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Based on the results of a previous paper [M. Noppel, H. Vehkamäki, P. M. Winkler, M. Kulmala,
and P. E. Wagner, J. Chem. Phys. 139, 134107 (2013)], we derive a thermodynamically consistent
expression for reversible or minimal work needed to form a dielectric liquid nucleus of a new phase
on a charged insoluble conducting sphere within a uniform macroscopic one- or multicomponent
mother phase. The currently available model for ion-induced nucleation assumes complete spherical
symmetry of the system, implying that the seed ion is immediately surrounded by the condensing
liquid from all sides. We take a step further and treat more realistic geometries, where a cap-shaped
liquid cluster forms on the surface of the seed particle. We derive the equilibrium conditions for
such a cluster. The equalities of chemical potentials of each species between the nucleus and the
vapor represent the conditions of chemical equilibrium. The generalized Young equation that relates
contact angle with surface tensions, surface excess polarizations, and line tension, also containing
the electrical contribution from triple line excess polarization, expresses the condition of thermody-
namic equilibrium at three-phase contact line. The generalized Laplace equation gives the condition
of mechanical equilibrium at vapor-liquid dividing surface: it relates generalized pressures in neigh-
boring bulk phases at an interface with surface tension, excess surface polarization, and dielectric
displacements in neighboring phases with two principal radii of surface curvature and curvatures of
equipotential surfaces in neighboring phases at that point. We also re-express the generalized Laplace
equation as a partial differential equation, which, along with electrostatic Laplace equations for bulk
phases, determines the shape of a nucleus. We derive expressions that are suitable for calculations of
the size and composition of a critical nucleus (generalized version of the classical Kelvin-Thomson
equation). © 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4822047]

I. INTRODUCTION

In the preceding paper,1 hereafter referred to as Paper
I, we formulated general thermodynamic equations of inter-
nal energies and grand potential for a system consisting of
a non-critical dielectric liquid nucleus of a new phase on a
partially wettable charged conducting particle within a uni-
form macroscopic multicomponent mother phase. We studied
a general cap-shaped nucleus (see Fig. 1), not necessarily hav-
ing spherical form or axial symmetry, but we assumed that
deviations from the spherical form are such that we can ig-
nore the changes in surface and line tensions values invoked
by these deviations. We introduced electrical surface and line
excess quantities to take into account the contributions of in-
terfacial and three phase contact zones to the electric field en-
ergy of a system. Spontaneous polarization of surface layer
molecules was taken as a major contributor to the electri-
cal excess quantities. The purpose of Paper I1 was to lay the
foundation for obtaining a rigorous and thermodynamically
consistent expression for the reversible work of nucleus for-
mation, and proper conditions for the critical nucleus which

a)E-mail: madis.noppel@ut.ee. Tel.: +372-7-375857. Fax: +372-7-375556.

are derived in this paper. We follow the consistent study of
Nishioka and Kusaka2 and Debenedetti and Reiss.3

In Sec. II, we derive the thermodynamically consistent
expression of the reversible work of nucleus formation. Sec-
tion III presents the conditions for a critical nucleus, where
in Subsection III A, we first consider the change of elec-
tric field energy caused by infinitesimal deformation of an
embryo at constant seed particle charge. The study of this
change is required for the establishing thermodynamic equi-
librium conditions at interface surfaces. Subsections III B and
III C describe thermodynamic equilibrium at vapor-liquid di-
viding surface and at three phase contact line, respectively. In
Subsection III D, we derive expressions for composition and
size of a critical nucleus. Subsection III E considers how the
generalized Laplace equation can be presented and used as a
differential equation for the shape of a nucleus. Section IV
makes conclusions.

II. THE WORK OF FORMATION

A constrained nucleus of any size is formed from vapor
phase on a seed particle. Vapor acts as the bath of heat, pres-
sure, and particles. The entire system is large, but closed.

0021-9606/2013/139(13)/134108/17/$30.00 © 2013 AIP Publishing LLC139, 134108-1
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FIG. 1. Sketch of the cross section of a cap-shaped liquid nucleus l of radius
r in the vapor phase g on a spherical conducting uncharged seed particle s of
radius R. The liquid nucleus forms a contact angle θ with the seed particle.

The difference in the grand potentials between a case
with a bare seed particle (Paper I,1 Eq. (53)) and a seed par-
ticle with a liquid nucleus on it (Paper I,1 Eq. (55)), in both
cases immersed in the vapor phase, gives us the reversible
work to form a general-size nucleus on a charged seed par-
ticle. Actually, the potential Eq. (55) in Paper I1 is a hybrid
potential for a constrained nucleus on a seed particle that
acts as a grand potential with respect variables μi,g – the
chemical potential of species i in vapor, and as Helmholtz
free energy with respect to variables Ni,a, Ni,L and Ni,l –
the numbers of i-type molecules of surface a (a = gl, ls),
contact line and bulk liquid, respectively (see Eq. (56) in
Paper I1). The reversible work is

�� = � − �0

= (
p0

g − p0
l

)
Vl + σglAgl + (σls − σgs)Als + κL

+
∑

a

∑
i

(μi,a − μi,g)Ni,a

+
∑

i

(μi,l − μi,g)Ni,l +
∑

i

(μi,L − μi,g)Ni,L

−
∫
Asl

P sl
0

ε0
(D − D0) · dAsl

−
∫

Asg

P
sg

0

ε0
(D − D0) · dAsg −

∫
Alg

P
lg

0

ε0
(D − D0) · dAlg

+ 1
2

∫
Vl+Vg

(ED − E0D0)dV − q

∫
L

κP

ε0
dL

+ P
sg

0

ε0
q − q2

8πεgε0R
, (1)

where p0
l and p0

g are the pressures in bulk liquid and gas
phases around an uncharged seed particle, respectively; Vl and
Vg are the volumes of the embryo and vapor phase around
the embryo, respectively; σ a is the surface tension and Aa is

surface area of surface a (a = gl, ls, gs); κ is the line ten-
sion of contact line; L is the length of contact line; P a

0 is the
surface excess polarization of surface a (a = gl, ls, gs); D
is the vector of the dielectric displacement around a charged
seed particle; D0 is the vector of the dielectric displacement
around an uncharged seed particle; E and E0 are electric field
strengths around a charged and an uncharged seed particle,
respectively; R is the radius of a seed particle; κP q is the ex-
cess quantity due to spontaneous polarization in contact line
zone, where q is the seed particle charge and κP is the charge
independent factor; κP q/ε0 is the electrical line tension due
to spontaneous polarization. The relations V = Vl + Vg and
Ags

0 = Als + Ags have been used in Eq. (1), where V is the to-
tal volume of the system (excluding the volume of the seed
particle) and Ags

0 is surface area of a bare seed particle in va-
por. Here, we have ignored the fact that the location of di-
viding surfaces for the liquid-solid Als and gas(vapor)-solid
Ags interfaces of a seed particle with a liquid nucleus on it
can be different. The system boundary radius is set to infinity
ρ lim = ∞.

If electric line and surface excess quantities that are
scalars are constant along three phase contact line and divid-
ing surfaces of phases, respectively, that is, κP is constant and
P a

0 is constant for each of the surfaces a = lg, sl, sg, Eq. (1)
can be simplified to

�� = � − �0

= (
p0

g − p0
l

)
Vl + σglAgl + (σls − σgs)Als

+
(

κ − κP q

ε0

)
L

+
∑

a

∑
i

(μi,a − μi,g)Ni,a +
∑

i

(μi,l − μi,g)Ni,l

+
∑

i

(μi,L − μi,g)Ni,L

−
⎛
⎝P sl

0 + P
lg

0

ε0

⎞
⎠ qsl − P

sg

0

ε0
qsg

+ 1
2

∫
Vl+Vg

(ED − E0D0)dV − q2

8πεgε0R
+ P

sg

0

ε0
q,

(2)

where we have used Gauss’s law
∫
Aa

D · dA = q and qsl is the

electric charge on the portion of seed particle surface covered
by the liquid nucleus and qsg is the electric charge on the por-
tion of seed particle surface facing the gas phase. Conduction
electrons are free to move all around the entire seed particle.
Electrons are in thermal agitation. There is no fixed position
for them on the seed surface. Therefore, the quantities qsl and
qsg as average quantities can also have values that are only
a fraction of the elementary charge. Of course, in the latter
case the sum of qsl and qsg should be equal to the elementary
charge carried onto the seed. Surface and line excess quanti-
ties due to spontaneous polarization introduce a clear depen-
dence of the nucleus formation energy on the sign of the seed
particle charge.
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III. THE CONDITION FOR A CRITICAL NUCLEUS

