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A B S T R A C T

The formation of aerosol particles in the atmosphere is driven by the gas to particle conversion
of extremely low volatile organic compounds (ELVOC), organic compounds with a particularly
low saturation vapor pressure (𝑝Sat). Identifying ELVOCs and their chemical structures is
both experimentally and theoretically challenging: Measuring the very low 𝑝Sat of ELVOCs is
extremely difficult, and computing 𝑝Sat for these often large molecules is computationally costly.
Moreover, ELVOCs are underrepresented in available datasets of atmospheric organic species,
which reduces the value of statistical models built on such data. We propose an active learning
(AL) approach to efficiently identify ELVOCs in a data pool of atmospheric organic species
with initially unknown 𝑝Sat . We assess the performance of our AL approach by comparing it
to traditional machine learning regression methods, as well as ELVOC classification based on
molecular properties. AL proves to be a highly efficient method for ELVOC identification with
limitations on the type of ELVOC it can identify. We also show that traditional machine learning
or molecular property-based methods can be adequate tools depending on the available data
and desired degree of efficiency.

. Introduction

Secondary Organic Aerosols (SOA) play a major role in atmospheric chemistry and physics. They reflect and scatter solar
adiation, act as cloud condensation nuclei, and are a source of large uncertainties in current climate models (Arias et al., 2021).
OA formation is driven by gas-to-particle conversion of oxygenated organic molecules (OOMs) (Kerminen, Chen, Vakkari, Petäjä,
ulmala, & Bianchi, 2018; Kupc, Williamson, Hodshire, Kazil, Ray, Bui, Dollner, Froyd, McKain, Rollins, Schill, Thames, Weinzierl,
ierce, & Brock, 2020; Metzger et al., 2010-04-13; Yan et al., 2016; Zhang et al., 2004). A myriad of different OOMs can be found in
he atmosphere as products of oxidation chains of organic molecules. Particularly interesting for SOA formation are OOMs that are
o low in volatility that they inevitably condense in ambient conditions, even in the absence of pre-existing surfaces. Such OOMs are
ommonly referred to as extremely low volatile organic compounds (ELVOCs) (Donahue, Kroll, Pandis, & Robinson, 2012; Schervish
Donahue, 2020).
The volatility of a compound or its affinity to the condensed phase, and thus its potential to participate in particle formation,

an be expressed by its saturation vapor pressure (𝑝Sat) or equivalently saturation mass concentration. The dependence of 𝑝Sat on the
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chemical and molecular structure of OOMs and ELVOCs helps us to better understand the origin and chemistry of molecules involved
in organic particle formation in the atmosphere. However, 𝑝Sat measurements of ELVOCs are complicated by the low gas phase
concentrations and by the fact that the molecules easily condense onto the measuring device due to their low volatility. The number
of successful measurements (Hyttinen et al., 2022) and thus the number of identified ELVOCs is therefore still small compared to
the millions of different OOMs in the atmosphere. The lack of experimental data on the 𝑝Sat of polyfunctional ELVOCs also means
that empirical structure–property relationships for predicting 𝑝Sat are unlikely to be reliable for these species, despite performing
very well for chemically simpler and more volatile compounds. Chamber experiments (Hyttinen et al., 2022) can treat larger OOM
numbers and, e.g., recently suggested that nucleation of 𝛼-pinene, isoprene and 𝛽-caryophyllene oxidation products is driven by
molecules with 15–20 carbon atoms (Dada et al., 2023). Another study found that relative humidity does not affect the ELVOC
partitioning to the particle phase (Surdu et al., 2023). Yet, beyond probing overall condensation behavior, chamber experiments do
not reveal the chemical identity or molecular structure of involved OOM. Quantum chemistry provides a direct route to calculate 𝑝Sat
from the molecular structure, (Kurtén, Hyttinen, D’Ambro, Thornton, & Prisle, 2018) without empirical system-specific parameters.
Such calculations are computationally very costly, but have been applied recently to generate moderately sized OOM datasets (Besel,
Todorović, Kurtén, Rinke, & Vehkamäki, 2023; Tabor et al., 2019).

