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Thermodynamics is applied to formulate general equations for internal energies and grand poten-
tial for a system consisting of a dielectric liquid nucleus of a new phase on a charged insoluble
conducting sphere within a uniform macroscopic one- or multicomponent mother phase. The cur-
rently available model for ion-induced nucleation assumes complete spherical symmetry of the sys-
tem, implying that the seed ion is immediately surrounded by the condensing liquid from all sides.
We take a step further and treat more realistic geometries, where a cap-shaped liquid cluster forms
on the surface of the seed particle. To take into account spontaneous polarization of surface layer
molecules we introduce the electrical surface and line excess quantities. © 2013 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4822046]

I. INTRODUCTION

Condensational growth, evaporation, and heterogeneous
chemical processes are important phenomena in material
science, fluid physics, aerosol physics and technology, at-
mospheric chemistry, and in cloud microphysics and cloud
chemistry. A prerequisite for the start of condensation is
homogeneous nucleation of new particles or the activa-
tion of pre-existing particles by heterogeneous nucleation.
The latter can occur either on ions, soluble, or insolu-
ble particles and is energetically easier than homogeneous
nucleation.1

Several theories of heterogeneous nucleation have been
developed that can be grouped by the kind of foreign nuclei
they are dealing with. One component condensation on un-
charged soluble nucleating centers consisting of various kind
substances (hygroscopic, dissociating within a droplet, sur-
face inactive and active) was considered in Refs. 2–12. An
incomplete dissolution of nuclei, the formation of saturated
solution layers around nuclei in the deliquescence process
was treated in Refs. 13–22. The case of wettable and insol-
uble solid nucleus completely covered by thick liquid film
was considered first by Krastanov.23 Rusanov and Kuni24, 25

considered the role of surface forces in the formation of a liq-
uid droplet as a thin single component film on a macroscopic
wettable insoluble nucleus. The latter references also review
early papers that consider the effect of surface forces. Djikaev
and Donaldson26 generalized the approach of Rusanov and
Kuni to the wetting films on insoluble nuclei in binary va-
por mixtures. The theory of the formation of separate droplet
caps with a finite contact angle on the insoluble nucleus sur-
face was developed by Fletcher,27 and extended to binary sys-
tems by Lazaridis et al.28 A mixed nucleus containing soluble

a)E-mail: madis.noppel@ut.ee. Tel.: +372-7-375857. Fax: +372-7-375556.

species and an insoluble partially wettable spherical core was
considered in Refs. 29 and 30. The latter theory was general-
ized to multicomponent vapors in Refs. 31–33. Smorodin34, 35

considered the role of inhomogeneities of the nucleus surface
in heterogeneous nucleation.

The experiments36–45 have shown that electric charge
of the seed lowers the vapor supersaturation needed for the
formation of liquid drops, and that some substances prefer a
certain sign of ions for nucleating. Volmer developed the
first simple theory describing unary nucleation on ions47

as an extension Thomson’s description of the chemical po-
tential of a charged droplet.46 The theory adds a single elec-
trostatic correction term to the classical formation free en-
ergy of a liquid drop. Such addition is proposed also in Refs.
48 and 49. Several attempts have been made to incorporate
molecular characteristics within the framework of the cap-
illarity theory.50–52 Based on a thorough thermodynamical
treatment Rusanov, Kuni, and Shchekin53–59 derived the for-
mation work and various relationships for the properties of an
equilibrium droplet in multicomponent vapor. They consid-
ered the dependence on the magnitude and sign of charge of
a seed particle at the center of the droplet. Sign effect follows
from the assumed spontaneous polarization of interface sur-
face molecules. Formulae that can be directly used in practical
nucleation calculations, like extensions of Kelvin’s and J. J.
Thomson’s equations, are, however, derived only for a unary
system.

The classical ion induced nucleation theory was extended
to binary vapor environment in Ref. 60. The size and the
composition of a critical nucleus were found by finding the
extremum of the classical reversible work of formation of
a noncritical ion cluster. In finding the extremum the com-
position dependence of dielectric constant and the composi-
tion and size dependence of interfacial tension were taken
into account. Such accounting suffers from thermodynamic
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inconsistency that was addressed in Ref. 61, where expres-
sions, suitable for practical calculations of the size and
composition of a critical nucleus, were derived. The above-
mentioned papers on ion-induced nucleation dealt with sys-
tems of spherical symmetry. The effect of electric field on the
nucleation of dielectric droplets in axially symmetric single
component systems (droplets containing a core of negligible
size with an electric dipole moment; droplet with or without
a charged core of negligible size in homogeneous external
electric field) was considered in Refs. 62–65. There are nu-
merous studies dealing with the deformation of droplets in
electric field motivated environmental and industrial interest
like electrohydrodynamic atomization, the breakup of water
drops in thunderstorms, the behavior of drops in ink-jet print-
ers, the breakdown of insulators at electric power production
and transmission.66

The critical supersaturation for the heterogeneous nu-
cleation of single component vapor on charged particles of
nanometer size has recently been measured.67–72 Winkler
et al.73 condensed an organic vapor (n-propanol) on molecular
ions, as well as on charged and uncharged inorganic nanopar-
ticles. The process involves initial activation by heteroge-
neous nucleation. They found a smooth transition in activa-
tion behavior as a function of size. Furthermore, nucleation
enhancement for charged particles and a substantial negative
sign preference were quantitatively detected. The charge en-
hancement disappears for seed particles larger than 2 nm by
radius. These experimental results were compared with the
results of the classical theory of ion induced nucleation that
assumes spherical symmetry. However, the seed particles gen-
erated in these experiments67, 68, 71 were insoluble and only
partially wettable (measured contact angle was larger than
zero). Winkler et al. used among other seeds charged silver
particles, and the activation of neutral silver seed particles is
best described by the classical theory of heterogeneous nucle-
ation with cap-shaped nucleus formation.74 The current ion
induced nucleation theory, although giving a rough picture of
the observed behavior, fails to fully reproduce experiments,
especially when the seed ions are very small. For the theoret-
ical description of such systems with charged particles to be
consistent the consideration of a cap-shaped nucleus configu-
ration (see Fig. 1) is required. The spherical symmetry that is
assumed in common ion induced theory, and greatly simpli-
fies the model, is now lost.

In the classical theory of heterogeneous nucleation,27

the reversible work of nucleus formation on spherical un-
charged insoluble seed particle is related to the corresponding
work of nucleus formation in a homogeneous vapor without
any seed particles. There are several treatments of the clas-
sical theory of homogeneous nucleation of multicomponent
vapors,61, 75–79 some of which are thermodynamically incon-
sistent. The consistent and inconsistent theories predict dif-
ferent sizes and compositions of the critical nucleus and yield
different (by several orders of magnitude) nucleation rates at
atmospheric conditions.80, 81 In this paper, we follow the con-
sistent study of Nishioka and Kusaka78 and Debenedetti and
Reiss.79 We study a cap-shaped, in general non-spherical, nu-
cleus formed on a charged insoluble seed particles treated as
a spherical conductor (see Fig. 1).

FIG. 1. Sketch of the cross section of a cap-shaped liquid nucleus l in the
vapor phase g on a spherical conducting uncharged seed particle s of radius
R. The liquid nucleus forms a contact angle θ with the seed particle.

II. FUNDAMENTAL THERMODYNAMICS

A critical liquid nucleus is a microscopic region of a new
phase, which is in unstable equilibrium with the mother phase,
in this case vapor. The reversible work of a critical nucleus
formation represents the free energy barrier that a metastable
system must surmount in passing from a local to a global
minimum for the system free energy, and it is of primary
interest in the field of nucleation. A rigorous and thermo-
dynamically consistent expression for the reversible work of
nucleus formation, from which the work of formation of the
critical nucleus follows as an extremum condition, requires
considering not only a critical nucleus but also non-critical
nuclei, i.e., states that are not in equilibrium (stable or unsta-
ble) with the mother phase. To apply thermodynamic reason-
ing to such systems, it is necessary to introduce constraints
that prevent the free exchange of matter between the nucleus
and the mother phase. Constraints impose internal equilib-
rium throughout the inhomogeneous system consisting of a
seed particle, the homogeneous interior of the nucleus, the
interface zones and the surrounding mother phase.

A. Basics laws of thermodynamics for each
of the phases

We consider a system consisting of the homogeneous
bulk phases of a spherical solid seed particle, a cap-shaped
liquid nucleus, and surrounding vapor (consideration is valid
also for a surrounding liquid phase immiscible with the nu-
cleus), and interfaces between these bulk phases. The charge
will be introduced later in Sec. III, where also the argu-
ments for separate treatment of charging adopted here are
presented.

All bulk phases and interfaces are constrained to be in
equilibrium separately. The seed particle is assumed rigid, and
thus the deformation work of it is ignored. System is isother-
mal. Let us divide the system into slices so that that every
slice has the same amount of bulk phase volumes, surface ar-
eas, and three-phase contact line length, and consider one of
these slices. Constraints avoid mass transfer between liquid,
vapor, and surface phases, as well as the contact line phase,
but there is mass transfer between liquid outside the slice and
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the liquid part of the slice, vapor outside the slice and the va-
por part of the slice. The same is valid for surface and contact
line phases. A change in the internal energy of a slice is given
according to the first and second laws of thermodynamics
by

dUl = T dSl − p0
l dVl +

∑
i

μi,ldNi,l, (1)

dUg = T dSg − p0
gdVg +

∑
i

μi,gdNi,g, (2)

dUa = T dSa + σadAa +
∑

i

μi,adNi,a, (3)

dUL = T dSL + κdL +
∑

i

μi,LdNi,L, (4)

where Eq. (1) corresponds to the change of internal energy
Ul of homogeneous bulk liquid part of the slice; T is the tem-
perature; Sl is entropy of bulk liquid part of the slice; p0

l is
the pressure in bulk liquid around an uncharged seed parti-
cle; Vl is the volume of liquid part of the slice; μ i,l is the
chemical potential of species i in the liquid part of the slice;
and Ni,l is the number of molecules of species i in the liquid
part of the slice. Analogous notations hold for Eqs. (2)–(4)
describing internal energy changes in vapor (gas) phase, sur-
face phases, and contact line, respectively. The distance to the
outer boundary of the system in the gas phase part of the slice
is taken very large but finite. p0

g is the pressure in bulk vapor
around uncharged seed particle or pressure far away from a
charged seed particle that is considered later. Subscript a in
Eq. (3) refers to different phase interfaces, and there is one
equation (3) for each pair of phases (a = gl, ls, gs; g – vapor,
l – liquid, s –solid, see Fig. 1), where Aa is surface area and
σ a is the surface tension of surface a. Subscript L in Eq. (4)
refers to the contact line and κ is the line tension of contact
line.