So far, we have constrained molecular numbers Ni,l, Ni,a,
and Ni,L, as well as nucleus volume Vl, surface areas Aa, and
triple line length L to have fixed values. The variation of
these parameters around values of stable or unstable equilib-
rium nuclei should give minimal or maximal values, respec-
tively, for the reversible work of nucleus formation. To obtain
the extremity condition, we first calculate the differential of
Eq. (1). The differentials of terms corresponding to a seed
particle in the gas phase are zero as we vary the quantities
describing the size and the shape of the liquid embryo and
keep the gas phase properties constant. The differential of the
reversible work of cluster formation is

d�� = (
p0

g − p0
l

)
dVl + σgldAgl + (σls − σgs)dAls + κdL

+
∑

a

∑
i

(μi,a − μi,g)dNi,a

+
∑

i

(μi,l − μi,g)dNi,l +
∑

i

(μi,L − μi,g)dNi,L

+ d�0 + d�δq1 + d�δq2 + d�δρ

= (
p0

g − p0
l

)
dVl + σgldAgl + (σls − σgs)dAls

+ κdL +
∑

a

∑
i

(μi,a − μi,g)dNi,a

+
∑

i

(μi,l − μi,g)dNi,l

+
∑

i

(μi,L − μi,g)dNi,L + d�δρ, (3)

where we have used notations d�0, d�δq1, d�δq2, d�δρ to
indicate the following terms:

d�0 =
{

−Vldp
0
l +

∑
i

Ni,ldμi,l

}

+
⎧⎨
⎩

∑
a=sl,lg

(
Aadσa +

∑
i

Ni,adμi,a

)⎫⎬
⎭

−Alsdσgs +
{

Ldκ +
∑

i

Ni,Ldμi,L

}
, (4)

d�δq1 =

⎡
⎢⎣ 1

2

∫
Vl+Vg

E · δDdV −
∑

a

⎛
⎝∫

Aa

P a
0

ε0
δD · dAa

⎞
⎠ − δq

∫
L

κP

ε0
dL

⎤
⎥⎦

δV =0,δA=0

, (5)

d�δq2 =

⎡
⎢⎢⎢⎢⎢⎣

1
2

∫
Vl+Vg

D · δEdV − 1
2δ

∫
Vl+Vg

D0E0dV

−
∑

a

⎛
⎝∫

Aa

[
δP a

0

ε0
D − δ

(
P a

0

ε0
D0

)]
· dAa

⎞
⎠ − q

∫
L

δκP

ε0
dL

⎤
⎥⎥⎥⎥⎥⎦

δV =0,δA=0

, (6)

d�δρ = δ

⎡
⎢⎢⎢⎢⎢⎢⎣

−
∫
Asl

P sl
0

ε0
(D − D0) · dAsl +

∫
Vl

(
ED

2
− E0D0

2

)
dV −

∫
Alg

P
lg

0

ε0
(D − D0) · dAlg

−
∫

Asg

P
sg

0

ε0
(D − D0) · dAsg +

∫
Vg

(
ED

2
− E0D0

2

)
dV − q

∫
L

κP

ε0
dL

⎤
⎥⎥⎥⎥⎥⎥⎦

q,δV �=0,δA �=0

. (7)

In Eq. (3), terms denoted by d�0 vanish due to the Gibbs–
Duhem Eqs. (9), (12) and the Gibbs adsorption Eq. (11) given
in Paper I.1 It follows from Eq. (11) of Paper I1 that dσgs

= 0, as the state of the vapor is kept constant (T, {μi,g}
are constant) and the interface between vapor and seed par-
ticle is open for mass transfer ensuring the equality of chem-
ical potentials. The term d�δq1 corresponds to the charging
of seed particle (see Eqs. (40) and (46) in Paper I1) at con-
stant volume and shape of an embryo. As charge q is kept
constant, this term is zero. The term d�δq2 is zero due to

the Gibbs–Duhem Eqs. (44) and (48) in Paper I.1 The term
d�δρ describes the change of electrostatic energy at constant
charge of seed particle when the volume and shape of an em-
bryo are varied. These variations evoke changes in electro-
static energy not only in the location where the variations oc-
cur but all over the system. This term will be considered in
Sec. III A.

It follows from Eq. (3) that the derivative of Eq. (1) with
respect to Ni,l at constant {Nj�=i,l}, {Ni,a}, {Ni,L}, and constant
volume Vl and shape of nucleus, i.e., at constrained embryo,
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is zero when

μi,l = μi,g. (8)

The derivative with respect to Ni,a at constant {Nj�=i,a},
{Ni,l}, {Ni,L}, and constant Vl and shape gives

μi,a = μi,g. (9)

The derivative with respect to Ni,L at constant {Nj�=i,L},
{Ni,l}, {Ni,a}, and constant Vl and shape gives

μi,L = μi,g. (10)

Equations (8)–(10) also hold for a critical embryo as it
is one of the possible constrained embryos. In what follows,
we use the condition that the values of chemical potentials are
equal throughout the system.

A. The change of electric field energy due to an
infinitesimal deformation of the embryo
at constant charge

The estimation of thermodynamic equilibrium condition
of an embryo requires the knowledge of the change of electric
field energy that an infinitesimal deformation of the embryo
shape causes at constant charge of seed particle, i.e., we must
estimate the variation d�δρ given by Eq. (7).

The formation energy of an embryo given by Eq. (1) is
expressed in terms of the properties of the hypothetical system

and also includes the surface excess polarizations P
lg

0 (elec-
tric double layer, a = lg, sl, sg). An infinitesimal movement
of the boundary of the embryo in the hypothetical system can
also be considered as addition or removal of dielectric body
and electric double layer into or from the electric field of seed
particle. In deriving Eq. (16) of Paper I,1 we ignored the sur-
face excess polarization. Therefore, we must now reformulate
Eq. (16) of Paper I.1 Note that this reformulation is valid only
for hypothetical systems. We consider two types of infinites-
imal deformations of the embryo. The initial state of an em-
bryo on seed particle is depicted in Fig. 1. First, we increase
the volume of the embryo by choosing a portion of liquid-
vapor interface that is not in contact with seed particle surface
and move it infinitesimally outward (see Fig. 2, the embryo
volume is increased by dxdyδz). Second, we move infinitesi-
mally outward a portion of the gas-liquid interface that is in
touch with seed particle surface (see Fig. 3). The movement
of this portion is accompanied with the change of three phase
contact line length. For the latter case, we will present only
the result of surface element displacement, as the derivation
is essentially similar with the first case.

1. Liquid-vapor surface element not adjacent
to the three phase contact line

A surface element dAlg = dxdy is displaced by δz and
its area increases to dAlg,2 = (dx+δdx)(dy+δdy). The system

FIG. 2. The variation of surface area and volume due to an infinitesimal
displacement δz of the surface of phase separation. The directions of x- and
y-axes are chosen to correspond to the directions where surface has minimum
and maximum curvatures with radii of curvature r1 and r2.

with original surface element is characterized with surface ar-
eas Aa (a = sl, sg, lg) and volumes Vs, Vl, Vg . The system
with a displaced surface element is characterized with surface
areas Alg,2 = Alg − dAlg + dAlg,2, Asg,2 ≡ Asg, Asl,2 ≡ Asl and
volumes Vs,2 ≡ Vs, Vl,2 ≡ Vl + dV, Vg,2 ≡ Vg − dV , where
dV = dxdyδz (see Fig. 2). If we consider the original surface,
the bottom and the deformed surface top of a “box,” the walls
of the “box” have a surface area 2(dxδz + dyδz) which is an
infinitesimally small quantity compared to the areas dAlg and
dAlg,2 and, thus, we can ignore their contribution. The three
phase contact line remains unchanged. The last form of Eq.
(41), together with the correction Eq. (47) of Paper I1 aris-
ing from the line excess energy, can be used to describe the
electrostatic energy of the initial and final systems. Thus, the

FIG. 3. The variation of surface areas and volume due to an infinitesimal dis-
placement δz of the surface of vapor-liquid separation at three phase contact
line. The liquid nucleus is denoted by l, the vapor phase by g, and the solid
seed particle by s. The contact angle is θ and the displacement of the contact
line δl.
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change in the system energy due to the deformation is

d�q = �q,2 − �q

= −
∫
Asl

P sl
0

ε0
(D2 − D) · dA +

∫
Vl

E2 · D2 − E · D
2

dV

+
∫
dV

E2 · D2 − E · D
2

dV

−
∫

Alg−dAlg

P
lg

0

ε0
(D2 − D) · dA+

∫
dAlg

P
lg

0

ε0
(D − D0) · dA

−
∫

dAlg,2

P
lg

0,2

ε0

(
D2 − D0,2

) · dA

−
∫

Asg

P
sg

0

ε0
(D2−D) · dA +

∫
Vg,2≡Vg−dV

E2 · D2−E · D
2

dV

−q

∫
L2

κP,2

ε0
dL + q

∫
L

κP

ε0
dL, (11)

where in the last form we have dropped terms involving only
the field and polarization quantities of uncharged system, as
energetic contribution of such quantities is already incorpo-
rated in the terms of Eq. (1) related to the uncharged system.
We have also taken into account that the surface excess polar-
ization remains unchanged at nondisplaced surfaces, that is,

P
ij

0,2 ≡ P
ij

0 for a = sl, sg. We can represent integrals over vol-
ume regions Vl, Vg,2, dV in the last form of Eq. (11) in a form
equivalent to Eq. (17) of Paper I1

1
2

∫
V

(E2 · D2 − E · D)dV

= 1
2

∫
V

(E2 · (D2 − D) + (E2 − E) · D)dV. (12)

Next, we can use Eq. (18) of Paper I1 to represent the
term E2 · (D2−D) in the form

E2 · (D2 − D) = −∇ϕ2 · (D2 − D)

= −∇ · [ϕ2 (D2 − D)] + ϕ2∇ · (D2 − D) .

