction of

coordinates, forces, and other properties from QC programs
into a compressed file. JKQC offers further manipulation of the
stored data frame including sorting, filtering, specific data
printing, applying QC corrections, calculation of binding (and
atomization) properties, and producing input files for, for
example, the ACDC or the Ion Mobility Software suite
(IMoS). Consequently, the analysis of large data sets with
JKQC becomes more automated and faster. We used these
advantages to upgrade the architecture of the ACDB,
conceived by J. Elm. Hence, the new version, ACDB 2.0,
contains more cluster descriptions and takes less memory
space, and the manipulation of the database is significantly
improved. As a result, ACDB 2.0 presently encompasses over 1
million entries of molecular cluster configurations/properties
that are suitable for ML applications.
Finally, we introduce the JKML that interfaces with the

QML and SchNetPack packages. This interface facilitates the
application of ML techniques from the KRR and NN families.
We outline the potential integration of ML into the CS
procedure and deliberate on their applicability with respect to
the training data set size. We believe that incorporating ML
techniques holds substantial promise in reducing the computa-
tional expenses associated with future investigations of
molecular clusters.
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(89) Schütt, K. T.; Kindermans, P.; Sauceda, H. E.; Chmiela, S.;
Tkatchenko, A.; Müller, K. Advances in Neural Information Processing
Systems; NIPS, 2017.SchNet: A continuous-filter convolutional neural
network for modeling quantum interactions
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(95) Schütt, K. T.; Hessmann, S. S. P.; Gebauer, N. W. A.; Lederer,
J.; Gastegger, M. SchNetPack 2.0: A neural network toolbox for
atomistic machine learning. J. Chem. Phys. 2023, 158, 144801.
(96) Ramakrishnan, R.; Dral, P. O.; Rupp, M.; von Lilienfeld, O. A.
Big Data Meets Quantum Chemistry Approximations: The Δ-
Machine Learning Approach. J. Chem. Theory Comput. 2015, 11,
2087−2096.
(97) Browning, N. J.; Faber, F. A.; Anatole von Lilienfeld, O. GPU-
Accelerated Approximate Kernel Method for Quantum Machine
Learning. J. Chem. Phys. 2022, 157, 214801.

(98) Chmiela, S.; Sauceda, H. E.; Poltavsky, I.; Müller, K. R.;
Tkatchenko, A. sGDML: Constructing accurate and data efficient
molecular force fields using machine learning. Comput. Phys. Commun.
2019, 240, 38−45.
(99) Himanen, L.; Jäger, M. O.; Morooka, E. V.; Federici Canova,
F.; Ranawat, Y. S.; Gao, D. Z.; Rinke, P.; Foster, A. S. DScribe:
Library of descriptors for machine learning in materials science.
Comput. Phys. Commun. 2020, 247, 106949.
(100) He, X.; Iyer, S.; Sipilä, M.; Ylisirniö, A.; Peltola, M.;
Kontkanen, J.; Baalbaki, R.; Simon, M.; Kürten, A.; Tham, Y. J.; et al.
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