B. Interface zones and line tension

The real physical transition zone between neighboring
bulk phases is not sharp. The properties of one phase change
continuously to those of the neighboring phase. In Eq. (3) it
is assumed that the surface is specified by the concept of the
Gibbs dividing surface82 and that the position of the dividing
surface coincides with the surface of tension.82–85

When two interfaces are close to each other, as in case
thin films between bulk phases or when interfaces approach
one another in the region of three-phase contact line, the sur-
face forces give rise to the disjoining pressure between in-
terfaces. The measurements of disjoining pressure in planar
films have shown that long-range dispersion and electrostatic
force can have range more than 100 nm.86, 87 The width of
interface zone, where the abrupt changes in density and/or
composition occur, is of the order of 1 nm. This concerns also
the interfaces of a film provided that the temperature is not
too close to the critical temperature.88–90 Thus, for droplets
on solid substrate the intersurface forces cause only small
changes in the density distribution across interfaces, and in
the values of surface tension evoked by these density changes,

compared to the changes in the profile of liquid-vapor inter-
face as it approaches substrate. Due to intersurface forces the
microscopic profile of droplet surface near substrate is differ-
ent from the macroscopic profile extrapolated into three-phase
contact zone from the region outside the range of surfaces
forces. Solomentsev and White91 have shown that this differ-
ence in profiles gives rise to the line tension defined as the dif-
ference between free energies of the droplet per unit length of
contact line when surface forces are turned on and off. There
may or may not be a precursor film of condensed vapor on the
substrate. In the former case precursor film contributes to the
surface tension of substrate-vapor interphase and this is the
only role that the film has in the determination of the micro-
scopic drop shape. Still, the precursor film may be important
for the beginning of heterogeneous nucleation. The concept of
line tension is a macroscopic quantity, which may be added to
the free energy balance and it yield the same macroscopic pic-
ture of the drop near the contact line as a full treatment of the
microscopic drop shape. Solomentsev and White have used
the Derjaguin approximation that reduces the interaction be-
tween curved surfaces to the interaction of planar surfaces. If
we know the interaction law between planar surfaces their ap-
proach allows calculation of line tension for droplets having
contact angles up to 20o. The treatment of line tension as a
macroscopic concept is valid down to drop sizes of the order
of the range of the interaction energy. In the Solomentsev and
White91 approach no explicit specification of the location of
the dividing surfaces is made.

In the following we will not consider explicitly the dis-
joining pressure as its effect is covered by the introduction of
line tension. We also ignore the possibility that at small con-
tact angles the top of the cap-shaped droplet can remain in
the range of surfaces forces and, therefore, the droplet shape
can differ from the macroscopic case. The effect of possible
precursor film is incorporated into the solid-vapor surface ten-
sion. We assume that the range of the intersurface forces di-
minishes with the size of seed particle so that we can use the
concept of line tension down to seed particle and droplet sizes
of the order of 1 nm. The energy of long-range dispersion in-
teraction between planar surfaces is proportional ∼ r−2, but
between molecules ∼ r−6, where r is the distances between
surfaces or molecules. The nonretarded van der Waals en-
ergy for spherical single layer system depends on the ratio
of the layer thickness to seed particle radius decaying drasti-
cally with the increase of this ratio.92, 93 Thus, at a given layer
thickness the range of van der Waals interaction diminishes
with the decrease of seed particle size.

Equations (3) and (4) imply that the chemical potential
values of interface and contact line species, generally, do not
coincide with the values of constrained bulk phases; consis-
tent treatment of such an interface zone requires extra care. In
this paper, we assume that for every surface of our constrained
system there exists an equilibrium (stable or unstable) system
of bulk phases with an interface between them. Chemical po-
tentials of species are homogeneous throughout of this sys-
tem. Bulk parts of this system are in states that generally do
not coincide with the states of bulk phases in our constrained
system. The application of Gibbs dividing surface method
to this system gives us thermodynamic relation (3) that also
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characterizes the surface phase in our constrained system, i.e.,
our constrained surface phase are represented by this interface
of an equilibrium system. Analogical reasoning holds also for
the contact line. Our constrained system is thus put together
from equilibrium phases, but different phases of our system
are not necessarily in equilibrium with one another.

C. Fundamental equations

We consider a general form of cap-shape nucleus not nec-
essarily having spherical form or axial symmetry, but we as-
sume that deviations from the spherical form are such that we
can ignore the changes in surface and line tensions values in-
voked by these deviations.

Using Euler’s theorem (slices have identical volumes,
surface areas, and lengths of contact lines, we also assume
an isotropy of interfaces) or integrating Eqs. (1)–(4) over ex-
tensive quantities while keeping the values of the intensive
variables constant, we get the fundamental equations,

Ul = T Sl − p0
l Vl +

∑
i

μi.lNi,l, (5)

Ug = T Sg − p0
gVg +

∑
i

μi,gNi,g, (6)

Ua = T Sa + σaAa +
∑

i

μi,aNi,a, (7)

UL = T SL + κL +
∑

i

μi,LNi,L. (8)

D. Gibbs–Duhem and Gibbs adsorption equations

Taking the differential of fundamental equations (5)–(8)
and comparing the result with Eqs. (1)–(4), we get the Gibbs–
Duhem relations:

SldT − Vldp
0
l +

∑
i

Ni,ldμi.l = 0, (9)

SgdT − Vgdp
0
g +

∑
i

Ni,gdμi.g = 0, (10)

SadT + Aadσa +
∑

i

Ni,adμi,a = 0, (11)

SLdT + Ldκ +
∑

i

Ni,Ldμi,L = 0. (12)

Gibbs–Duhem relations for surfaces, Eq. (11), are called
Gibbs adsorption equations.

III. THERMODYNAMICS OF CHARGING

Let a seed particle to be conducting and let the liq-
uid nucleus and the surrounding vapor be homogeneous and
isotropic dielectrics. We calculate the work that is needed to
carry a charge q from infinity to a seed particle with a nucleus.
If we will do charging in a way that corresponds more to a real
experiment where a nucleus is free to adopt its size and shape
according to the charge accumulated on seed particle, then the

work of charging includes also energy spent for the change
of the volume and surface area of nucleus, i.e., the work of
non-electrical forces evoked by electrical ones. The need to
account these surface area and volume changes significantly
complicates the calculation of the outcome of charging. To
avoid these problems we introduce constraints. Constraints
increase the number of thermodynamic variables that are sep-
arately controllable and that uniquely determine the state of
a system. The space of states of constrained systems contains
also the states of an original unconstrained system. The prop-
erties of the thermodynamic state of an original system that
we are interested in should not depend on a thermodynamic
path through which it is approached if thermodynamic calcu-
lations are made correctly. Two thought processes can replace
the above-mentioned charging process. We can, first, without
charging change the shape and volume of nucleus so that they
correspond to the final state and then charge the nucleus with-
out changing its shape and volume. Very strong electric field
can change density profile in the nucleus bulk and surface re-
gions, which, in principle, should be also taken into account.
Also the polarization of liquid can exhibit saturation when
permanent dipoles of molecules are aligned along the lines of
very strong electric field. In this paper we limit ourselves to
a linear relationship between dielectric displacement D and
electric field E strength, first in the simplest form D = εε0E,
where ε is the dielectric constant and ε0 is the permittivity of
vacuum, extended in the Sec. IV B 1 to a more general form,
where the dielectric constant ε is replaced by a dielectric ten-
sor with two independent components and in the Sec. IV C
still to a more general form (30). The latter equation enables
to take into account possible spontaneous permanent polar-
ization of surface layer molecules. Taking into account den-
sity changes due to strong electric field is outside the validity
range of these relationships as the density change caused by
the field is proportional to E2.94 This concerns also changes in
surface tension values evoked through these density changes.

Constraints keep the shape and volume of a nucleus un-
changed during the charging. The total system that contains
the vapor and nucleus is thermally isolated, but the heat trans-
fer between various parts of a system is allowed and temper-
ature is constant throughout the whole system. We assume
that gas phase is large enough to act as a heat and particle
bath, so that the chemical potentials of each species in the
vapor are constant. Charging is thus carried out isothermally
and adiabatically for the total system. Carrying a small por-
tion of charge δq from infinity to a seed particle we make a
work against the electric field created by the charge q already
at the seed particle. This charging work can be expressed as
follows:

δWq =
∫
V

E · δDdV =
∫ ∞

R

Eρdρδq = ϕδq, (13)

where ϕ is the electrical potential of a seed particle hav-
ing charge q, Eρ is the component of electric field strength
along distance vector ρ from the center of seed particle to a
given point, δD is the variation of the vector of the dielectric
displacement caused by variation of charge δq, V is the vol-
ume of the system. The equality of the second and third forms
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of Eq. (13) is shown, e.g., in Landau and Lifshitz.95 We now
select the narrow force tube of the dielectric displacement
vector D that connects a given point to the surface of the seed
particle. The force tube begins just inside the seed particle,
where the field is zero. The intersection area of the tube and
some surface (e.g., interface surface) at a given point is dA.
Using Gauss’s law for a segment of the tube that extends from
seed particle to a given point gives

∫
A

D · dA = DndA = dq,
where the integration is performed over the boundaries of
the segment. Thus, the flux of dielectric displacement vec-
tor through the intersection area of the tube of force at given
point gives the charge DndA = dq that the tube of force sep-
arates from the total surface charge of the seed particle. In
the following we consider also hypothetical systems where
the thicknesses of interface zones between bulk phases are
zero. For such systems we can take a segment of infinitesi-
mal stretch beginning just inside the seed particle, where the
field is zero, and ending in the gas (or liquid) phase just out-
side the seed surface. Thus, the normal component of dielec-
tric displacement at the seed surface equals the surface charge
density Dn = dq/dA≡ηe.