The term ∇ · (D2−D) is zero, as there are no charges neither
inside the “box” between the original and deformed surfaces
nor in liquid and vapor phases. The application of the diver-
gence theorem to the above expression leads to the result

1
2

∫
V

E2 · (D2 − D)dV = − 1
2

∫
A

ϕ2 (D2 − D) ·dA, (13)

where A represents surface area of volume V and ϕ2 is the
electrostatic potential inside volume V in the immediate vicin-

ity of surface A. As before, we take the positive direction of
surface elements of dA to be away from the seed particle and
away from the liquid phase, and determine the signs of the
surface integrals accordingly. Upon summing the first terms
of the right hand side of Eq. (12) for volumes Vl, Vg,2, and
dV, that is, the E2 · (D2−D) integrals over Vl, Vg,2, and dV, we
obtain

1
2

∫
Vl

E2 · (D2 − D)dV + 1
2

∫
Vg,2

E2 · (D2 − D)dV

+ 1
2

∫
dV

E2 · (D2 − D)dV

= 1
2

∫
Asl

P sl
0

ε0
(D2 − D) · dA + 1

2

∫
Alg−dAlg

P
lg

0

ε0
(D2 − D) · dA

+ 1
2

∫
dAlg,2

P
lg

0,2

ε0
(D2 − D) · dA + 1

2

∫
Asg

P
sg

0

ε0
(D2 − D) ·dA.

(14)

Here, for making the general line of derivations more easier to
follow in this section, we skip intermediate steps of the deriva-
tion leading to the last form of Eq. (14). They are given in
Appendix A.

To calculate the sum of the second terms of Eq. (12) for
volumes Vl, Vg,2, and dV, that is, the (E2−E) · D integrals over
Vl, Vg,2, and dV, we note that inside the gas and liquid phase
volumes Vl, Vg,2 relation (E2 − E) · D = (D2 − D) · E holds
due to assumed linear relationship D = εE. Thus, the inte-
gral of (E2−E) · D over all volumes Vl, Vg,2, dV can be repre-
sented, analogously with Eq. (14), as

1
2

∫
Vl

E · (D2 − D)dV + 1
2

∫
Vg,2

E · (D2 − D)dV

+ 1
2

∫
dV

E · (D2 − D)dV

=+ 1
2

∫
Asl

P sl
0

ε0
(D2−D) · dA + 1

2

∫
Alg−dAlg

P
lg

0

ε0
(D2 − D) · dA

+ 1
2

∫
dAlg

P
lg

0

ε0
(D2 − D) · dA + 1

2

∫
Asg

P
sg

0

ε0
(D2 − D) · dA.

(15)

Transferring the integral over dV from the left hand side of the
equation to the right hand side of it to get a more convenient
form for reference in the following derivations, we obtain
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1
2

∫
Vl+Vg,2

(E2 − E) · DdV

= 1
2

∫
Vl

E · (D2 − D)dV + 1
2

∫
Vg,2

E · (D2 − D)dV

=− 1
2

∫
dV

E · (D2 − D)dV + 1
2

∫
Asl

P sl
0

ε0
(D2 − D) · dA

+ 1
2

∫
Alg−dAlg

P
lg

0

ε0
(D2 − D) · dA

+ 1
2

∫
dAlg

P
lg

0

ε0
(D2 − D) · dA + 1

2

∫
Asg

P
sg

0

ε0
(D2 − D) · dA.

(15′)

We can express the integral of both the terms on the right
hand side of Eq. (12) over volume V = Vl + Vg,2 + dV as

1
2

∫
V

(E2 · D2 − E · D)dV

= 1
2

∫
V

E2 · (D2 − D)dV + 1
2

∫
V

(E2 − E) · DdV

= 1
2

∫
V

E2 (D2 − D)dV + 1
2

∫
Vl+Vg,2

(E2 − E) DdV

+ 1
2

∫
dV

(E2 − E) DdV

= 1
2

∫
dV

(E2 · D − E · D2)dV +
∫
Asl

P sl
0

ε0
(D2 − D) · dA

+
∫

Alg−dAlg

P
lg

0

ε0
(D2 − D) ·dA

+ 1
2

∫
dAlg,2

P
lg

0,2

ε0
(D2 − D) · dA + 1

2

∫
dAlg

P
lg

0

ε0
(D2 − D) · dA

+
∫

Asg

P
sg

0

ε0
(D2 − D) · dA, (16)

where the integral of E2 · (D2−D) over volume Vl + Vg,2 + dV
and the integral of (E2−E) · D over Vl + Vg,2 in the third form
of Eq. (16) are expressed using Eqs. (14) and (15′), respec-
tively, to obtain the final form of Eq. (16). Upon introducing
Eq. (16) into Eq. (11), we obtain the following relation for the
change in the formation work due to the deformation:

d�q =�q,2 − �q

= 1
2 (E2 · D−E · D2) dV − P

lg

0,2

ε0

(
D2+D

2
−D0,2

)
·dAlg,2

+P
lg

0

ε0

(
D2 + D

2
− D0

)
· dAlg

= 1
2 (El · Dg − Eg · Dl)dV

−P
lg

0,2

ε0

(
Dl

n,f + D
g

n,f

2
− D0,n,f

)
dAlg,2

+P
lg

0

ε0

(
Dl

n,i + D
g

n,i

2
− D0,n,i

)
dAlg. (17)

The last form of Eq. (17) takes into account that before
the infinitesimal shift of the surface element dAlg the volume
dV contained gas phase, but after the shift it contains liq-
uid phase. Subscript n refers to the component of dielectric
displacement that is normal to the surface element, and sub-
scripts i, f to the initial and final position of shifted bound-
ary, respectively. Denoting changes in the gas-liquid interface

polarization δP
lg

0 = P
lg

0,2 − P
lg

0 surface area, δdAlg = dAlg,2

− dAlg, and dielectric displacement δD
j
n = (Dj

n,f − D0,n,f )

− (Dj

n,i − D0,n,i), (j = l, g) and confining to the first order
terms with respect to δ-denoted quantities, the last form of
Eq. (17) can be approximated as

d�q = 1
2 (El · Dg − Eg · Dl)dV − P

lg

0

ε0

δDl
n + δD

g
n

2
dAlg

−P
lg

0

ε0

(
Dl

n,i + D
g

n,i

2
− D0,n,i

)
δdAlg

−δP
lg

0

ε0

(
Dl

n,i + D
g

n,i

2
− D0,n,i

)
dAlg. (18)

2. Liquid-vapor surface element adjacent to the three
phase contact line

The location of the three phase contact line and the value
of the corresponding line tension depend on how we choose
the Gibbs dividing surface for all three interfaces. Here, it is
assumed that the position of dividing surfaces coincides with
the surface of tension. But, in general, the interception line of
surfaces of tensions of interfaces does not coincide with the
location of line of tension, and the curvature dependence of
the line tension should be taken into account.4

An infinitesimal movement of a portion of liquid-vapor
interface that is in touch with seed particle surface (see
Fig. 3) evokes a change in the three phase contact line length.
Let the length of three phase contact line element that will
be displaced to be dL and the entire length of the three phase
contact line L. In the new location, the line element will have
a length dL2 and system triple line length will be L2 = L − dL
+ dL2. We denote the coefficient of spontaneous line excess
polarization (see Eq. (39) of Paper I1) in new position as κp,2.
Then the change of line energy is

d�L = �L,2 − �L = −q

⎛
⎝ ∫

L2

κP,2

ε0
dL −

∫
L

κP

ε0
dL

⎞
⎠

= −q

(
κP

ε0
δdL + δκP

ε0
dL

)
, (19)
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where δκp = κp,2 − κp and δdL = dL2 − dL and only the same
order infinitesimal quantities are retained in the last form of
Eq. (19). Repeating the derivation of Eq. (17) for surface and
volume elements of infinitesimal outward shift of a portion of
the liquid-vapor interface depicted in Fig. 3, we obtain

d�q =�q,2 − �q

= 1
2 (E2 · D − E · D2) dV − P

lg

0,2

ε0
(D2 − D0,2) · δAlg

−P sl
0

ε0
(D2 − D0,2) · δAsl

+P
sg

0

ε0

(
D2+D

2
−D0

)
· δAsl −q

(
κP

ε0
δdL+ δκP

ε0
dL

)

= 1
2 (El · Dg−Eg · Dl)dV − P

lg

0,2

ε0

(
Dl

2,n − D
lg

0,2,n

)
δAlg

−P sl
0

ε0

(
Dsl

2,n − Dsl
0,2,n

)
δAsl

+ P
sg

0

ε0

(
Dsl

2,n + D
sg
n

2
− D

sg

0,n

)
δAsl

−q

(
κP

ε0
δdL + δκP

ε0
dL

)
, (20)

where in the last form we have introduced supplementary su-
perscripts s and g at dielectric displacements for a clearer in-
dication of the interface involved in each case.