A viable strategy to first identify and then study ELVOCs is to utilize these emerging OOM datasets (Besel et al., 2023; Wang
et al., 2017). We have recently shown that machine learning (ML) models trained on OOM datasets can accurately predict the
𝑝Sat of organic molecules from their geometric structure (Besel et al., 2023; Lumiaro, Todorović, Kurten, Vehkamäki, & Rinke,
2021-09-06). We could therefore envision applying such ML models to a vast pool of OOMs to identify ELVOCs by their predicted
𝑝Sat . This strategy, although appealing, faces several challenges. (1) Current datasets are limited in size due to the aforementioned
experimental limitations and the computational cost of quantum chemistry calculations. (2) ELVOCs are likely underrepresented in
standard datasets, because the molecular generators that simulate OOM oxidation are truncated too early (Isaacman-VanWertz &
Aumont, 2021) or lack key mechanisms such as accretion and autoxidation reactions. (3) Regression or classification models trained
on datasets with scarcely represented ELVOCs might not be very accurate for ELVOC identification, as the predictive accuracy of
machine learning models usually correlates with the presence of corresponding data. A direct consequence is that (4) OOM data
sets would have to be large enough to feature enough ELVOCs for ML training, which could strain computational or experimental
budgets.

In this article, we address these challenges by designing efficient ML strategies for the classification of OOMs as ‘‘ELVOCs’’ or
‘‘non-ELVOCs’’ merely based on their chemical structure. We use a large set of 157k OOMs (Isaacman-VanWertz & Aumont, 2021)
with known chemical and molecular structure, but unknown 𝑝Sat , i.e. a large set of unlabeled molecules.1 Our objective is then
to identify ML strategies that minimize the computational cost associated with labeling, that is, with computing many 𝑝Sat . We
will contrast two different strategies: (i) a large model trained on 24k molecules of the 157k OOMs, for which we have already
computed the 𝑝Sat (the GeckoQ dataset (Besel et al., 2023)); (ii) an active learning (AL) model that is initially trained on only
500 labeled molecules and then iteratively refined to target ELVOCs. Strategy (i) comes with a high initial cost, but might deliver a
well-balanced ML model with sufficient classification accuracy. Strategy (ii) combines supervised and unsupervised machine learning
to target ELVOCs, leading to a low initial cost, but might not deliver a very predictive ML model. In this work, we will assess the
performance of both strategies in terms of the total number of correctly identified ELVOCs and the associated computational cost,
and compare our ML methods to ELVOC classification with the empirical SIMPOL method (Pankow & Asher, 2008-05-19) and a
rule-based approach.

The article is structured as follows. After a review of the applied methods and data, we introduce four performance measures.
Thereafter, we compare our methods with respect to the performance measures, analyze AL in depth, and eventually, discuss the
merits of the different methods in different scenarios of data availability.

2. Materials and methods

Below we summarize the methods used in this work. We first provide a robust definition of ‘‘ELVOC’’, and then briefly review
quantum chemical 𝑝Sat calculations. We also describe the employed dataset, introduce our ML approaches and discuss model training.
We, furthermore, explain the identification of molecular functional groups and how these are used to compute 𝑝Sat with the SIMPOL
group contribution method or in a rule-based 𝑝Sat classification method. Finally, we introduce four performance measures for
comparing the different methods.