We obtain the total work of charging by integrating
Eq. (13) from charge 0 to q:

Wq =
q∫

0

ϕδq =
∫
V

⎛
⎝ D(q)∫

0

E · δD

⎞
⎠dV. (14)

As constraints keep the shape and volume of a nucleus
unchanged there are no changes in surface areas and volumes
of the different phases during charging. Also the numbers of
surface, liquid, and vapor molecules do not change. During
charging emission or absorption of heat can occur in various
parts of the system, which leads to heat transfer in the system
at constant temperature (all processes are considered quasi-
static) and, therefore, to the change of entropies of various
phases although the total entropy of the while system remains
constant.

If we ignore spontaneous polarization of molecules in
transition zone of interface (discussed later in Sec. IV C) and
use the linear relationship D = εε0E, Eq. (14) can be ex-
pressed as

Wq = 1
2ϕq = 1

2

∫
Vl+Vg

E · DdV =
∫
Vl

D2

2εε0
dV +

∫
Vg

D2

2εε0
dV.

(15)

For potential ϕ we use the relation ϕ = q/Cl, where Cl

is the electric capacitance of the whole system consisting of
the seed particle with nucleus on its surface and the surround-
ing vapor. Due to the fixed shape and volume of the nucleus,
and the linear relationship D = εε0E, the electric capacitance
Cl does not depend on charge. The division of total volume
of system into liquid and vapor volume parts is done along
surfaces of tension of uncharged system. No excess quantities
have been introduced for electrical entities. Dielectric con-
stants in Eq. (15) are functions of position.

IV. ELECTRICAL EXCESS QUANTITIES

A. Work of charging for liquid-vapor interface

To calculate work of charging and introduce surface ex-
cess quantities we consider a small portion of an interfacial
transition zone that is cut out by a narrow tube of force at
some point (see Fig. 2). We use liquid-vapor interface as an
example. The expressions for the solid-liquid or solid-vapor
interface can be derived analogously.

Let us denote the central line of this tube of force with LD

and element vector along it with dLD. The central line serves
as curvilinear coordinate whose origin is on the seed particle
surface. We use the notation LD also to indicate the coordinate
of a point on this line.

We divide the tubular portion of the transition zone into
layers by dividing surfaces perpendicular to the density gra-
dient lines. Along these surfaces density and, therefore also
dielectrical permittivity (since we ignore non-linear effects)
are constants. In general, these layers are not orthogonal with
the tube of force and line LD. Locally, at a every given point
of the transition zone, we can introduce an orthogonal coor-
dinate system, where n-axis is directed along density gradient
line, normal to dividing surface. Let t-axis be tangential to the
dividing surface and in the plane that is determined by the
directions of dielectric displacement D and n-axis. The third
axis, y-axis, is a tangent of the dividing surface orthogonal to
the (D,n)-plane. We can always to choose a volume element

n
t
y with 
n � 
t and 
n � 
y. Applying Gauss’s law
(∇ · D = 0) and ignoring fluxes through the negligible surface
areas 
n
t and 
n
y of the side walls, we conclude that the
component of dielectric displacement vector, Dn, that enters
the volume element is approximately equal to the component
that exits the volume element. Applying Stoke’s law to the
electric field E (∇ × Dh = 0) integrated over a loop formed
by elements 
n, 
t, the same can be said for the component
Et. Thus, components Dn and Et change slowly compared
with components Dt and En when we move through the tran-
sition zone. Following the Gibbs dividing surface method we
consider a hypothetical system, where all properties of bulk

FIG. 2. Force tubes of dielectric displacement vectors in real and hypotheti-
cal systems. Only the surface transition zone of liquid-vapor interface is indi-
cated. The dotted lines correspond to the tubes of forces in two hypothetical
systems where the dividing surface is placed on inner and outer boundary of
transition zone, respectively. Lines of hypothetical systems change abruptly
their directions at corresponding dividing surfaces.

Downloaded 03 Oct 2013 to 128.214.173.46. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions



134107-6 Noppel et al. J. Chem. Phys. 139, 134107 (2013)

phases stay constant up to dividing surfaces. The above con-
siderations show that the components Dn and Et are continu-
ous, i.e., Et

l = Et
g, Dn

l = Dn
g at the dividing surface of a hy-

pothetical system whereas the field lines of D and E change
abruptly their direction as the components Dt and En are dis-
continuous. As can be seen from Fig. 2, where for the clarity
only the liquid-gas interface transition zone is indicated, the
field lines of a hypothetical system deviate from the lines of
the real system. This deviation depends on the location of di-
viding surface in the transition zone. Moving dividing surface
from liquid bulk side into gas-phase bulk side so that in every
new location it coincides with an isodensity surface, the tubes
of force of successive hypothetical systems form a curvilinear
cylinder that incorporates the real tube of force. As the field
lines of hypothetical systems change abruptly their direction
at a dividing surface they can not coincide with field lines of
a real system in the transition zone even if they coincide in
bulk phases. The field lines of the real system are smooth, al-
though rapidly changing their direction in case the lines do
not follow density gradient lines when passing through the
transition zone.

We can create a hypothetical transition zone by removing
dielectric matter from the real transition zone on one side of
dividing surface and adding it to the real transition zone at the
other side of the dividing surface. This addition and removal
is as if we added/removed dielectric matter into/from electric
field of a charged seed particle. The addition and removal af-
fects the electric field strength in the whole space (except seed
particle interior), not only in the locations of removal and ad-
dition. Next we will show that the change in the electric field
energy due to this addition and removal at fixed charge of
seed particle can be expressed by an integral extended over
the addition-removal zone volume alone


W = 1
2

∫
V

(E · D)dV − 1
2

∫
V

(Eh · Dh)dV

= 1
2

∫
Vtz

(E · Dh − Eh · D)dV, (16)

where superscript h refers to a hypothetical system with step-
wise change in properties at dividing surface; Vtz is the vol-
ume of transition zone where imaginary removal and addition
procedure is performed. We can also consider not only the
whole transition zone but also a small piece of it.

Before proving the validity of Eq. (16) let us first con-
sider the interface zone related to the seed particle surface.
Due to spill out of electrons a metal surface, the surface has
an electrical double layer structure.96 This double layer gives
rise to electric field in the transition zone even when the seed
particle is uncharged. Certainly, the mechanism of redistribu-
tion of charges and the formation of electrical double layer
at metal surface is more complicated when surface is covered
with liquid, but the double layer still exists. Thus, carrying
charges from infinity to a seed particle we make a work not
only against the electric field of the charges transported there
earlier but also against the electric field of the double layer.
The latter can be expressed as δq
ϕ, where 
ϕ is the effec-
tive potential difference between a point just outside the dou-
ble layer away from a seed particle and some reference point

inside double layer, and δq is the charge that is carried into the
double layer. In general, 
ϕ depends on the position at seed
particle surface, whether the position is taken at the liquid-
solid or vapor-solid interface. Molecules adsorbed to the seed
particle surface from gas or liquid side can form a layer that is
spontaneously polarized. The potential difference due to this
polarized layer gives contribution to the total potential differ-
ence 
ϕ. We are interested in the energy difference between
states of seed particle with and without an embryo. If in both
of these states the potential difference 
ϕ caused by the sur-
face polarization is the same, the contribution of the double
layer to the work of charging cancels out from the free energy
of embyo formation. In the following proof of Eq. (16) we
first consider such a case and ignore the presence of double
layers at interfaces, leaving their treatment for later sections.

To prove Eq. (16) we follow Stratton97 and represent the
first form of it in the equivalent fashion


W = 1
2

∫
V

(E · D)dV − 1
2

∫
V

(Eh · Dh)dV

= 1
2

∫
Vtz+V2

(E · (D − Dh) + (E − Eh) · Dh)dV, (17)

where V = V2 + Vtz is the volume of the system, V2 is the
volume of the part of the system that remained intact by the
imaginary removal and addition of dielectric matter, and Vtz

is the volume of transition zone where such removal and ad-
dition is made. By expressing the electric field in terms of the
potential, E = −∇ · ϕ, we can write

E · (D − Dh) = −∇ϕ · (D − Dh) = −∇ · �ϕ(D − Dh)�
+ϕ∇ · (D − Dh) (18)

and apply the divergence theorem to the three distinct re-
gions: gas, liquid, and seed particle, separated by surfaces of
tension. We chose the direction of the surface normals away
from the center of the seed particle as positive and express
the sign of surface integrals accordingly. Thus, the integral
1
2