B. The condition for mechanical equilibrium at
gas-liquid dividing surface

In a mechanical equilibrium, an infinitesimal displace-
ment of the dividing surface for gas-liquid interface should
result in zero value for the change in the reversible work of
nucleus formation given by Eq. (3). In other words, the sum of
various forces performing work that act on the surface should
be zero at every point of the surface. In general, the magni-
tude of these forces is different at different locations. In the
following, we use the condition that the values of chemical
potentials are equal throughout the system. We apply Eq. (3)
to the deformation of a gas-liquid surface element studied in
Sec. III A 1, and using Eq. (18) for d��, we obtain

d��δρ = (
p0

g−p0
l

)
δVl+σlgδdAlg+ 1

2

(
El · Dg−Eg · Dl

)
dVl

−P
lg

0

ε0

δDl
n + δD

g
n

2
dAlg

−P
lg

0

ε0

(
Dl

n,i + D
g

n,i

2
− D0,n,i

)
δdAlg

−δP
lg

0

ε0

(
Dl

n,i + D
g

n,i

2
− D0,n,i

)
dAlg, (21)

where we have added subscript δρ to indicate that the change,
d��, is due to the deformation of a gas-liquid surface ele-
ment at constant charge.

Next, we will follow the approach applied by Landau and
Lifshitz,5 and Gaydos et al.6 and consider an infinitesimal
displacement of the dividing surface for gas-liquid interface
away from three phase contact line.

Let the vapor-liquid dividing surface undergo an in-
finitesimal displacement. At each point of the original sur-
face, we draw the normal (see Fig. 2). The length of the seg-
ment of the normal lying between the points where it inter-
sects the displaced and original surfaces is denoted by δz.
Let δz be positive if the displacement of the surface is to-
wards the gas phase. Then a volume element between the two
surfaces is δV = δzdA = δVl = −δVg, where dA = dxdy is
the area of the surface element. The local displacement of
vapor-liquid dividing surface brings about the change of elec-
tric field energy d�δρ (see Eq. (17) or its approximate form
Eq. (18)).

Let us divide the electric field in the bulk phases next
to the surface into two components: one component, En, per-
pendicular to the surface and another, Et, parallel to the sur-
face, and recall from Paper I1 that the normal component of
dielectric displacement is continuous through the interface.
Tangential component of electric field is continuous through
interface if electrical double layer is independent of position

on surface, i.e., if the surface gradient vanishes, ∇2P
lg

0 = 0.

The surface gradient (denoted by ∇2) of a scalar function P
lg

0
at any point on a surface is a vector, tangential to the surface
at that point, whose direction which gives the maximum arc-

rate of increase of P
lg

0 along the surface, and its magnitude

is this maximum rate of increase of P
lg

0 . If the surface gradi-
ent is non-zero, there is the abrupt change in Et through the
electrical double of interface, i.e.,

Eg
t − El

t = −∇2
P

lg

0

ε0
. (22)

We should keep in mind that the excess polarization P
lg

0 / ε0

is the potential difference between the two sides of the
surface.

Thus, the third term on the right hand side of Eq. (21) can be written as

1
2

(
El · Dg − Eg · Dl

)
dVl

= 1
2

(
El

t · Dg
t + El

n · Dg
n − Eg

t · Dl
t − Eg

n · Dl
n

)
dVl

= 1
2

⎛
⎝

⎛
⎝Eg

t + ∇2
P

lg

0

ε0

⎞
⎠ · Dg

t + El
n · Dl

n −
⎛
⎝El

t − ∇2
P

lg

0

ε0

⎞
⎠ · Dl

t − Eg
n · Dg

n

⎞
⎠ dVl
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=
⎡
⎣ 1

2

(
El

nD
l
n − El

tD
l
t

) − 1
2

(
Eg

nDg
n − E

g
t D

g
t

) +
⎛
⎝∇2

P
lg

0

ε0

⎞
⎠ · Dl + Dg

2

⎤
⎦ dVl

=
⎡
⎣(

El
nD

l
n − 1

2 El · Dl
) − (

Eg
nDg

n − 1
2 Eg · Dg

) +
⎛
⎝∇2

P
lg

0

ε0

⎞
⎠ · Dl + Dg

2

⎤
⎦ dVl, (23)

where we have also used the identity 1/2(EnDn − EtDt) = EnDn − 1/2E · D.
The total work d�δρ done in displacing the surface is obtained by inserting result (23) to Eq. (21)

d��δρ = {
p0

g − p0
l + [

El
nD

l
n − 1

2 ElDl
] − [

Eg
nDg

n − 1
2 EgDg

]}
δzdAlg

+
⎛
⎝∇2

P
lg

0

ε0

⎞
⎠ ·

(
Dl + Dg

2

)
δzdAlg + σlgδdAlg − δP

lg

0

ε0

(
Dl

n,i + D
g

n,i

2
− D0,n

)
dAlg

− P
lg

0

ε0

(
Dl

n,i + D
g

n,i

2
− D0,n

)
δdAlg − P

lg

0

ε0

δDl
n + δD

g
n

2
dAlg

= [
p0

g − p0
l + (

El
nD

l
n − 1

2 ElDl
) − (

Eg
nDg

n − 1
2 EgDg

)]
δzdAlg

+
⎛
⎝∇2

P
lg

0

ε0

⎞
⎠ ·

(
Dl + Dg

2

)
δzdAlg + σlgδdAlg − δP

lg

0

2ε0

((
Dl

n,i − Dl
0,n

) + (
D

g

n,i − D
g

0,n

))
dAlg

+ P
lg

0

ε0

{[(
Dl

n,i − Dl
0,n

)
δdAlg + δDl

ndAlg

] + [(
D

g

n,i − D
g

0,n

)
δdAlg + δDg

ndAlg

]}
= [

p0
g − p0

l + (
El

nD
l
n − 1

2 ElDl
) − (

Eg
nDg

n − 1
2 EgDg

)]
δzdAlg

+
⎛
⎝∇2

P
lg

0

ε0

⎞
⎠ ·

(
Dl + Dg

2

)
δzdAlg + σlgδdAlg − δP

lg

0

2ε0

[(
Dl − Dl

0

) + (
Dg − Dg

0

)] · dAlg

+P
lg

0

ε0

{
δ
[(

Dl − Dl
0

)
dAlg

] + δ
[(

Dg − Dg

0

)
dAlg

]}
. (24)

To obtain the last, more compact form, we have used the
fact that the normal component of the dielectric displacement
is continuous at the liquid-gas interface D

g

0,n = Dl
0,n ≡ D0,n,

written the term proportional to δP
lg

0 / ε0 in terms of differ-
ences between D and D0, collected together all the liquid and

gas-related terms proportional to P
lg

0 / ε0, and finally moved
from the notation analogous to the line of Eq. (17) to the vec-
tor notation analogous to the previous line of that equation,
also identifying the variations of products (Di−Di

0) · dAlg,
where i = l,g. The condition of thermodynamic equilibrium
is, of course, d�δρ = 0.

In addition to the surface area, A, there are the so-called
principal radii r1 and r2 that characterize the curvature of a
nonplanar surface at each point. They represent the directions
where the surface has maximum and minimum curvatures and
these directions are orthogonal. The variation of the area of

the dividing surface element δdAlg caused by the displacement
δz may be written as (see Fig. 2)

δdA = (dx + δdx)(dy + δdy) − dxdy = dxδdy + dyδdx,

(25)

where x is in the direction where curvature radius is r1 and y is
in the direction where curvature radius is r2. To find δdx and
δdy, the following equality can be obtained using the geomet-
ric similarity of triangles shown in Fig. 2:

dx

r1
= dx + δdx

r1 + δz
, (26)

which can be written as

δdx = dx

r1
δz. (27)
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Similarly, δdy can be found as

δdy = dy

r2
δz. (28)

Substitution of Eqs. (27) and (28) into Eq. (25) results in

δdA =
(

1

r1
+ 1

r2

)
dAδz. (29)

Now we proceed expressing the last three terms on the
right hand side of Eq. (24) in terms of the principal radii. The
force tube of dielectric displacement that surrounds the sur-
face element dA cuts out on seed particle surface a charge
dq that is different from the charge dq+δdq cut out by the
force tube surrounding displaced surface element dA+δdA.
Gauss’s law relates the difference in the scalar product of
the dielectric displacement with the surface element to the
difference in the surface charge as δ[(D − D0)dA] = δdq.
In general, the direction of the interface normal and the di-
rection of the dielectric displacement vector D−D0 at sur-
face element dA do not coincide. If we denote the angle be-
tween these vectors by Greek letter ϑ , then dA · δ(D−D0)
= dAδ(Dn−D0,n) = dAδ(|D−D0|cosϑ) = dAδ(|D−D0|)cosϑ
+ |D−D0| (δcosϑ)dA. Let us consider the dielectric displace-
ment at the liquid side of the interface. The interface normal
is directed into the gas phase. Then the area of the cross sec-
tion of the force tube that encircles surface element dA is dAD

= cosϑdA and dq = (D−D0) · dA = |D−D0|cosϑdA. Note
that the cross section area cosϑdA is considered negative,
when vector D−D0 points towards the seed particle. For a
given force tube, the flux |D−D0|cosϑdA = dq is the same
along tube of force. We now consider equipotential surface

at surface element dA of the undisplaced surface. In analogy
with surface element dA, we can introduce principal radii r3

and r4 that characterize the curvature of equipotential surface
(see Fig. 2, which should be interpreted now as taken along
the force tube of dielectric displacement D−D0). Then area of
the cross section of the force tube at the displaced surface is

dAD + δdAD = dAD +
(

1

r3
+ 1

r4

)
dADδzD, (30)

where δzD = δz/cosϑ is the distance between the displaced
and undisplaced equipotential surfaces and dAD = cosϑdA.
Taking into account that |D−D0|dAD = |(D−D0)′|(dAD

+ δdAD) or |(D−D0)′| = |D−D0| [1/(1+δdAD/dAD)]
= |D−D0| (1−δdAD/dAD), where (D−D0)′ is the dielec-
tric displacement vector at displaced surface, we obtain

δdq = ∣∣(D − D0)′
∣∣ (dA + δdA) (cos ϑ + δ cos ϑ)

− |D − D0| dA cos ϑ

= |D − D0|
[(

1

r1
+ 1

r2

)
cos ϑ

−
(

1

r3
+ 1

r4

)
+ ∂ cos ϑ

∂z

]
dAδz. (31)

The above consideration is also valid for the dielectric
displacement at vapor side of interface. Now we introduce
subscripts l and g to differentiate between liquid and gas phase
quantities.