2.1. ELVOC definition and 𝑝Sat computation

The term ‘‘ELVOC’’ is context-dependent and not unambiguously defined in the atmospheric science community (Bianchi et al.,
2019). Previous work set the limit for the ELVOC saturation mass concentration to 3 ⋅10−4 μg

m3 (Donahue et al., 2012). This limit was
ater reduced by a factor of ten, (Tröstl, Chuang, Gordon, Heinritzi, Yan, Molteni, Ahlm, Frege, Bianchi, Wagner, Simon, Lehtipalo,

illiamson, Craven, Duplissy, Adamov, Almeida, Bernhammer, Breitenlechner, Brilke, Dias, Ehrhart, Flagan, Franchin, Fuchs, Guida,
ysel, Hansel, Hoyle, Jokinen, Junninen, Kangasluoma, Keskinen, Kim, Krapf, Kürten, Laaksonen, Lawler, Leiminger, Mathot,

1 Generative algorithms that have been successfully used for targeted molecular discovery in other contexts (Westermayr, Gilkes, Barrett, & Maurer, 2023)
2

ill not be pursued in this work.
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Möhler, Nieminen, Onnela, Petäjä, Piel, Miettinen, Rissanen, Rondo, Sarnela, Schobesberger, Sengupta, Sipilä, Smith, Steiner, Tomè,
Virtanen, Wagner, Weingartner, Wimmer, Winkler, Ye, Carslaw, Curtius, Dommen, Kirkby, Kulmala, Riipinen, Worsnop, Donahue, &
Baltensperger, 2016) and the term Ultra Low VOC (ULVOC) was coined (Schervish & Donahue, 2020). Because the relation between
saturation vapor pressure and saturation mass concentration is molecular weight-dependent, we chose a 𝑝Sat threshold instead of
saturation mass concentration to avoid any ambiguity in ELVOC definitions and to simplify the analysis of our results. A saturation
mass concentration of 3 ⋅ 10−4 μg

m3 corresponds to a 𝑝Sat of 2.66 ⋅ 10−8 Pa for the lowest molecular weight (28 g/mol) present in the
eckoQ data set at 298.15 K. We rounded this up to a 𝑝Sat threshold of 3 ⋅ 10−8 Pa. By basing the threshold on the lowest molecular

weight, rather than on a larger one, we obtain a comparably higher ELVOC threshold. This choice is balanced by the fact that 𝑝Sat is
generally temperature dependent and was computed for 298.15 K in our work. In real ambient conditions, the temperature is often
lower, resulting in a lower 𝑝Sat for all compounds.

In the following sections we will refer to any molecules with a 𝑝Sat below the threshold of 3 ⋅ 10−8 Pa as ‘‘ELVOC’’ and above as
‘‘non-ELVOC’’, for simplicity. To determine if a molecule is an ‘‘ELVOC’’, we computed its 𝑝Sat as follows: first, an initial conformer-
search was conducted with COSMOconf (Dassault Systèmes, 2022). Then the gas-phase (‘‘vacuum’’) and liquid-phase energies were
computed for all conformers. For the latter, we employed the conductor-like screening model for real solvents (COSMO-RS), (Klamt,
Jonas, Bürger, & Lohrenz, 1998; Klamt & Schüürmann, 1993) a continuum solvation model. All energy calculations were carried
out with density functional theory (B88-PW86 functional, (Becke, 1988; Perdew, 1986) TZVPD basis, using multipole accelerated
RI-approximation) as implemented in Turbomole (Balasubramani et al., 2020). Next, we selected up to 40 of the energetically lowest
conformers with a minimal number of intramolecular H-bonds, because it has been demonstrated that the inclusion of conformers
with many internal H-bonds leads to larger errors in COSMO predictions (Kurtén et al., 2018). Finally, we computed the 𝑝Sat based on
the chosen conformers with COSMOtherm(Klamt et al., 1998; Klamt & Schüürmann, 1993) for a standard temperature of 298.15 K.
This 𝑝Sat -computation workflow has been described in more detail in our previous work (Besel et al., 2023). COSMO-RS has been
ascribed an accuracy within 0.5 log(MAE/Pa) relative to measured 𝑝Sat (Eckert & Klamt, 2002). Neither the COSMO-RS accuracy
nor the chosen temperature have an impact on the method comparison below, as long as all reference 𝑝Sat have been computed
consistently with the same quantum chemistry methodology. This study does not work with measured reference pressures, because,
as noted in the introduction, currently it is not possible to measure them for ELVOC in high quantity and this kind of data is not
available. In the following, we will refer to the quantum-chemical computation of a molecule’s 𝑝Sat simply as labeling.