∫
Vtz+V2

E · (D − Dh)dV can be written as

− 1
2

∫
Vtz+V2

∇ϕ · (D − Dh)dV

= + 1
2

∫
Asg+Alg

ϕ(D − Dh)g · dA + 1
2

∫
Vg

ϕ∇ · (D − Dh)dV

+ 1
2

∫
Asl

ϕ(D − Dh)l ·dA − 1
2

∫
Alg

ϕ(D − Dh)l ·dA

+ 1
2

∫
Vl

ϕ∇ · (D − Dh)dV

− 1
2

∫
Asl+Asg

ϕ(D − Dh)s ·dA + 1
2

∫
Vs

ϕ∇ · (D − Dh)dV

= − 1
2

∫
Als

ϕDh,l ·dA− 1
2

∫
Asg

ϕDh,g · dA+ 1
2

∫
Vtz,s

ϕ∇ · DdV =0,

(19)
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where Vs is the volume of seed particle and Vtz,s is the volume
of transition zone at seed particle surface, where the charge
q carried to seed particle is distributed. Here only the inte-
grals over the interface surfaces between the seed particle,
the liquid embryo, and the gas phase are written down. The
reasons are that the integral over an infinitely remote outer
surface of the gas phase vanishes, since D and ϕ diminish at
least as fast as ρ−2 and ρ−1, respectively, when distance from
the seed particle (denoted ρ) goes to infinity. The dielectric
displacement D and potential ϕ of the real system are con-
tinuous at interfaces. As shown before, boundary condition
Dn

h,g = Dn
h,l holds at the surface of hypothetical system, and

also surface integrals over liquid-vapor interface cancel out.
We take into account that in hypothetical system the charge
is located at the dividing surface of the seed particle as a sur-
face charge and, therefore, ∇ · Dh = 0 in all three bulk phases
(s,l,g), Eq. (19) is obtained by applying divergence theorem to
three bulk phases. Thus surface integrals in Eq. (19) represent
integrals over surfaces that closely follow dividing surfaces,
but still are taken inside bulk phases. Therefore, as field is
zero inside the conductive seed, Dh,s = 0, but this is not so
on the liquid and gas side of the seed particle surface, where,
as seen before, Dn

h,l/g = Dh,l/g (the vector Dh is perpendicular
to conductive seed particle surface) represent surface charge.
Finally, for the real system the charge carried to the seed parti-
cle is distributed in the narrow transition zone of seed particle
surface, and thus we reach the third form of Eq. (19).

The surface of tension of a seed particle is located
in the transition zone. We assume that this surface coin-
cides with the equipotential surface with potential value
ϕequipot ≈ ∫

Vtz,s
ϕ∇ · DdV / q. This assumption is valid with

a relative uncertainty of the order of the ratio of the width of
transition zone to seed radius, with the effect of double layer
on the potential distribution in transition zone ignored. The
capacitance of a conducting sphere is proportional to its ra-
dius C ∼ R, and difference in sphere radii equal to the width
of transition zone λ leads to relative difference of electrical
potentials of shperes equal to λ/R. The last term of the last line
of Eq. (19) can thus be expressed as qϕequipot, where q is the
charge that is carried onto the seed particle, having the same
value for both real and hypothetical systems. When moving
along the equipotential surface, the potential in two first terms
of the last line of Eq. (19), ϕ is constant taken out of the in-
tegrals. As shown before, Dn

h,l and Dn
h,g are equal to the sur-

face charge densities, and the integrals together yield the total
charge Thus, also the third form of Eq. (19) reduces to zero.

Thus, the difference in the electric field energies between
the real and the hypothetical system takes the form


W = 1
2

∫
Vtz+V2

(E − Eh) · DhdV = 1
2

∫
Vtz

(E − Eh) · DhdV

+ 1
2

∫
V2

(E − Eh) · DhdV . (20)

Since in the volume V2 the dielectric constants of hypo-
thetical and real system coincide and linear relation D = εε0E

holds, the second integral of Eq. (20) is equivalent to

1
2

∫
V2

(E − Eh) · DhdV = 1
2

∫
V2

(D − Dh) · EhdV . (21)

Analogously with Eq. (19), expressing the electric field
in the hypothetical system in terms of the potential of the hy-
pothetical system, Eh = −∇ · ϕh, we can derive result

1
2

∫
Vtz+V2

(D − Dh) · EhdV

= 1
2

∫
Vtz

(D − Dh) · EhdV + 1
2

∫
V2

(D − Dh) · EhdV = 0,

(22)

and hence the last term of Eq. (20) can be expressed as

1
2

∫
V2

(E − Eh) · DhdV = 1
2

∫
V2

(D − Dh) · EhdV

= − 1
2

∫
Vtz

(D − Dh) · EhdV . (23)

Upon introducing Eq. (23) into Eq. (20), we obtain Eq. (16).

1. An explicit form for estimating the work of charging
for liquid–vapor interface

Now we derive an explicit formula for the differences
in charging energies between real and hypothetical systems
due to liquid–vapor interface. Still assuming there is no spon-
taneous polarization and thus using the simple relationship
D = εε0E, Eq. (16) can then be written as


W = 1
2

∫
Vtz

(E · Dh − Eh · D)dV = 1
2

∫
Vtz,l

(εl − ε)ε0El,h

· EdV + 1
2

∫
Vtz,g

(εg − ε)ε0Eg,h · EdV

≈ 1
2

∫
Vtz,l

(
(εl − ε)ε0E

2
t +

(
1

ε
− 1

εl

)
D2

n

ε0

)
dV

+ 1
2

∫
Vtz,g

(
(εg − ε)E2

t +
(

1

ε
− 1

εg

)
D2

n

ε0

)
dV, (24)

where Vtz,l and Vtz,g are volumes of parts of transition zone
contiguous with dividing surface in the neighboring phases,
in present case liquid and gas phases, respectively; ε is the
dielectric constant in transition zone, εl and εg are dielectric
constants in bulk liquid and gas phases, respectively. In the
last form of Eq. (24) it is taken into account that Et ≈ Et

h and
Dn ≈ Dn

h, where subscripts t and n refers to the components
that are parallel and normal to isodensity surfaces in the tran-
sition zone, respectively. It can be seen from the last form of
Eq. (24) that the first term is positive and second term negative
if dielectric constant ε monotonically changes from εl to εg in
transition from liquid to gas phase. Even if dielectric constant
ε does not behave monotonically due to composition of the
surface region differing from bulk due to surface adsorption,
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it is possible to choose the position of dividing surface so that

W in Eq. (24) turns to be zero, as the non-monotonic behav-
ior is limited to a narrow transition zone and by moving the
dividing surface into either bulk liquid or bulk vapor phases
one of the terms in the last form of Eq. (24) can be made to
have large enough positive or negative value.

Moving dividing surface from the liquid bulk side into the
gas-phase bulk side of transition zone, and taking difference
of energies we find that the maximum difference in electric
energies between real and hypothetical systems is of the order

± 1
2

∫
Vtz

(
(εl − εg)ε0E

2
t +

(
1

εg

− 1

εl

)
D2

n

ε0

)
dV .

B. Surface excess for liquid-vapor interface

Now we use the work of charging to derive an expres-
sion for the electric surface excess quantity at liquid-vapor
interface. We consider a tube of force of hypothetical system
in the transition zone. Similar analysis can be performed us-
ing the tube of force of the real system. The tube of force
cuts a charge δq on the surface of the seed particle. Here we
assume that the tube of force starts at a location outside the
contact zone of three phases on seed particle. For the tube of
force the term DhdV in Eq. (16) can be represented as DhdV
= dLD

hDhdA = dLD
hδqh, with dA being the cross-section

area of a hypothetical system tube of force. DhdA = δqh is
constant along the tube of force. The tubes of force of real
and hypothetical systems that cut out the same area dA of the
dividing surface can cut out slightly different areas of the seed
particle surface and, therefore, slightly different charges δq
on seed particle surface. Next we use the relation Eh · DdV
= (Eh · dLD

h)(D · dA/δqh)δqh = (Eh · dLD
h)(D · Dh/(Dh)2)δq,

where the term (D · dA/δqh = (D · Dh/(Dh)2) describes the ra-
tio of charges cut by real and hypothetical tubes of force
that surround the surface element dA. We have taken into
account that dV = dLD

h · dA, and that vectors dLD
h and dA

point along the same direction while Dh is parallel with them,
and thus the scalar products of the vectors can be manipu-
lated as shown above, for example, D · dA = D · Dh/Dh dA =
D · Dh/Dh δqh/Dh where we have used also dA = δqh/Dh. We
can now cast Eq. (16) into the form


W = 1
2

∫ qtz

0
�lgδqh, (25)

where qtz is the total charge cut out on seed particle surface
by force tubes penetrating the transition zone under consider-
ation, and the charge element δqh corresponds to a infinitely
narrow tube of force. The integrand in Eq. (25)

�lg =
∫ LDx

LD,l

(
E − El,h D · Dl,h

(Dl,h)2

)
dLh

D

+
∫ LD,g

LDx

(
E − Eg,h D · Dg,h

(Dg,h)2

)
dLh

D (26)

is the surface excess quantity of electric field equal to the po-
tential jump through interface. Coordinate LDx indicates the
location of dividing surface, in present case the surface of ten-
sion. Coordinates LD,l, LD,g indicate locations in bulk liquid
and gas phases, respectively, that are adjacent to two-phase

transition zone. Starting from these points the dielectric prop-
erties are changed so that they correspond the hypothetical
system in the interface zone. The integration in Eq. (26) em-
braces only the transition zone. If systems have spherical sym-
metry, then dielectric displacement vectors of real and hy-
pothetical systems have the same direction, force tubes cut
out the same amount of charge on seed particle surface, and,
therefore, the ratio DDh/(Dh)2 cancel out from Eq. (26).

1. An explicit form for estimating the electrical
surface excess at liquid –vapor interface

Now we want to estimate the magnitude of the electric
surface excess (26). This excess arises from differences in di-
electric properties of real and hypothetical systems, as the sur-
face polarization is so far ignored. It is more comfortable to
proceed by using the tubes of force of a real system, as then
there is no need to change the division of the transition zone
made by tubes of force when we go from one hypothetical
system to another. Using the tubes of force of a real system
Eq. (26) can be expressed as

�lg =
∫ LDx

LD,l

(
E

DDl,h

D2
− El,h

)
dLD

+
∫ LD,g

LDx

(
E

DDg,h

D2
− Eg,h

)
dLD, (27)

where dLD is the element vector along electric field line in
real system and spontaneous polarization is ignored.