Substitution of Eqs. (29) and (31) into d��δρ = 0 with
d��δρ given by Eq. (24) (and dividing the resulting equation
by δzdA), yields the generalized Laplace equation

p0
l − p0

g − [
El

nD
l
n − 1

2 El · Dl
] + [

Eg
nDg

n − 1
2

1
2 Eg · Dg

] −
⎛
⎝∇2

P
lg

0

ε0

⎞
⎠ ·

(
Dl + Dg

2

)

=
(

1

r1
+ 1

r2

)
σgl + ∂P

lg

0

∂c

1

2

(
1

r2
1

+ 1

r2
2

)(∣∣Dl − Dl
0

∣∣ cos ϑl + ∣∣Dg − Dg

0

∣∣ cos ϑg

2ε0

)

−P
lg

0

2ε0

∣∣Dl − Dl
0

∣∣ [( 1

r1
+ 1

r2

)
cos ϑl −

(
1

r3,l

+ 1

r4,l

)
− ∂ cos ϑl

∂c

1

2

(
1

r2
1

+ 1

r2
2

)]

−P
lg

0

2ε0

∣∣Dg − Dg

0

∣∣ [( 1

r1
+ 1

r2

)
cos ϑg −

(
1

r3,g

+ 1

r4,g

)
− ∂ cos ϑg

∂c

1

2

(
1

r2
1

+ 1

r2
2

)]
, (32)

where c = (1/r1+1/r2)/2 is the average curvature of
the surface, and the dependences of spontaneous polar-

ization P
lg

0 and angles ϑ l, ϑg on the displacement δz
= −2(r1

−2+r2
−2)−1δc are transformed into the physically

more relevant dependences on the average curvature. The
terms dcosϑ j/dc (j = l, g) describe the change of the angle be-
tween normals of the interface and the equipotential surfaces
along the interface. These terms can be ignored at small cur-

vatures. The last two terms in Eq. (32) are zero when the di-
viding surface is equipotential surface and remains an equipo-
tential surface during the displacement.

Taking into account boundary conditions Dn
l = Dn

g and
Dn,0

l = Dn,0
g at the liquid-vapor interface and that Eq. (22) is

valid for both charged and uncharged system, and, therefore,
Dn

l − Dn,0
l = Dn

g − Dn,0
g and Et

l − Et,0
l = Et

g − Et,0
g

the relation between angles ϑ l and ϑg can be presented in the
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following form:

tan ϑg =
∣∣Eg

t − Eg

t,0

∣∣∣∣Eg
n − Eg

n,0

∣∣ = εg

εl

tan ϑl. (33)

1. Connection to generalized pressure

We can combine the first term of Eq. (21), namely,(
p0

g − p0
l

)
dVl , and the above Eq. (23), and by introducing a

generalized pressure

pj = p0
j +

⎛
⎝∇2

P
lg

0

ε0

⎞
⎠ · Dj

2
+1

2

(
E

j
t D

j
t − Ej

nDj
n

)

=p0
j +

⎛
⎝∇2

P
lg

0

ε0

⎞
⎠· Dj

2
+(

1
2εj ε0

(
E

j
t

)2− 1
2εj ε0(Ej

n)2
)

= p0
j +

⎛
⎝∇2

P
lg

0

ε0

⎞
⎠ · Dj

2
− (

εj ε0
(
Ej

n

)2 − 1
2εj ε0E2

j

)
,

(34)

where j = g,l. In the last part of Eq. (34), a zero value sum(
1
2εj ε0E

2
n − 1

2εj ε0E
2
n

)
is added to the term in brackets. The

last term of the last form of Eq. (34) coincides with the nor-
mal components of Maxwell’s stress tensor applied by War-
shavsky and Shchekin7 to the surface of the droplet from the
side of phase j. They used this tensor to estimate the effect
of external homogeneous electric field on the formation of di-
electric droplet.

In comparison with Warshavsky and Shchekin,7 the addi-

tional term (∇2
P

ij

0
ε0

) · Dj

2 of Eq. (34) should be omitted, as these
authors did not consider surface polarization. In Appendix B,
the Maxwell’s stress tensor at constant densities and constant
chemical potentials of dielectrics, and the generalized pres-

sure obtained above (with P
lg

0 ignored) is also derived by con-
sidering a dielectric body between the conducting plates of a
parallel-plate capacitor.

The work necessary to cause the change in the volume
δV = δzδA is

(pg − pl)δzdA =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

p0
g − p0

l + [
(EnDn)l − 1

2 (ED)l
] − [

(EnDn)g − 1
2 (ED)g

]

+
⎛
⎝∇2

P
lg

0

ε0

⎞
⎠ · Dl + Dg

2

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

δzdA. (35)

C. Thermodynamic equilibrium at the three phase
contact line

Next, we consider an equilibrium condition at the three
phase contact line. Let the surface of vapor-liquid separation
undergo an infinitesimal displacement δz that results in an in-
finitesimal displacement δl of contact line along seed parti-
cle surface perpendicular to contact line (see Fig. 3). Then
a surface element on seed particle between the displaced and
undisplaced contact lines is δA = δldL = δAsl = −δAsg, where
dL is a contact line element (the element is perpendicular to
the plane of Fig. 3). The increase of the area of vapor-liquid
separation surface, caused by the fact that the displacements
δz and δl are not parallel, is δAlg = dL · δlcosθ . The length ele-
ment dlcosθ connects the tips of displacement vectors, where
θ is the contact angle (see Fig. 3). The volume change that
results from an infinitesimal displacement δz is in the order
∼δzdLδlcosθ . Therefore, we can ignore volume work com-
pared with surface formation work which depends on the sec-
ond order of the infinitesimal quantities, ∼δldL. Besides the
surface work, there is a work connected with the change δdL
of line element dL, if the curvature of the projection of the
contact line curve onto the tangent plane drawn at a given
point to the seed particle is not zero. Let us denote the radius
of this projection, so called geodesic curvature, with rg. Then
the change δdL of line element dL is (derivation is performed

analogously with Eqs. (26) and (27))

δdL = dL

rg

δl. (36)

We apply Eq. (3) to the displacement under study, and
use Eq. (20) for d�δρ to get the work connected with the dis-
placement δz

d�δρ

=σgldLδl cos θ + (
σsl − σsg

)
δldL

−P
lg

0

ε0

(
Dlg

n − D
lg

0,n

)
dLδl cos θ

−
(

P sl
0

ε0

(
Dsl

n −Dsl
0,n

)− P
sg

0

ε0

(
Dsl

n +D
sg
n

2
−D

sg

0,n

))
δldL

+
(

κ − qκP

ε0

)
dL

rg

δl − q
δκP

ε0
dL, (37)

where we have ignored infinitesimal differences between val-
ues of excess polarization and dielectric displacement in sys-
tems of displaced and undisplaced surface elements. Dielec-
tric displacement is considered to be perpendicular with con-
ducting seed particle surface.
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From the requirement d�δρ = 0, we obtain the general-
ized Young equation

σgl cos θ + (σsl − σsg) − P
lg

0

ε0

(
Dlg

n − D
lg

0,n

)
cos θ

−
(

P sl
0

ε0

(
Dsl

n − Dsl
0,n

) − P
sg

0

ε0

(
Dsl

n + D
sg
n

2
− D

sg

0,n

))

+
(

κ − qκP

ε0

)
1

rg

− q

ε0

∂κP

∂rg

= 0, (38)

where the identity δrg ≡ δl is used in deriving the last
term, which describes the curvature dependence of the
coefficient κp.

D. The condition of composition and size of a critical
nucleus: Generalized Kelvin-Thomson equation

In deriving the generalized Laplace equation (32), we
used the fact that our system is at chemical equilibrium.
Therefore, pressures pg

0 and pl
0 correspond to the pressures

in bulk phases in the absence of electric field and these
phases are at chemical equilibrium with our system. Hence,
these pressures as reference pressures are the same for all
points of bulk phases of our system (see also discussion in
Appendix B).