.2. Dataset

For the development of our ELVOC search procedures, we selected a dataset of 157,395 atmospheric organic molecules
containing C, H, O, and N; size range 4 – 45 atoms per molecule), generated by the chemical mechanism GECKO-A (Aumont,
zopa, & Madronich, 2005-09-22; Isaacman-VanWertz & Aumont, 2021) and post-processed as detailed in previous work (Besel
t al., 2023). We will refer to the 157k molecules as the raw Gecko data. The aforementioned GeckoQ dataset is a labeled subset of
he raw Gecko data, in which the 𝑝Sat has been computed for 31,637 randomly chosen molecules following the procedure outlined
n the previous section.

Inspection of the computed 𝑝Sat values reveals that GeckoQ contains 1,608 ELVOCs, i.e. 5.1% of all the 31,637 molecules (cf.
ig. 1). That roughly corresponds to the 8% ELVOC yielded by the analysis of OOM field measurements (Zheng et al., 2023) with
he group contribution method SIMPOL (Pankow & Asher, 2008-05-19). Since GeckoQ has been uniformly sampled from the raw
ecko data, we can apply the percentage of 5.1% to the raw Gecko data to estimate that 8,027 molecules in the raw data should
e ELVOCs. Subtracting the 1,608 ELVOCs we already identified in GeckoQ, we are left with approximately 6,419 ELVOCs in the
aw Gecko data that have not yet been found (i.e. not labeled as ELVOC). It is our objective in this work to find as many of these
,419 ELVOCs as efficiently as possible.

In this work, we introduced a hard decision boundary for ELVOC classification, although in reality 𝑝Sat distributes continuously,
as Fig. 4 illustrates. A small 𝑝Sat prediction error could therefore shift an ELVOC close to the threshold into the non-ELVOC region
and vice versa. We assume that such mis-classification errors occur with the same frequency for false positives and false negatives
and will therefore average out.

2.3. Machine learning approach

2.3.1. Regression model
As the 𝑝Sat distribution of the data is continuous, we opted for a regression-based machine learning technique for ELVOC

identification. With the regression model, we will make predictions for 𝑝Sat upon which we distinguish between ELVOCs and non-
ELVOCs. This enables a comparison between the 𝑝Sat and corresponding predictions, which facilitates the interpretation of our
results.

We used Gaussian process regression (GPR) as implemented in Pytorch for the 𝑝Sat predictions. The employed product kernel
was composed of the radial basis function (RBF) kernel and a multiplicative constant. For the GPR fitting, molecules need to be
represented in a machine readable format, a so-called descriptor (Himanen et al., 2020; Langer, Goeßmann, & Rupp, 2022). We
chose the topological fingerprint (TopFP) (James & Weininger, 1995; Landrum, Tosco, Kelley, Ric, Cosgrove, Sriniker, Gedeck,
Vianello, NadineSchneider, Kawashima, N, Jones, Dalke, Cole, Swain, Turk, AlexanderSavelyev, Vaucher, Wójcikowski, Take, Probst,
Ujihara, Scalfani, Godin, Lehtivarjo, Pahl, Walker, Berenger, Jasondbiggs, & Strets123, 2023) descriptor, in accordance with previous
work (Besel et al., 2023; Lumiaro et al., 2021-09-06). GPR model choices and TopFP hyperparameters are discussed in the SI.

We monitored ML model performance with the mean absolute error (MAE) calculated for a test set, for which we randomly
picked 2000 molecules from the raw Gecko data prior to any ELVOC search and computed their 𝑝Sat with quantum chemistry. This
3

test set was kept fixed and used throughout our whole study.
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Fig. 1. 𝑝Sat distribution in the GeckoQ data. 5.1% of all molecules are classified as ELVOC with the saturation vapor pressure threshold of 3 ⋅ 10−8 Pa applied
in this work.