As transition zone between phases is very narrow the
tangential component of electrical field and normal compo-
nent of electric displacement remain approximately constant
in passing through the interface. Therefore, we can represent
the field values of hypothetical system as Et

h = Et + δEt
h

and Dn
h = Dn + δDn

h, respectively, where δEt
h and δDn

h

are tiny corrections to the corresponding values of the real
system. It follows from Eq. (24) that it is possible, for a given
tube of force, to choose the location of the dividing surface so
that �lg(LD0) = 0. Therefore, without spontaneous polariza-
tion and using the fact that Eqs. (24) and (25) give two dif-
ferent expressions for the same energy change evoked by the
hypothetical change of dielectric properties in the part of tran-
sition zone intercepted by a given elementary tube of force of
a real system, we can write

��lg(LDx)−�lg(LD0)�δq

=
∫

δVl (LDx )

(εl−εt )ε0
(
El,h

t −El,h0
t

)
EtdV

+
∫

δVlg (LDx,LD0)

[
(εg − εt )E

g,h
t − (εl − εt )E

l,h0
t

]
ε0EtdV

+
∫

δVg (LD0)

(εg − εt )ε0
(
E

g,h
t − E

g,h0
t

)
EtdV

+
∫

δVl (LDx )

(εl − εn)ε0
(
El,h

n − El,h0
n

)
EndV
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+
∫

δVlg (LDx,LD0)

[
(εg − εn)Eg,h

n − (εl − εn)El,h0
n

]
ε0EndV

+
∫

δVg (LD0)

(εg − εn)ε0
(
Eg,h

n − Eg,h0
n

)
EndV

=
∫

δVl (LDx )

δ1,EdV +
∫

δVlg (LDx,LD0)

(εg − εl)ε0E
2
t dV

+
∫

δVlg (LDx,LD0)

δ2,EdV +
∫

δVg (LD0)

δ3,EdV

+
∫

δVl (LDx )

δ1,DdV +
∫

δVlg (LDx,LD0)

(
1

εl

− 1

εg

)
D2

n

ε0
dV

+
∫

δVlg (LDx,LD0)

δ2,DdV +
∫

δVg (LD0)

δ3,DdV

∼=
∫

δVlg (LDx,LD0)

(εg − εl)ε0E
2
t dV

+
∫

δVlg (LDx,LD0)

(
1

εl

− 1

εg

)
D2

n

ε0
dV , (28)

where δV(LDx) is the volume of the part of a given force
tube of a real system that reaches from the transition zone
boundary at liquid side to the coordinate (both hypothetical
systems are in liquid phase in this region) LDx, δV(LDx,LD0) is
the volume of the force tube part located between coordinates
LDx and LD0 (system h with dividing surface at LDx is gas,
system h0 with dividing surface at LD0 is liquid), δV(LD0) is
the volume of the force tube part located between coordinate
LD0 and the gas phase boundary of transition zone (both
hypothetical systems are in gas phase in this region). Here
we have introduced a more general model for describing
dielectric properties of anisotropic transition zone – a dielec-
tric tensor that has only two independent components – the
component εn for the normal to the surface layer direction and
εt for directions along the surface layer (see also Sec. IV C).
We have defined δ1,E = (εl − εt )ε0Et (δE

l,h
t − δE

l,h0
t ), δ2,E

= ε0Et [(εg−εt )δE
g,h
t −(εl − εt )δE

l,h0
t ], δ3,E = (εg − εt )ε0Et

(δEg,h
t −δE

g,h0
t ), δ1,D=(1/εn−1/εl)(δDl,h

n −δDl,h0
n )Dn/ε0,

δ2,D = (( 1
εn

− 1
εg

)δDg,h
n − ( 1

εn
− 1

εl
)δDl,h0

n )Dn/ε0, and δ3,D

= (1 / εn − 1 / εg)(δDg,h
n − δD

g,h0
n )Dn/ε0. The last form of

Eq. (28) gives the principal part of electrical field surface
excess quantity at a given location of the dividing surface.
The terms containing integrands δi,E and δi,D (i = 1,2,3) are
dropped in the last form as insignificant corrections, and they
are proportional to quantities EtδEt or DnδDn, whereas the
leading terms are proportional to Et

2 and Dn
2.We see that

the electrical surface excess consists of two parts. One part
is connected with component of electric field tangential to
the surface and another with the component of dielectric dis-
placement normal to it. In a system with spherical symmetry
the first part is absent.

We have considered excess quantity at liquid-vapor inter-
face. For other interfaces the same principle can be used. As
the seed particle is assumed to be spherical and conductive we
can choose the tubes of force of real and hypothetical systems
to have the same directions at seed particle surface. In a real
system charges are distributed not only along the surface but
also along the depth of interfacial zone. There is an electrical
double layer at surface of seed particle affected by adsorption
of molecules from vapor or liquid and, therefore, also a poten-
tial jump across interface.96, 99 Thus, in case of seed particle
surface the electrical surface excess introduced above incor-
porates both the double layer peculiarities in metal side of
surface and spontaneous polarization of adsorbed molecules.
It should be noted that if we enclose a seed particle both
with and without an embryo in an electrical double layer of
constant strength (e.g., if an isotropic embryo forms on top
of a precursor film so that its formation does not affect the
electrical double layer of the film-covered seed particle; this
also means that the effect of overlapping of the surface layers
at solid-liquid and liquid-vapor interfaces on double layer in
contact line zone can be ignored), the formation energy of an
embryo as a difference of these two states does not change.
The location of the dividing surface, chosen so that the elec-
trical potential (electrical capacitance) of seed particle in hy-
pothetical system coincides with potential in real system, does
not necessarily coincide with surface of tension, and a relation
analogous to Eqs (27) and (28) are valid.

C. Surface polarization

A dielectric medium of the surface layer is anisotropic
and there is a possibility that surface molecules are sponta-
neously polarized. In this case the most general form that rep-
resents the linear relation between the components of the elec-
tric displacement and the electric field is98

Di = εikε0Ek + D0i , (29)

where D0 is a constant vector, and quantities εik form the di-
electric tensor. We assume here that the vector D0 is normal to
the interface surface and the dielectric tensor has only two in-
dependent components – the component εn for the normal to
the surface layer direction and εt for directions along the sur-
face layer. Thus, next we consider a relationship more general
than D = εε0E

Dn = εnε0En + D0n,
(30)

Dt = εtε0Et .

Using Eq. (30) we can express Eq. (26) in the form

�lg =
∫ LDx

LD,l

(
Dn

εnε0
− Dl,h

n

εlε0

D · Dl,h

(Dl,h)2

)
n·dLh

D

+
∫ LD,g

LDx

(
Dn

εnε0
− D

g,h
n

εgε0

D · Dg,h

(Dg,h)2

)
n · dLh

D

−
∫ LD,g

LD,l

P0

ε0
· dLh

D+
∫ LDx

LD,l

(
Et−El,h

t

D · Dl,h

(Dl,h)2

)
t · dLh

D

+
∫ LD,g

LDx

(
Et − E

g,h
t

D · Dl,h

(Dl,h)2

)
t · dLh

D, (31)
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where n is the unit vector normal to the surface layers and t
is the unit vector tangential to the surface layers and laying
in the plane determined by vectors Dh and n, P0 = D0/εn de-
scribes the spontaneous polarization of surface layer. In case
of spherical symmetry there are no terms containing field
components tangential to interface surface in Eq. (31). Also
the ratio DDh/(Dh)2 cancel out.

The surface excess polarization

P
lg

0 =
∫ LD,g

LD,l

P0·dLh
D (32)

can be considered as the dipole moment per unit area, i.e.,
spontaneous polarization of molecules in interfacial zone is
reduced to the dipole moment of unit area of dividing surface.
There is electric double layer charge distribution along the
dividing surface. The potential jump across the double layer
can be expressed as

ϕg − ϕl = P
lg

0

ε0
. (33)

In deriving Eqs. (26) and (31) we used a hypothetical sys-
tem consisting of pieces of bulk phases with dividing bound-
ary surfaces at which the bulk dielectric constant of one phase
changes stepwise into dielectric constant of another phase. In
case there are spontaneously polarized surface molecules in a
real system our hypothetical system requires upgrading. The
layers of spontaneously polarized molecules are sources of
electric field and these sources should also be taken into ac-
count in a hypothetical system. The easiest way to do this is to
introduce an electrical double layer of zero thickness with the
strength given by Eqs. (32) and (33) at dividing surfaces of
hypothetical system. It should be kept in mind that the elec-
tric field created by spontaneous polarization around a seed
particle in real and hypothetical systems is present even in
case of uncharged seed particle. The energy of this field is
incorporated into surface energies of the neutral real system
and should not be accounted as the charging energy. Still, the
energy of the charging process that is related to carrying the
charge through spontaneous double layers of real or hypothet-
ical systems must be taken into account. This double layer
crossing energy is described by the potential difference given
by Eq. (33), which is the same both for real and hypothetical
systems, multiplied by a amount of charge that is carried from
infinity to the seed particle through a force tube that crosses
double layer at a given location. A force tube under consid-
eration can belong to a hypothetical system as in Eq. (31) or
to a real system as in Eq. (27). We assume that spontaneous
polarization in real system is only weakly dependent on the
position along surface layer and, therefore, we can ignore a
possible small difference in the values of excess polarization

P
lg

0 , which could be evoked by the use of different force tubes,
i.e., real or hypothetical tubes, in defining the value of excess
polarization.

In case of systems of complete spherical symmetry the
effect of a double layer on the charging energy of either the
real or the hypothetical system is independent on the loca-
tion of double layer with respect to the seed particle surface
as long as the potential jump across the double layer is the

same, and all charges are completely carried through the dou-
ble layer. Thus, we then can neglect the field of double layers
(the difference of field values between real and hypothetical
double layers, which exists only inside the transition zone) in
Eq. (31) (or in Eq. (27)) and consider, based on superposition
principle, that the values of field in Eq. (31) are only due to
charges that are transported onto seed particle and the differ-
ence in field values of real and hypothetical systems is only
due to the difference in dielectric properties of these systems.
In a spherically symmetric case the spontaneous polarization
term should thus be omitted in Eqs. (28) and (31) remains
valid.