We assume that liquid nucleus is incompressible and use
Maxwell equation8

dμi,l = vi,ldp
0, (39)

where vi,l is the partial molecular volume of species i. Inte-
grating Eq. (39), the chemical potential of species i in the liq-
uid interior of a nucleus can be presented as

μi,l(p
0
l , xi,l) = μi,l

(
p0

g, xi,l

) + vi,l

(
p0

l − p0
g

)
, (40)

where xi,l is the mole fraction of species i. Applying the con-
ditions requiring equality of chemical potentials, Eqs. (8) and
(9), we can express Eq. (40) as

�μi = −vi,l

(
p0

l − p0
g

)
, (41)

where �μi ≡ μi,l(p0
g, xi,l) − μi,g(p0

g, xi,g).
Considering the vapor as a mixture of ideal gases, the

liquid solution to be incompressible, and using equilibrium
conditions for species i in saturated vapor above a flat surface
of liquid solution with given mole fractions xi,l, the difference
�μi can be presented as9

�μi
∼= −kbT ln

(
Ai,g

Ai,l(xi,l)

)
, (42)

where Ai,g = p0
i,g/p

pure

i,sat is the gas-phase activity of species
i, p

pure

i,sat is the saturated vapor pressure of species i over flat
surface of pure liquid, p0

i,g is the partial pressure of species i in
the nucleating vapor, Ai(T , xi,l) = p0

i,sat /p
pure

i,sat is the liquid-
phase activity, p0

i,sat is the partial pressure of free molecules of
component i in the equilibrium vapor above a flat surface of a
liquid solution which composition is given by mole fractions
xi,l, and kb is the Boltzmann constant.

Substituting Eqs. (32) and (42) into Eq. (40), we
obtain

kbT ln

(
Ai,g

Ai,l(xi,l)

)
= vi

(
1

r1
+ 1

r2

)
σgl + vi

[
El

nD
l
n − 1

2 El · Dl
] + vi

[
Eg

nDg
n − 1

2 Eg · Dg
]

+vi

⎛
⎝∇2

P
lg

0

ε0

⎞
⎠ · Dl + Dg

2

+vi

∂P
lg

0

∂c

1

2

(
1

r2
1

+ 1

r2
2

)(∣∣Dl − Dl
0

∣∣ cos ϑl + ∣∣Dg − Dg

0

∣∣ cos ϑg

2ε0

)

−vi

P
lg

0

2ε0

∣∣Dl − Dl
0

∣∣
⎡
⎢⎢⎢⎣

(
1

r1
+ 1

r2

)
cos ϑl −

(
1

r3,l

+ 1

r4,l

)

−∂ cos ϑl

∂c

1

2

(
1

r2
1

+ 1

r2
2

)
⎤
⎥⎥⎥⎦

−vi

P
lg

0

2ε0

∣∣Dg − Dg

0

∣∣
⎡
⎢⎢⎢⎣

(
1

r1
+ 1

r2

)
cos ϑg −

(
1

r3,g

+ 1

r4,g

)

−∂ cos ϑg

∂c

1

2

(
1

r2
1

+ 1

r2
2

)
⎤
⎥⎥⎥⎦ . (43)

Equation (43) is valid for every point of critical nucleus sur-
face, and left and right hand sides of this equation depend on

the composition of the embryo. Note that in case of spheri-
cal symmetry only the first line remains in Eq. (43), i.e., we
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get well-known Kelvin-Thomson equation for spherical liquid
layer around charged seed.

E. The generalized Laplace equation as a differential
equation for the shape of a nucleus

Note that the derivations presented so far can also be con-
ducted without the assumption of axial symmetry. In the fol-
lowing, this assumption is however necessary. In spherical co-
ordinates, where the zenith angle φ (0 ≤ φ ≤ �) is taken
from the positive z-axis that coincides with the symmetry axis
of our system (see Fig. 4), the position of the gas-liquid sur-
face can be presented with a function r(φ), where r denotes
the radial distance from an origin taken at the center of seed
particle. Well known formulae for mean curvature from dif-
ferential geometry give

1

r1
+ 1

r2
= r2 + 2(r ′)2 − rr ′′

(
√

(r ′)2 + r2)3
+ r sin φ − r ′ cos φ

r sin φ
√

(r ′)2 + r2
, (44)

where r′ and r′′ are the first and second order derivatives of
the curve r(φ) with respect to zenith angle φ, respectively.
Thus, the generalized Laplace equation (32) is a second or-
der differential equation for the curve r(φ). This equation
can be complemented with the boundary conditions for a
nucleus

(dr/dφ)|φ=0 = 0

(dr/dφ)|r=R = −R tan θ

}
, (45)

where R is the seed particle radius and θ is the contact angle
that can be determined from the generalized Young equation
(38). The change of the zenith angle φ by −dφ starting from
contact line on seed particle surface will change the position
on the surface r(φ) along radial distance by dr‖ = −r′(φ)dφ

(see Fig. 4). The corresponding change along seed particle
surface perpendicular to the radial direction is dr⊥ = Rdφ.

FIG. 4. The tangential change along the nucleus surface r(φ) with the change
of the zenith angle φ by −dφ starting from contact line. This change is di-
vided into two components: the component along radial distance dr|| and the
component along seed particle surface perpendicular to the radial direction
dr⊥, respectively. The liquid nucleus is denoted by l, the vapor phase by g,
and the solid seed particle by s.

The slope of r(φ) at contact line is determined by the contact
angle θ and, thus, is tan θ = dr‖/dr⊥ = − r′(φ)dφ / (Rdφ).

If we present the location of liquid-vapor separation sur-
face as a function z = z(ρz), where ρz is distance to the z-axis,
i.e., to the axis of rotational symmetry, then the mean cur-
vature of the surface r(ρz) is given by the following simpler
equation:

1

r1
+ 1

r2
= z′′(√

1 + (z′)2
)3 + z′

ρz

√
1 + (z′)2

, (46)

but the application of this equation can be more complicated
than that of Eq. (44) as for larger nuclei covering more than
half of seed particle surface or having contact angle larger
than a right angle there are two values of coordinate z for the
position of vapor-liquid separation surface corresponding to
the same value of coordinate ρz.

To specify the dielectric displacement D and the electric
field strength E values in the left-hand side of Eq. (32), we
must solve the electrostatic Laplace equation �ϕ = 0 for the
electric potential ϕ around the seed particle inside the liquid
nucleus and in the surrounding vapor with the boundary con-
ditions at the seed particle and nucleus surfaces and at infinity

ϕ|ρ=R = Const.,

ϕ|ρ→∞ = 0,

ϕa|ρ=R = ϕs |ρ=R + P sa
0

ε0
,

a = g either l,

Da
n

∣∣
ρ=R

= Ds
n

∣∣
ρ=R

,

Es
t

∣∣
ρ=R

= 0,

Ea
t

∣∣
ρ=R

= −∇2
P sa

0

ε0
,

ϕg

∣∣
ρ=r

= ϕl|ρ=r + P
lg

0

ε0
,

D
g
n

∣∣
ρ=r

= Dl
n

∣∣
ρ=r

,

Eg
t

∣∣
ρ=r

= El
t

∣∣
ρ=r

− ∇2
P

lg

0

ε0
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(47)

The charge q of seed particle that corresponds to the con-
stant electrical potential value in the first equation of the set
of Eqs. (47) is given by the following equation:∮

4πR2

Da
ndAa = q, (48)

where dAa is a surface element of the seed particle, a is either
gs or lg indicating that a surface element can separate either
gas-solid or liquid-solid phases around seed particle.

Both the generalized Laplace equation (32) and the gen-
eralized Young equation (38) contain the value of dielectric
displacement at surfaces of uncharged system. Therefore, the
electrostatic Laplace equation �ϕ = 0 have to be solved also
for the uncharged seed (q = 0 in Eq. (48)) using boundary
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conditions (47), or the calculations should be repeated for
the seed having the same charge but in the absence of dou-
ble layers. The difference of dielectric displacements of the
latter calculations also represents dielectric displacement of
uncharged system.

The mean curvature of an equipotential surface can be
represented as10

∂ |E − E0|
∂z

= − |E − E0|
(

1

r3
+ 1

r4

)
, (49)

or
∇|∇(ϕ − ϕ0)| · ∇(ϕ − ϕ0)

(∇(ϕ − ϕ0))2
=

(
1

r3
+ 1

r4

)
, (50)

where z is the normal direction to the equipotential surface at
the point under consideration, directed along the electric field
E−E0 = (D−D0)/ε.

The requirement of simultaneous consistent solution of
electrostatic Laplace equation and Eq. (32) makes the exact
determination of a function r(φ) rather complicated in prac-
tice. The adjustment of solution methods used in numerous
studies11 dealing with the deformation of droplets in electric
field can be adopted for obtaining the shape of a nucleus of
given volume from Eq. (32). It should be noted that the prop-
erties of a critical nucleus must in addition to generalized
Laplace equation (32) also satisfy the generalized Kelvin-
Thomson equations (43). Actually one of the equations (43)
can be used instead of the Laplace equation (32) for deter-
mining the shape of the nucleus. For axially symmetrical sys-
tems, governing equations can be reduced to a system of alge-
braic equations using Legendre polynomial expansion. Such
expansion is done and algebraic equations solved in Ref. 12,
where the equilibrium parameters of a small dielectric one-
component droplet are studied, by placing a droplet that con-
tains charged condensation nucleus into a uniform external
electric field.