Table 1
An overview of all applied machine learning classification strategies. ‘‘5x’’
indicates that five different sets of training sets were drawn and utilized. The
trainingset of AL was extended each AL cycle.
Method Abbreviation Held-out set Trainingset size

General single GS 126k 24k
General ensemble GE 126k 5x 24k
Active Learning AL 157k 500–3000

2.3.2. ML ELVOC classification strategies
As alluded to in the introduction, we distinguish between two different regression types for our classification task (summarized in

Table 1): (1) static global models that are trained once on a large training set and (2) active learning models that evolve iteratively
from a small, initial training set. We will compare these two strategies against two empirical models: (3) the group contribution
method SIMPOL (Pankow & Asher, 2008-05-19) and (4) a simple rule-based approach. All strategies are briefly described in the
following.

Global models – We trained a ML model on 24k OOMs randomly chosen from the GeckoQ data. ELVOC classification with this
model is referred to as the GPR single (GS) method. In addition, we build an ensemble, by training four additional ML models on
different sets of 24k randomly chosen OOMs from the GeckoQ data. As the training sets are chosen from the same pool of overall
32k molecules, a training set size of 24k ensures that the models are not identical but incorporate some variability. The four models
were combined with the GS model into an ensemble model termed GPR ensemble (GE).

ELVOC classification with the GS and GE was conducted as follows: We created a held-out set that consisted of all remaining
unlabeled molecules in the raw Gecko data (i.e., 125,758 molecules that were not in the test set or used for GS and GE training).
For GS, we predicted the 𝑝Sat of all held-out set molecules and classified those as ELVOC that fell below our 𝑝Sat threshold. For GE,
we repeated the procedure for the remaining four models in the ensemble. A molecule was then classified as ELVOC, if at least one
of the five models predicted it as such. We then calculated the 𝑝Sat of all molecules classified as ELVOC by GS and GE to check our
predictions.

Active learning – Our AL approach proceeds iteratively and is depicted schematically in Fig. 2. Starting with an initial batch of
labeled molecules and a GPR trained on this batch, further batches are selected iteratively from the held-out set and added to the
training set. When a new batch has been added, we retrain the GPR.

Like for the GS and GE, we predicted the 𝑝Sat of held-out set molecules with the GPR at each iteration. The held-out set comprises
the whole raw Gecko data set minus the test set and the molecules in the 0th batch. Molecules below the ELVOC threshold were
then clustered into 520 clusters to maximize molecular diversity. From each cluster we picked the molecule closest to the centroid
and computed their 𝑝Sat with quantum chemistry. These molecules were then added to the batch. The overhead of 20 molecules
accounted for potential 𝑝Sat calculation failures (e.g. non-convergence). In practice the number of failures never exceeded 20 and
we randomly picked 500 molecules out of the successfully calculated ones.

For reference, we also executed the workflow with batches randomly picked (RND) from the held-out set to compute a baseline
against which to measure potential active learning benefits. Both AL and RND were stopped after six iterations at which point 3000
molecules had been assembled, because after iteration 6 the AL model identified fewer than 520 new ELVOCs (cf. Table 3).

SIMPOL group contribution method – Functional groups (FG) are major defining factors for the chemical behavior of a
molecule, and thus also its 𝑝Sat . FG that are able to form strong intermolecular interactions, such as hydrogen-bonds (H-bonds), lower
𝑝Sat , because the molecules are more strongly bound in the liquid phase. For example hydroxy, carboxylic acid, or hydroperoxide
FGs, contain H-bond donors and H-bond acceptors, and can form strong intermolecular interactions by themselves and are typically
abundant in low 𝑝 molecules. Other FGs such as aldehydes, ketones, peroxides and esters can only act as H-bond acceptors and
4

Sat
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Fig. 2. The active learning scheme.

decrease 𝑝Sat less than the groups that also include an H-bond donor. Finally, the nitrogen containing FGs, nitrate- and nitrogroups,
have the smallest impact on 𝑝Sat decrease.