The seed particle is assumed rigid and conductive. Thus,
we expect that with good approximation the transition zone
at the seed particle surface can be considered as a set of two
subsystems that are conical interceptions of spherical layers
adjacent to liquid and vapor phases, respectively. The three
phase contact zone is ignored. A shift of hypothetical double
layer due to spontaneous polarization (not changing the loca-
tion of the net charge, which must stay inside the double layer)
inside the transition zone does not change the charging en-
ergy. A shift in the location of the double layer in liquid-vapor
transition zone does change the charging energy. This is be-
cause moving the double layer changes the amount of charge
that the hypothetical layer embraces at seed particle surface
(see Fig. 2 and consider depicted boundaries of transition
zone as two different positions of hypothetical double layer).
We can estimate the order of magnitude of the difference
between charging energies of hypothetical and real systems
due to polarization by calculating the difference of charging
energies between two hypothetical systems where hypothet-
ical double layers are placed at outer and inner boundaries
of liquid-vapor transition zone keeping the location of the di-
viding surface related to the stepwise change of the dielectric
constant. If we ignore the change in surface charge distribu-
tion of the seed caused by the difference in location of double
layers, we can express the difference in charging energies as
±(P sl

0 + P
lg

0 − P
sg

0 )qtz,s / ε0, where qtz,s is the charge on the
contact area of the seed with liquid-vapor transition zone (See
Fig. 2). We have neglected here the possible dependence of
surface excess polarizations on the location. We assume that
seed particle charge q 
 qtz,s and ignore, therefore, the differ-
ence in interface polarizations between real and hypothetical
non-spherical systems, i.e., Eq. (28) remains valid.

D. Electrical line excess

The distribution of dielectric properties of matter in the
contact region of three phases differs from the distributions in
bulk regions and in regions of two-phase interfaces. The elec-
tric surface excess quantity as given by Eq. (31) cannot be
uniquely separated into parts for different dividing surfaces
crossed by a tube of force on its way from the interior of the
seed particle through liquid phase in the contact zone, where
the properties are different from bulk, to the interior of the
bulk gas phase. Even if the tube crosses only one dividing sur-
face in the contact zone, the surface excess quantity will still
be rapidly changing function of the distance of the crossing
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point from the contact line of three dividing surfaces. The di-
electric properties of three phase contact zone change rapidly
both in the direction normal to the dividing surface and in the
direction along to the dividing surface but perpendicular to the
three phase contact line. The excess quantity as defined for a
two-phase interface is not well suited for three phase contact
line.

We can divide total interfacial zone into two categories
of zones – two-phase zones and three-phase zone to introduce
excess corrections to the hypothetical system under consider-
ation. We can attribute an electrical line excess quantity to the
interception line of three dividing surfaces, but the division
into two- and three-phase interface zones is not uniquely de-
termined. The two-phase part covers the regions of dividing
surfaces that are outside the three-phase contact zone. There-
fore, it is more appropriate to extrapolate the values of electri-
cal surface excess quantities into three-phase zone and define
line excess accordingly to keep the balance of energy. Let us
consider an element of three-phase contact zone with width
dL along the line of contact of three dividing surfaces (see
Fig. 3).

Next we will use Eq. (16) and for the modification of in-
tegrals, we will consider tubes of force of a hypothetical sys-
tem. We represent the charge δqh that is cut out by a tube of
force of the hypothetical system from the dividing surface of
the seed particle as δqh = ηe

hdLdr, where ηe
h is the charge

density on seed particle surface at a point crossed by the tube
of force. The surface area element dLdr is represented by the
product of the length element dL of three phase contact line
with the length element dr taken along seed particle dividing
surface perpendicular to the three phase contact line. Then,
analogously with Eqs. (25) and (26), the integral over an ele-
ment of three-phase conduct zone can be written as

κel = 1
2

∫ 
r

0

∫ LD,g

LD,s

(
E − Eh D · Dh

(Dh)2

)
· dLh

Dηh
e dr

−
∫ λlg

0
�lgηh

e (λlg)
dr

dλlg

dλlg

−
∫ λsl

0
�slηh

e (λsl)
dr

dλsl

dλsl

−
∫ λsg

0
�sgηh

e (λsg)
dr

dλsg

dλsg, (34)

where we have used the notation κel to indicate the electrical
excess quantity per unit length of the three phase contact line,
λa denotes distance from the three phase contact line along
a-dividing surface (a = lg, sl, sg). We have used the same
notation for the upper bounds of the integrals to indicate the
final coordinates of integration outside the three-phase con-
tact zone. The notation dr/dλlg is the ratio of length elements
dr and dλlg cut by the hypothetical tube of force from divid-
ing surface of seed particle and dividing surface lg, respec-
tively. For dividing surfaces a = sl and a = sg, dλa = dr.
ηe

h(λa) is the charge density of the seed particle surface at a
point that is connected with the dividing surface point λa by
a tube of force of the hypothetical system. �a is the value
of electrical surface excess quantity extrapolated into the re-

FIG. 3. Top and cross section views of the element of three-phase contact
zone and line.

gion of three-phase contact line along dividing surface a (a =
lg,sl,sg). It should be noted that we obtain the charging en-
ergy of the real system by adding electrical excess energies
of interface surfaces, Eqs. (25) and (26) (these equations are
written for liquid-vapor interface, but equations for other in-
terfaces are analogous) and electrical line excess energy (Eq.
(34) that is integrated over the three phase contact line) to the
charging energy of the hypothetical system. We assume that
excess quantities for the interface surfaces of the hypotheti-
cal system are specified up to the three phase contact line by
extrapolation. Then the addition of line excess energy results
in cancelling out of extrapolated parts of surface and line ex-
cesses for the charging energy of the real system. For Eq. (34)
only the first term preserves. This term can be expressed as

1
2

∫ 
r

0

∫ LD,g

LD,S

(
E − Eh D · Dh

(Dh)2

)
· dLh

Dηh
e dr

= 1
2

∫ 
r

0

∫ LD,g

LD,S

(
ε−1D − Dh

εl,g

D · Dh

(Dh)2

)
· dLh

Dηh
e dr

−
∫ 
r

0

∫ LD,g

LD,S

(
Ptpc

0

ε0

)
· dLh

Dηh
e dr, (35)

where ε−1D is the product of the inverse dielectric tensor (see
Eq. (29)) with the vector of the dielectric displacement of the
real system, the notation εl,g indicates the value of dielectric
constant that is equal to εl when a tube of force of hypothetical
system is crossing liquid phase and it is εg when gas phase is
passed. The term P0

tpc = ε−1D0
tpc (see Eq. (29)) describes

possible spontaneous polarization in the three phase contact
line region.

It follows from Eq. (34) the electrical line excess κel turns
to zero if the surface charge density on the seed particle at
the location of three-phase contact zone is zero. It is known
that electric field and surface charge density are zero at ob-
tuse angles of charged conducting body,100 e.g., at three phase
contact line of Fig. 1, where the seed with a nucleus is con-
sidered as one uniform conducting body. Therefore, in case
of a nucleus with large dielectric constant on conducting seed
particle, the electrical line excess is negligible.
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Collecting terms that describe spontaneous polarization
separately we can write Eq. (34) as

κel = κE − κP q

ε0
, (36)

κE = 1
2

∫ 
r

0

∫ LD,g

LD,S

(
ε−1D − Dh

εl,g

D · Dh

(Dh)2

)
· dLh

Dηh
e dr

−
∫ λlg

0
�

lg

E ηh
e (λlg)

dr

dλlg

dλlg

−
∫ λsl

0
�sl

Eηh
e (λsl)

dr

dλsl

dλsl

−
∫ λsg

0
�

sg

E ηh
e (λsg)

dr

dλsg

dλsg, (37)

κP q = 1
2

∫ 
r

0

∫ LD,g

LD,S

Ptpc

0 · dLh
Dηh

e dr

−
∫ λlg

0
P

lg

0 ηh
e (λlg)

dr

dλlg

dλlg

−
∫ λsl

0
P sl

0 ηh
e (λsl)

dr

dλsl

dλsl

−
∫ λsg

0
P

sg

0 ηh
e (λsg)

dr

dλsg

dλsg, (38)

where symbols �a
E (a = lg, sl, sg) mark extrapolated values

for electrical surface excess quantities in a case where sponta-
neous surface polarization is ignored (e.g., Eq. (31), with the
term containing polarization P0 is dropped out). We have de-
noted the excess quantity due to spontaneous polarization as a
product κP q, where q is the charge and κP is charge indepen-
dent factor. Next we will find an expression for the coefficient
κP in Eq. (38). We adopt linear relationship between the di-
electric displacement and the electric field, D = εε0E + εP0

tpc

(Eq. (29) as the form given by Eq. (30) is not applicable to
the three phase contact line zone), and charge a seed particle
keeping the volume and shape of both nucleus and the seed
constant. Therefore, the potential of seed particle and charge
density on particle surface are proportional to the total charge
of the seed q. The electrical capacitance of the seed, C, is con-
stant. The seed particle capacitance can be considered to be a
sum of capacitances connected in parallel. Each capacitance
is related to a surface element dA. We can express the capac-
itance related to a surface element dA as dC = CAdA, where
CA is the capacitance per unit area. Here the capacitance is
defined as dC = dq/dϕ, the ratio of added charge dq to the
potential change dϕ caused by charge addition. The capaci-
tance CA is location dependent when there is a nucleus on seed
particle. We can now express the surface charge density as
ηe = CA(ϕ − ϕ0) = CAq/C, where ϕ − ϕ0 = q/C is the electri-
cal potential change of seed particle when charge q is carried
onto the seed particle. The notation ϕ0 refers to the poten-
tial of uncharged seed particle. As discussed earlier, there is a
double layer charge distribution on the surface of a conduct-
ing seed particle. This double layer causes a potential jump.
Therefore, in general, even an uncharged seed particle has
nonzero potential. The capacitances C and CA do not depend

on charge. Thus (see Eq. (38)) also the coefficient,

κP = 1

Ch

∫ 
r

0

∫ LD,g

LD,S

(
Ptpc

0

)
dLh

DCh
Adr

− 1

Ch

∫ λlg

0
P

lg

0 Ch
A(λlg)

dr

dλlg

dλlg

− 1

Ch

∫ λsl

0
P sl

0 Ch
A(Lsl)

dr

dλsl

dλsl

− 1

Ch

∫ λsg

0
P

sg

0 Ch
A(λsg)

dr

dλsg

dλsg, (39)

does not depend on charge. Here superscript h indicates that
we consider tubes of force and capacitances of the hypotheti-
cal system. The larger the seed particle the smaller is the co-
efficient κp as the integration in Eq. (39) covers only a nar-
row three phase contact line zone region on the seed particle
surface.