IV. CONCLUSIONS

A thermodynamically consistent formalism is applied to
calculate the reversible work needed to form a dielectric liq-
uid nucleus of a new phase on a charged insoluble conducting
seed particle within a uniform macroscopic mother phase. We

consider a general form of cap-shape nucleus not necessarily
having spherical form or axial symmetry, but we assume that
deviations from the spherical form are such that we can ig-
nore the changes in surface and line tensions values invoked
by these deviations. Electrical surface and line excess quan-
tities due to spontaneous polarization of molecules in inter-
facial and triple line zones that were introduced in Paper I1

are used to derive thermodynamic work of embryo formation.
Our new expression for the work of nucleus formation agrees
with the results of Nishioka and Kusaka2 and Debenedetti and
Reiss3 for homogenenous nucleation if we ignore terms with
the seed particle surface area and charge in our result. The
conditions of its extrema yield the correct conditions of equi-
librium between the critical nucleus and the mother phase. We
derive a generalized Laplace equation expressing the condi-
tion of mechanical equilibrium at nucleus surface, and a gen-
eralized Young equation giving thermodynamic equilibrium
at the three phase contact line. We also derive a generalized
Kelvin-Thomson equation suitable for calculations of the size
and composition of a critical nucleus The generalized Laplace
equation is also presented for axially symmetrical systems as
differential equation describing the effect of the electric field
of charged seed particle on the shape of a nucleus. This equa-
tion can be solved only with the simultaneous consistent so-
lution of electrostatic Laplace equations for bulk phases.
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APPENDIX A: DETAILED DERIVATION STEPS
OF EQ. (14)

The detailed intermediate steps that lead from the first
form of Eq. (14) to the last form of it are

1
2

∫
Vl

E2 · (D2 − D)dV + 1
2

∫
Vg,2

E2 · (D2 − D)dV + 1
2

∫
dV

E2 · (D2 − D)dV

= 1
2

∫
Asl

ϕ2,l (D2 − D) · dA − 1
2

∫
Alg

ϕ2,l (D2 − D) ·dA + 1
2

∫
Asg

ϕ2,g (D2 − D) · dA

+ 1
2

∫
Alg−dAlg+dAlg,2

ϕ2,g (D2 − D) · dA + 1
2

∫
dAlg

ϕ2,l (D2 − D) · dA − 1
2

∫
dAlg,2

ϕ2,l (D2 − D) · dA

= 1
2

∫
Asl

ϕ2,l (D2 − D) · dA − 1
2

∫
Alg−dAlg+dAlg,2

(
ϕ2,l − ϕ2,g

)
(D2 − D) · dA + 1

2

∫
Asg

ϕ2,g (D2 − D) · dA

= 1
2

∫
Asl

ϕ2,s (D2 − D) · dA + 1
2

∫
Asl

P sl
0

ε0
(D2 − D) · dA + 1

2

∫
Alg−dAlg

P
lg

0

ε0
(D2 − D) ·dA
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+ 1
2

∫
dAlg,2

P
lg

0,2

ε0
(D2 − D) ·dA + 1

2

∫
Asg

ϕ2,s (D2 − D) · dA + 1
2

∫
Asg

P
sg

0

ε0
(D2 − D) · dA

= 1
2

∫
Asl

P sl
0

ε0
(D2 − D) · dA + 1

2

∫
Alg−dAlg

P
lg

0

ε0
(D2 − D) · dA

+ 1
2

∫
dAlg,2

P
lg

0,2

ε0
(D2 − D) · dA + 1

2

∫
Asg

P
sg

0

ε0
(D2 − D) ·dA, (A1)

where potential jumps at surfaces in the fourth form of
Eq. (A1) are replaced according to the generalizations of
Eq. (33) of Paper I1 with surface excess polarizations. This
also concerns the replacement of potentials just outside of
seed particle surface, ϕ2,l, ϕ2,g, with the potential of seed par-
ticle ϕ2,s. It should be noted that the potential ϕ2 is continuous
at the surface element dAlg, and therefore the sum of surface
terms for this element cancel out. As potential ϕ2,s is constant
everywhere in the interior of the seed particle, and the charge
of seed particle is kept constant during surface displacement,
the surface integrals containing ϕ2,s cancel out and are thus
dropped in the last form of Eq. (A1).

APPENDIX B: PRESSURE IN ELECTRIC FIELD:
MAXWELL STRESS TENSOR

Usually, to describe the effect of electric field on a
bulk dielectric body, the expression of the Maxwell stress
tensor13, 14 is used. In deriving the Maxwell stress tensor for
dielectric liquid, Landau and Lifshitz13 base their treatment
on the principle that the forces acting on any finite volume
in a body can be reduced to forces applied to the surface of
that volume. This is a consequence of the law of conserva-
tion of momentum. The surface force density is subsequently
taken as the stress tensor. Liu and Stierstadt14 point out that
the electromagnetic field exchanges momentum with the ma-
terial, so the total momentum of both (electromagnetic field
and the material with macroscopic flow) remains conserved.
Their derivation of the Maxwell stress tensor is broader in fo-
cus and validity than that by Landau and Lifshitz.13

We consider surface forces in dielectric fluid with no
macroscopic flow of fluid. The flux of momentum due to
molecules and photons through a surface element dA = ndA
from outside into a volume element is just the force −�ikdAk

= −�iknkdA by which the environment acts on the volume.
The minus sign above is taken because the normal vector n to
the surface element is outwards of the volume element. The
force per unit surface area by which the matter in the volume
element acts on its environment is �iknk. The quantity �i,k is
the component of a tensor that gives the force component in
the direction of ith axis acting on unit surface area perpendic-
ular to kth axis.

Any small part of the surface can be considered as a flat
and the dielectrics and electric field next to it as homoge-
neous. It can be imagined that electric field in this layer is

created by conducting plates of parallel-plate capacitor sur-
rounding the layer. We will follow the general method for de-
termining surface forces. The work done in virtual displace-
ment of the walls of a box containing this part of surface layer
is equal to the corresponding change of an appropriate ther-
modynamic potential.

If we consider a small volume element, where the
medium and electric field can be considered homogeneous,
then the change of internal energy per volume unit, u, can
be presented as (see Eq. (1) of Paper I,1 where due to fixed
volume dV = 0, and using the second form of Eq. (13) of
Paper I1)

du = T ds +
∑

i

μidτi + EdD, (B1)

where s is the entropy density and τ i is the number density of
species i.

We have considered charging of the seed particle where
the total system was thermally isolated and closed, but the gas
phase was large enough to keep the temperature through the
total system constant. Also species were free to move inside
bulk phases of liquid and vapor. Therefore, if we consider a
small volume inside a bulk gaseous phase, the chemical po-
tentials and temperature are the thermodynamic parameters
that are kept constant during charging. Although chemical po-
tentials are also kept uniform in liquid nucleus of constant vol-
ume and shape, however, their values may not preserve during
charging unless the mass exchange with gas phase is allowed.
At constant temperature and chemical potentials, an appropri-
ate thermodynamic potential to consider is the grand potential
(per unit volume)

� = u − T s −
∑

i

μiτi . (B2)

Internal energy density u also includes here the electric
field energy. Adding to the left hand side of Eq. (B1), a quan-
tity d(−Ts − ∑

μiτ i) and to the hand right side an equivalent
quantity −sdT − Tds − ∑

μidτ i − ∑
τ idμi, we obtain

d� = −sdT −
∑

i

τidμi + EdD. (B3)

Equation (B3) shows that the value of thermodynamic
potential � is determined by the temperature, chemical po-
tentials, and the dielectric displacement.
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For comparison with frequently referred results for elec-
trical forces in liquids at constant temperature and density
(see, e.g., Landau and Lifshitz13), we also consider the fol-
lowing thermodynamic potential,15 although the expression
of forces that follow from this potential does not apply to our
thermodynamic system:

f̃ = u − T s − ED, (B4)

where analogously with Eq. (B3)

df̃ = −sldT +
∑

i

μidτi − DdE, (B5)

i.e., temperature, number densities τ i, and electric field
strength E are the independent variables that determine the
potential f̃ . The potential f̃ is appropriate for charging pro-
cesses, where temperature and number densities are constant
and varying potential difference of an imaginary capacitor
changes field strength.

Let us denote with δ� the change of a thermodynamic
potential in the deformation of bulk dielectrics volume el-
ement V and let φ be the potential per unit volume. The
choice for a thermodynamic potential depends on the spe-
cific thermodynamic path considered. When deformation
is done at given temperature, mass, and electrical poten-
tials of electrodes, the appropriate thermodynamic potential
is the potential δ� = δF̃ = δ

∫
V

f̃ dV .13 When deformation
is done at given temperature, chemical potentials, and electric
charge, the appropriate thermodynamic potential is given by
δ� = δ� = δ

∫
V

�ldV .
The potential change δ� in deforming volume element V

is

δ� ≡ δ

∫
V

φdV = −
∮ (

�i,kδri

)
dAk, (B6)

where δri is the infinitesimal (or virtual) displacement of the
surface, and dAk = nkdA. The work done by the matter in the
volume element against its environment leads to the decrease
of potential �.