With the FG contribution method SIMPOL (Pankow & Asher, 2008-05-19) the log10 of a 𝑝Sat in Pa is calculated as

log10 𝑝Sat =
∑

𝑘
𝜈𝑘𝑏𝑘, (1)

where 𝜈𝑘 is the number of FGs of type 𝑘. The expansion coefficients 𝑏𝑘 were fitted to reference data (Pankow & Asher, 2008-05-
19). We chose SIMPOL as a computationally cheap, empirical reference method. We used our own Matlab (The MathWorks Inc.,
2022) SIMPOL implementation applying the fitted SIMPOL coefficients. The FGs were obtained with the APRL Substructure Search
Program (APRL-SSP), (Ruggeri & Takahama, 2016) which includes the most relevant FGs. APRL-SSP presently does not correctly
identify carbonyl groups attached to a carbon that is also attached to a peroxy group and we corrected for this.

Since SIMPOL is already parameterized, we do not need to train it on labeled data. We then tested the SIMPOL ELVOC
classification performance by applying SIMPOL to 42,156 molecules from the Gecko dataset (i.e., the 32k GeckoQ molecules +
10k additional molecules that have been labeled over the course of this study). Our objective is not to draw a comparison between
SIMPOL 𝑝Sat and COSMO-RS 𝑝Sat , as this has been done before Besel et al. (2023), Hyttinen et al. (2022, 2021).

Rule-based approach – During this work, we identified the molecular weight (MW; in g/mol), the average oxidation state (OSC)
and specific FGs as valid indicators for 𝑝Sat and decided to test their potential for ELVOC classification.

Fig. 3 displays the OSC– and MW–𝑝Sat relationships for 42,156 molecules from the Gecko dataset. The green curve shows
molecules with fewer than three nitrogen atoms and the orange curve molecules with no nitrogen (‘‘no N’’). Fig. 3(a) confirms
what is already known: 𝑝Sat generally decreases with increasing OSC/MW, as more functional groups are introduced that can form
hydrogen bonds and other types of intermolecular dipole–dipole interactions. In addition, Fig. 3 confirms that nitrogen containing
groups have little influence on 𝑝Sat , because the 𝑝Sat–OSC/MW slope becomes more pronounced if it is only plotted for molecules
without nitrogen-containing groups.

We further analyzed the FG distribution in Fig. 3(c). For this analysis, we chose the five most frequent (not nitrogen containing)
FGs in GeckoQ (ketone, hydroxy, hydroperoxide, carboxylic acid, aldehyde groups) and distinguished between ELVOCs and non-
ELVOCs. Fig. 3(c) demonstrates that hydroperoxide, carboxylic acid, and hydroxy groups are more frequent in ELVOCs. This is
expected, since these groups lead to lower 𝑝Sat . In contrast, ketone and aldehyde groups are more frequent in non-ELVOCs.

From the above considerations, we derived our rule-based classification. First, a molecule needs to have OSC > 1.25 and
MW > 236 g∕mol. If this is true, we check, if the molecule has more than one FG of the types hydroxy, hydroperoxide, or carboxylic
acid. If this is also true, we classify the molecule as ELVOC. This approach will be abbreviated as ‘‘RULE’’ in the following.

2.4. Performance measures

For the comparison of our classification strategies, we apply four performance measures: identification accuracy, identification cost,
classification accuracy and prediction accuracy.

• The identification accuracy quantifies how many ELVOCs were correctly identified. The target values (the number of expected
ELVOC) differ slightly, because the different models are applied to different data volumes. For each method, we count the
number of correctly identified ELVOCs and divide by the corresponding target reported in Table 2 to express the identification
accuracy in percent.