The first term on the right hand side of Eq. (36) can be
reduced to zero by changing the location of the three phase
contact line by moving the dividing surfaces. This follows
from the arguments presented after Eq. (24) and in deriving
Eq. (28). Actually, these arguments apply if we consider a hy-
pothetical system with an excess line quantity whose value is
given by Eq. (38) and ignore difference between field sources
due to spontaneous polarization of real and hypothetical sys-
tems, i.e., we consider that field values in Eq. (37) are gener-
ated only by seed particle charges and differences in dielec-
tric constants. The location of the three phase contact line
where Eq. (37) reduces to zero, however, does not neces-
sarily correspond to the location of dividing surfaces which
sets corresponding terms in surface excess values to zero (see
Eq. (28)).

V. WORK OF CHARGING INCLUDING
EXCESS QUANTITIES

In Eq. (13) δq represents the change of electric charge
for the whole surface of seed particle, but it can be considered
also locally as a change of charge of on some part of the seed
particle surface that is cut out by a tube of force related to the
dielectric displacement vector.

Keeping this in mind we replace the real system with
a hypothetical system that includes surface and line excess
polarizations with values given by Eqs. (32) and (38), re-
spectively, and, for simplicity, assume that the locations of
surfaces of tension yields zero values for electrical excess
quantities apart from those connected with spontaneous polar-
ization, i.e., corrections given by Eqs. (28) and (37) are zero.
Let us consider a tube of force of infinitely narrow width. The
entire space around seed particle can be divided into these el-
ementary tubes of force. We use the central field line of an
elementary tube of force as a coordinate line and denote co-
ordinate along it, as before, with LD. For each segment of the
elementary tube of force in a bulk phase we use an integral
given by second form of Eq. (13). In the spirit of the last
form of Eq. (13), every intersection of the elementary tube
of force with a dividing interfacial surface is associated with
a potential jump 
ϕa given by equation (33), leading to a
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contribution δWq = −
ϕaδdq = −(P a
0 /ε0)δdq in the work

of charging the seed, where δdq is the variation of charge
dq separated by elementary tube of force on seed particle
surface. A minus sign in front of second and third forms
here reflects the point that electric field and potential in the
third and last forms of Eq. (13), respectively, are related by
E = � ∇ · ϕ. We use the result δDn = δdq/dA = δηe, leading
to δdq = δη edAa where dAa is cross-section area of an ele-
mentary tube of force with surface a (a = sl, sg) and Dn is the
component of the dielectric displacement vector normal to in-
terface surface. Thus, for the total surface of seed particle the
integration over elementary tubes of force gives the following
form for Eq. (13):

δWq = ϕ

⎛
⎜⎝∫

Asl

δηedA +
∫

Asg

δηedA

⎞
⎟⎠

=
∫
Vl

E · δDdV −

∫
Asl

(
P sl

0 + P
lg

0

)
δηedAsl

ε0

+
∫
Vg

E · δDdV −

∫
Asg

P
sg

0 δηedAsl

ε0

= −
∫
Asl

P sl
0

ε0
δDndAsl +

∫
Vl

E · δDdV −
∫
Alg

P
lg

0

ε0
δDndAlg

−
∫

Asg

P
sg

0

ε0
δDndAsg +

∫
Vg

E · δDdV

= −
∫
Asl

P sl
0

ε0
δD · dAsl +

∫
Vl

E · δDdV −
∫
Alg

P
lg

0

ε0
δD · dAlg

−
∫

Asg

P
sg

0

ε0
δD · dAsg +

∫
Vg

E · δDdV. (40)

The second form follows from the last form of Eq. (13)
as the sum of the integrals represent the total charge of the

seed particle. The surface excess polarization P
lg

0 in the sec-
ond term of third form of Eq. (40) is estimated at the point
of interception of gas-liquid dividing surface with an elemen-
tary tube of force that starts from surface element dAsl. As
an elementary tube covering an area dAsl at the seed surface
covers an area dAlg at the gas-liquid interface, and the tube
encompasses surface charge δη edA sl, we can write δηedAsl

= δDndAsl = δDndAlg, which result in the equality between
the third a fourth forms of Eq. (40).While the second form
of Eq. (40) represents the energy change for the whole sys-
tem, the individual terms of the third, fourth and fifth forms of
Eq. (40) have also a local meaning representing energy
chances in bulk and surface phases. If spontaneous polariza-

tion terms P
ij

0 /ε0 in Eq. (40) do not depend on the position of
the dividing surface, they can be taken out of the integrals.

We can get the total energy that is required to charge a
seed particle up to a charge q if we integrate Eq. (40) over the
charge. The energy of the nonzero electric field (with potential
ϕ0) of an uncharged seed particle due to surface polarization is
incorporated into the surface energy of the electrically neutral
system and should not be accounted as the charging energy.
We assume that the linear relationship D = εε0E holds for
bulk phases. During charging the shape and volume of a nu-
cleus and seed particle are kept constant. Therefore, the elec-
tric capacitance Cl = q/(ϕ − ϕ0) does not depend on charge,
(ϕ − ϕ0) being the potential change evoked by the charge q,
and the potentials can be expressed as ϕ = ϕ0 + q/Cl. The
integration of the last form of Eq. (13) and third, fourth, and
fifth forms of Eq. (40) gives alternative forms for the charging
work

Wq =
∫

ϕδq = q2

2Cl

+ ϕ0q = ϕ + ϕ0

2
q

=
∫
Vl

(
ED

2
− E0D0

2

)
dV −

∫
Asl

(
P sl

0 + P
lg

0

)
ηedAsl

ε0

+
∫
Vg

(
ED

2
− E0D0

2

)
dV −

∫
Asg

P
sg

0 ηedAsl

ε0

= −
∫
Asl

P sl
0

ε0
(Dn − D0,n)dAsl +

∫
Vl

(
ED

2
− E0D0

2

)
dV

−
∫
Alg

P
lg

0

ε0
(Dn − D0,n)dAlg

−
∫

Asg

P
sg

0

ε0
(Dn − D0,n)dAsg +

∫
Vg

(
ED

2
− E0D0

2

)
dV

= −
∫
Asl

P sl
0

ε0
(D − D0) · dAsl +

∫
Vl

(
ED

2
− E0D0

2

)
dV

−
∫
Alg

P
lg

0

ε0
(D − D0) · dAlg

−
∫

Asg

P
sg

0

ε0
(D − D0) · dAsg +

∫
Vg

(
ED

2
− E0D0

2

)
dV,

(41)

where ηe is the surface density of charges carried on seed par-
ticle from infinity. When an embryo which has polarized in-
terface surfaces as sources of field is formed on an uncharged
seed particle it evokes redistribution of charges on the sur-
face of the conducting seed if the spherical symmetry is bro-
ken. This density of charges is not included in surface density
ηe. D0 is the dielectric displacement vector around uncharged
seed particle, and D − D0 is the change of dielectric dis-
placement evoked by charges ηe. Note that the charging work
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Eq. (41) obtained by integration of Eq. (40) depends on the
shape of the embryo. If we ignore polarization effects Eq. (41)
reduces formally to Eq. (15) (note however that in Eq. (15) we
considered dielectric constant to depend on the position in in-
terface zones).

If the surface excess polarizations P
ij

0 are independent of
location, the three last forms of Eq. (41) can be expressed as

Wq =
∫
Vl

ED − E0D0

2
dV −

(
P sl

0 + P
lg

0

)
qsl

ε0

+
∫
Vg

ED − E0D0

2
dV − P

sg

0 qsg

ε0
, (42)

where qsl and qsg are charges on surface areas of the seed
particle adjacent to liquid and gas phases, respectively.

Taking a variation of Eq. (41) (we will consider the fourth
and fifth forms of it and use relation ϕ = ϕ0 + q/Cl again) and
assuming fixed shape and volume of the system we get

δWq = 1
2 (ϕ + ϕ0)δq + 1

2qδ(ϕ + ϕ0)

= 1
2 (ϕ + ϕ0)δq + 1

2qδ

(
q

Cl

+ 2ϕ0

)

= ϕδq + 1
2q2δ

(
1

Cl

)
+ qδϕ0

= 1
2

∫
Vl+Vg

E · δDdV + 1
2

∫
Vl+Vg

D · δEdV − 1
2δ

∫
Vl+Vg

D0E0dV

−
∑

a

⎛
⎝∫

Aa

[
δP a

0

ε0
D + P a

0

ε0
δD − δ

(
P a

0

ε0
D0

)]
· dAa

⎞
⎠

(43)

and subtracting the second and last forms of Eq. (40) from
the second line and last two lines of Eq. (43), respectively, we
obtain

q2

2
δ

(
1

Cl

)
+ qδϕ0

= + 1
2

∫
Vl+Vg

D · δEdV − 1
2δ

∫
Vl+Vg

D0E0dV

−
∑

a

⎛
⎝∫

Aa

[
δP a

0

ε0
D − δ

(
P a

0

ε0
D0

)]
· dAa

⎞
⎠ = 0, (44)

i.e., at given charging state the sum of variations presented
above has to be zero.