In simple geometries, if φ and �i,kδri are uniform (elec-
tric field and pressure are location independent in our small
volume element), Eq. (B6) reduces to

δ� = δ(φV ) = φδV + V δφ = −Ak�i,kδri . (B7)

Since φ is known, we shall evaluate Ak�i,kδri while tak-
ing both Ak and δri to point in all three orthogonal directions
and hereby obtain all nine components of �i,k. We choose
one of the axis of the coordinate system parallel to the elec-
tric field, thus the remaining two are perpendicular to the
field.

Following Liu and Stierstadt,14 we consider a parallel-
plate capacitor that is filled with a dielectric fluid. Denoting
the three linear dimensions of the capacitor as x, y, z, with
x � y, z, the three pairs of surfaces (see Fig. 5) have the
areas Ax = yz, Ay = xz, Az = xy, respectively; and the vol-
ume is V = xyz. Taking the two metal plates as shown in
Fig. 5, the electric fields E, D are along the x-axis. (We neglect
the small fringing fields at the edges or it is also possible to
consider small portion of dielectric in the center of capacitor
where electric field is uniform. Surfaces confining this small

FIG. 5. Metal plates with constant charge, dielectric fluid sandwiched be-
tween them. Displacing upper plate δx or δz (or δy), respectively, decom-
presses and shears the fluid.

volume behave similar to surfaces of a capacitor in virtual
displacements.)

We now successively displace the three surfaces with sur-
face areas Ax, Ay, Az, respectively, in all three directions, δri

= δx, δy, δz (which is why the capacitor has to be finite),
while holding constant the following quantities: (a) tempera-
ture T, masses τ iV, and the electrical potentials of electrodes
(�ϕ = ϕupper − ϕlower = const.) or (b) temperature T, chemi-
cal potentials μi, and electric charges q = ±DAx (the dielec-
tric displacement in parallel plate capacitor is proportional to
the surface density of free charges on capacitor plates). Be-
cause of the simple geometry, Eq. (B7) holds and will be used.

First, we displace the upper surface (metal plate) with
area Ax = yz. When the displacement is δx, we have for the
case (a) (φ = f̃ )

δT = 0, δV = Axδx, δE/E = −δx/x = δτi/τi . (B8)

Here, for a parallel plate capacitor E = �ϕ /x, and thus δE
= −�ϕ δx/x2, and the requirement for constant mass leads to
δ(τ iV) = Vδτ i + τ i δV = xyzδτ i + τ i yzδx = 0. For the case
(b) (φ = � ), we have

δT = 0, δμi = 0, δV = Axδx, δD = 0. (B9)

If the displacement is δy or δz (implying a shear motion of
upper metal plate), we have δT, δV, δτ i, δE = 0 or δT, δV,
δμi, δD = 0, respectively. Inserting changes corresponding
to the three directions x, y, and z into Eq (B7) and using
Eqs. (B4) and (B5), or Eqs. (B2) and (B3), for φ and dφ we
obtain for the case (a) (φ = f̃ )

�x,xδx =
(

T s +
∑

i

μiτi − u

)
δx

= −
(

f̃ −
∑

i

τi

∂f̃

∂τi

∣∣∣∣
E,T ,τj �=i

+ ExDx

)
δx,

�z,x = �y,x = 0, (B10)

where we have cancelled out the surface area Ax from both
sides and used Eq. (B8).
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For the case (b) (φ = � ),

�x,xδx =
(

T s +
∑

i

μiτi − u

)
δx = −�δx,

�x,z = �x,y = 0, (B11)

respectively. Here, we have used Eq. (B9). We present the sec-
ond form of �x,x in Eq. (B10) to show that our result coincides
with the result by Landau and Lifshitz.16 This form follows
from Eq. (B7) if we represent, applying Eqs. (B5) and (B8),
the term V δf̃ in Eq. (B7) as follows:

V δf̃ = V

(∑
i

μiδτi − DδE

)

= zyz

(∑
i

∂f̃

∂τi

∣∣∣∣
E,T ,τj �=i

δτi − DxδEx

)

= yzx

(∑
i

∂f̃

∂τi

∣∣∣∣
E,T ,τj �=i

−τiδx

x
− Dx

−Exδx

x

)
.

(B12)

If the surface is the backward surface with area Az = xy
and the displacement δz (see Fig. 5), we have for case (a)
δV = Azδz, δτ i/τ i = −δz/z, and δT, δE = 0. For case (b),
we have δT, δμi = 0, δV = Azδz, and δD/D = −δz/z. If the
displacement is δx or δy, we have (a) δV, δτ i, δE = 0 and (b)
δV, δD = 0, respectively. Hence,

�z,zδz=
(

T s +
∑

i

μiτi + ExDx − u

)
δz

=−
(

f̃ −
∑

i

τi

∂f̃

∂τi

∣∣∣∣
E,T ,τj �=i

)
δz, �x,z = �y,z = 0

(B13)

and

�z,zδz =
(

T s +
∑

i

μiτi + ExDx − u

)
δz

= (−� + ExDx) δz, �x,z = �y,z = 0,

(B14)

respectively. Again, the last form of �z,z in Eq. (B13) are pre-
sented to show that our result agrees with the result by Landau
and Lifshitz.16 Note, that the sign of our surface force tensor
�i,j is chosen opposite to the Maxwell stress tensor by Landau
and Lifshitz.16 Note also that the second form of Eqs. (B10)
coincides with the second form of Eq. (B11) and the sec-
ond form of Eqs. (B13) coincides with the second form of
Eq. (B14), i.e., when we start from the same thermodynamic
state the surface force tensor is independent of the ther-
modynamic path. More detailed discussion is presented in
Ref. 14.

As the directions along y- and z-axis are equivalent, we
know without repeating the calculation that a displacement of
lateral surface with area Ay = xz yields �z,z = �y,y and �z,y

= �x,y = 0. (The term ExDx in Eq. (B14) is a result of the

metal plates being squeezed or stretched, causing the change
of surface charge density of plates and, thus, the dielectric dis-
placement, δD/D = −δz/z. It can be imagined that every metal
plate consists of two conducting surfaces with zero thick-
ness that are in contact and can slide with respect to one an-
other without friction, thus, making the change of plate areas
possible.)

In Eqs. (B2) and (B4), and (B10)–(B14), there is no sepa-
ration into zero-field and electromagnetic contributions. Inte-
grating Eqs. (B3) and (B5) at constant temperature and chem-
ical potentials μi or at constant temperature and densities τ i

from zero to a given field strength values, we obtain (here we
assume that the relation D = εε0E holds)

� = � (D = 0) + 1
2 ED = −p0 + εε0E

2

2
, (B15)

f̃ = f̃ (E = 0) − 1
2 ED = −p0 +

∑
i

μi(E = 0)τi − εε0E
2

2
,

(B16)
respectively.

The surface force tensor is represented only by two non-
zero values: the value of a component acting along electric
field perpendicular to imaginary metal plates and the value
of a component perpendicular to electric field direction and
tangential to imaginary metal plates. We denote these compo-
nents with subscripts N and T, respectively. We consider the
tensor �i,j as a generalized pressure tensor. Taking the last
forms of �x,x and �z,z in Eqs. (B11) and (B14), respectively,
and using the last form of Eq. (B15), we obtain

�N = p0(T ,μi) − εεoE
2

2
= p0(T ,μi) − D2

2εεo

, (B17)

and

�T = p0(T ,μi) + εεoE
2

2
= p0(T ,μi) + D2

2εε0
, (B18)

respectively. Rusanov and Kuni17 obtained these results for a
system of spherical symmetry.

Taking the last forms of �x,x and �z,z in Eqs. (B10) and
(B13), respectively, and using the last form of Eq. (B16), we
obtain

�N = p0(T , τi) − εoE
2

2

(
ε +

∑
i

τi

∂ε

∂τi

∣∣∣∣
T ,τj �=i

)
, (B19)

and

�T = p0(T , τi) + εoE
2

2

(
ε −

∑
i

τi

∂ε

∂τi

∣∣∣∣
T ,τj �=i

)
, (B20)

respectively, in accordance with the result by Landau and
Lifshitz.18 Note that zero field pressure in Eqs. (B17) and
(B18) differs from that in Eqs. (B19) and (B20), and also the
dielectric constants correspond to different states. In a state
to which Eqs. (B17) and (B18) apply, the chemical potentials
of species coincide with chemical potentials in the absence of
electric field. In state referred by Eqs. (B19) and (B20), the
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chemical potentials are19

μi = μi(E = 0) − εoE
2

2

∂ε

∂τi

∣∣∣∣
T ,τj �=i

. (B21)

In the absence of electric field, the generalized pressure
�i,k reduces to the hydrostatic pressure p0. The generalized
pressure is not zero in vacuum (p0 = 0). The pressure is then
caused by momentum carried by photons.
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