In the case of a seed particle surrounded by gas phase
spherical symmetry allows us to write Eq. (41) also as

Wq = q2

8πεgε0

1

R
− P

sg

0

ε0
q, (45)

where R is the radius of the spherical seed particle.
Equations (41) and (43), and (44) are written as inte-

grals over elementary tubes of force that cover the whole sur-

face of the seed particle, but they can be written also for a
tube of force that cuts out only a part of seed particle sur-
face. Of course, only terms that are relevant for a force tube
under consideration should be kept in Eqs. (41), (43), and
(44). It should be noted that force tubes run along field vec-
tors of dielectric displacement D − D0. Displacement D −
D0 is proportional to the charge q of seed particle, and as
long as the shape and volume of nucleus and spontaneous po-
larization of surfaces are kept constant, and the relationship
D = εε0E holds for bulk phases, also the shape and position
a tube of force in space are kept unchanged during charging
due to linearity of governing equations of electrostatics.

So far we have considered the charging of hypothetical
system that includes surface excess polarizations. For better
agreement of our hypothetical system with a real system we
should also consider the electrical line excess. As in case of
surface excess quantities we ignore the line excess due to the
difference of dielectric constant in three phase contact line
zone from their constant values in bulk and surface phases de-
scribed by Eq. (37), assuming that the location of three phase
contact line assures its value is zero. In the following we only
study the line excess due to surface polarization. The increase
of line energy of spontaneously polarized three phase contact
line at charging of seed particle by charge δq can be expressed
as (see Eqs. (38) and (39))

δWL = −δq

∫
L

κP

ε0
dL = −δq

κP

ε0
L, (46)

where L is the length of three phase contact line. The last form
of Eq. (46) corresponds to the case where coefficient κP is
independent of position on the three phase contact line. The
integration of Eq. (46) gives (for charging at constant shape
and volume of the nucleus)

WL = −q

∫
L

κP

ε0
dL = −q

κP

ε0
L. (47)

Taking variation of Eq. (47) and subtracting Eq. (46)
from the result we obtain

−qδ

∫
L

κP

ε0
dL = 0, (48)

i.e., at given charging conditions the integral under variation
sign cannot change.

VI. INTERNAL ENERGIES AND GRAND POTENTIAL

As discussed earlier before Eq. (13), with respect to the
total system charging is done adiabatically, but subsystems
are charged at constant temperature and volume. The gaseous
phase is taken to be large, and heat transfer between sub-
systems is allowed. The amount of charging work in a re-
versible process at constant volume and temperature is equal
to the change of Helmholts free energy 
F = 
(U − TS)T,V.
The entropy change at charging is 
Sq = (∂
F/∂T)V,q, which
gives, e.g., for any bulk phase 
Sq = ∫

V

ε0E2(∂ε/∂T)V dV.101

The internal energy change of subsystem i is 
Ui = 
Fi

+ T
Si
q = Wq

i + T
Si
q, where Wq

i is the work of charging
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of subsystem i. This work is given for the bulk phases and in-
terfaces between them by the last form of Eq. (41), and for the
three phase contact line by Eq. (47). Therefore, we obtain in-
ternal energies of bulk phases, surfaces, and three phase con-
tact line for charged system by adding charging energies (see
Eqs. (41) and (47)) to Eqs. (5)–(8) and accounting also for the
change of entropies. Using Dl/g = εε0El/g the bulk, surface,
and line energies become

U
q

l = T
(
Sl + 
S

q

l

) − p0
l Vl +

∑
i

μi.lNi,l +
∫
Vl

D2 − D2
0

2εlε0
dV,

(49)

Uq
g = T

(
Sg+
Sq

g

)−p0
gVg+

∑
i

μi,gNi,g+
∫
Vg

D2−D2
0

2εgε0
dV,

(50)

Uq
a = T

(
Sa + 
Sq

a

) + σaAa +
∑

i

μi,aNi,a

−
∫
Aa

P a
0

ε0

(
Dn − D0,n

)
dAa

(a = sl, sg, lg), (51)

U
q

L = T
(
SL + 
S

q

L

) + κL +
∑

i

μi,LNi,L − q

∫
L

κP

ε0
dL.

(52)

We assumed that the gas phase is large enough to act as
heat and particle bath, that is, to keep the temperature through
the total system constant and preserve chemical potentials of
each species in the vapor phase despite nucleus formation pro-
cesses on the seed particle. Thus, we will use grand potential
to find the equilibrium state of the system. For a system con-
taining a charged seed particle in vapor, but no liquid nucleus
yet, we obtain

�0 ≡ U0 − T S0 −
∑

i

μi,gNi = σgs A
0
gs−p0

gV +
∫
V

ED

2
dV

−
∫

A0
gs

P
sg

0

ε0
DndAa = σgs A

0
gs − p0

gV

+ q2

8πεgε0

(
1

R
− 1

ρlim

)
− P

sg

0

ε0
q, (53)

where U0 = Ug
q + Usg

q is the internal energy of the system,
S0 = Sg + Ssg is the entropy of the system (the T
S terms
of Eqs. (49)–(52) cancel out as the entire system was charged
adiabatically), V is the total volume of the system (seed parti-
cle volume is excluded), R is the radius of the spherical seed
particle, ρ lim is the radius of very distant boundary of the sys-
tem, Ni is the total number of molecules of species i (surface
excess plus gas phase numbers). The chemical potentials for
surface and vapor phases for each component are equal. We
have not constrained mass transfer.

Taking the differential of the defining form U0 − T S0 −∑
i μi,gNi of Eq. (53) and using Eqs. (2) and (3), and (40)

(in the latter the terms related to liquid should be omitted and
spherical symmetry accounted for) we obtain the differential
of the grand potential:

d�0 = −S0dT + σsgdA0
sg − p0

gdV −
∑

i

Nidμi,g

−
∫

A0
sg

P
sg

0

ε0
δD · dA0

sg +
∫
Vg

E · δDdV. (54)

The grand potential for a seed particle in the vapor is a
function of temperature, seed particle surface area, system
volume, chemical potentials of all of the molecular species,
and dielectric displacement vector.

For a system containing a charged seed particle with a
liquid nucleus on its surface in a vapor, we obtain

� ≡ U − T S −
∑

i

μi,gNi

= −p0
l Vl − p0

gVg +
∑

a

σa Aa + κ L

+
∑

a

∑
i

(μi,a − μi,g)Ni,a

+
∑

i

(μi,l − μi,g)Ni,l +
∑

i

(μi,L − μi,g)Ni,L

−
∫
Asl

P sl
0

ε0
(D − D0) · dAsl

+
∫
Vl

(
ED

2
− E0D0

2

)
dV −

∫
Alg

P
lg

0

ε0
(D − D0) · dAlg

−
∫

Asg

P
sg

0

ε0
(D − D0) · dAsg − q

∫
L

κP

ε0
dL

+
∫
Vg

(
ED

2
− E0D0

2

)
dV, (55)

where U = U
q

l + ∑
a U

q
a + U

q
g + U

q

L is the total internal en-
ergy of the system, S = Sl + ∑

a Sa + Sg is the total entropy
of the system (again, the T
S terms of equations (49)–(52)
cancel out as the entire system was charged adiabatically),
Ni = Ni,l + Ni,g + ∑

a Ni,a is the total number of i-type
molecules of the system, V = Vl + Vg is the total vol-
ume of the system (excluding again the volume of the seed
particle).

Taking the differential of the defining form U0 − T S0 −∑
i μi,gNi of Eq. (55) and using Eqs. (1)–(4) and (40) and
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Eq. (46), we obtain the differential for the grand potential:

d� = −SdT − p0
gdVg − p0

l dVl +
∑

a

σa dAa

−
∑

i

Ni.gdμi,g +
∑

i

(μi,l − μi,g)dNi,l

+
∑

a

∑
i

(μi,a−μi,g)dNi,a +
∑

i

(μi,L−μi,g)dNi,L

+
(

κ − q
κP

ε0

)
dL −

∫
Asl

P sl
0

ε0
δD · dAsl

+
∫
Vl

E · δDdV −
∫
Alg

P
lg

0

ε0
δD · dAlg−

∫
Asg

P
sg

0

ε0
δD · dAsg

+
∫
Vg

E · δDdV − δq

∫
L

κP

ε0
dL. (56)

Eq. (56) shows independent parameters that determine
the value of the grand potential for a constrained nucleus on
a seed particle immersed in a vapor. We see that the potential
Eq. (55) is actually a hybrid potential. It is a grand poten-
tial with respect to variables μi,g – the chemical potential of
species i in vapor and Helmholtz free energy with respect to
variables Ni,a and Ni,L – the number of i – type molecules of
surface a (a = gl, ls) and the number of i – type molecules of
contact line, respectively.

VII. CONCLUSIONS

A thermodynamical formalism is applied to a system
consisting of a dielectric liquid nucleus of a new phase
on a charged insoluble conducting seed particle within a
uniform multicomponent macroscopic mother phase. We
consider a general form of cap-shape nucleus not necessarily
having spherical form or axial symmetry, but we assume that
deviations from the spherical form are such that we can ignore
the changes in surface and line tensions values invoked by
these deviations. We replace the real system with a hypothet-
ical system, where properties, including dielectric constants,
of bulk phases preserve their values up to a dividing surface.
We introduce electrical surface and line excess quantities to
take into account the difference between real and hypothet-
ical system. We also consider electrical surface and line ex-
cess quantities due to spontaneous polarization of molecules
on surfaces between the phases and at the three phase con-
tact line. Potential jumps at phase interfaces caused by sur-
face polarization together with line tension are used to derive
internal energies and grand potential for the system. The re-
versible work needed to form a nucleus of a new phase on
a seed particle, and the conditions of equilibrium between
the critical nucleus and the mother phase are considered in
Paper II.102
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