• The identification costs measures the resource requirements. In our study, labeling is the most resource intensive step.
The quantum mechanical 𝑝Sat calculations take time and require computational resources (e.g., computing hours on high-
performance computing infrastructures). The resource requirements for each 𝑝Sat calculation depend on the size and complexity
of each molecule. To simplify, we assume a constant, molecule-independent time and computation cost, where the cost
of determining X 𝑝Sat values with quantum chemistry costs X. The labeling and thus the classification cost then becomes
proportional to the number of molecules that need to be labeled.
5
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Fig. 3. Molecular properties of 42k molecules. (a) The average carbon oxidation state OSC and (b) the molecular weight MW plotted against the binned log10
𝑝Sat . The orange curves only consider molecules without any nitrogen. Singular molecules had even lower 𝑝Sat , but were excluded from the visualization for the
sake of clarity. (c) Percentage of molecules that contain respective FG split by ELVOC (‘‘E’’) and non-ELVOC (‘‘nE’’). Groups with less than 0.5% occurrences
not depicted for clarity. ‘‘Number of occurrences’’ indicates the number of instances of the same FG if it was found multiple times in a single molecule. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

• The classification accuracy provides information on the ability of our methods to classify a molecule correctly as ELVOC
or non-ELVOC. For each method, we collect the predicted ELVOCs and non-ELVOCS and compare them to the available
labeled molecules. The overlap for each category gives the number of true positives and negatives, respectively, whereas
the cross-comparison returns the false positives and false negatives. With these numbers, we build confusion matrices for each
method.

• The ML prediction accuracy quantifies how far the ML-predicted 𝑝Sat values are from the quantum mechanical reference. We
use the MAE as performance measure.

Our main objective is to find as many ELVOC as possible with the least amount of effort. We will therefore balance identification
accuracy against cost. The classification accuracy provides further insight into the performance of the methods. Our secondary
objective is to produce reasonable 𝑝Sat predictor ML model. For this, we would strive for high prediction accuracy.

3. Results and discussion

In the following, we will compare our different ELVOC identification strategies for the different performance metrics to
investigate their performance in terms of

3.1. ELVOC identification accuracy and cost

Table 2 illustrates the identification performance of the five strategies applied in this work. For each method, we list the number
of correctly identified ELVOCs (𝑁E) and the size of the held-out set (𝑁ho) from which they were determined. For AL, GS and
GE, the number of expected ELVOCs (𝑁exp) amounts to 5.1% of the held-out set size, following the GeckoQ estimate presented in
Section 2.2. SIMPOL and RULE were only applied to labeled data, for which we know the number of ELVOCs as determined by
COSMO-RS exactly.

3.1.1. Global models
The global strategies GS and GE find a similar number of ELVOCs (2088 and 2448, respectively). For statistical reasons, the GE

ensemble method identifies 360 more ELVOCs. In GE, five models of GS size make predictions, which increases the likelihood of
identifying ELVOCs. In principle, GE could identify even more ELVOCs with more inbuilt diversity (i.e. more training molecules in
6
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Table 2
Summary of the identification performance and prediction accuracy of all investigated methods
including the number of actual ELVOC found (𝑁E), held-out set size (𝑁ho), and the target number
of expected ELVOCs (𝑁exp). The prediction accuracy, noted as MAE, is in log units of vapor
pressure. ∗This cost cannot be quantified unambiguously and will be discussed in the text. Thus,
there is no cost ratio.

GS GE AL SIMPOL RULE

𝑁E 2088 2448 1606 1951 2136
𝑁ho 126k 126k 157k 42k 42k
𝑁exp 6414 6414 8027 5067 5067
Classification accuracy 66% 62% 54% 44% 52%
Identification accuracy 32% 38% 20% 39% 42%
Identification cost 27k 36k 3k 272∗ 42k∗

cost ratio (ELVOC/cost unit) 0.077 0.069 0.54 – –
MAE [log units] on all 0.84 0.83 1.19 – –
MAE [log units] on ELVOC 1.78 1.82 2.36 – –

Table 3
AL performance by batch: acquisition stage, the number of molecules predicted to be potentially
ELVOC (𝑁Pot ) in each batch, the number of subsequently labeled molecules 𝑁lab and the number
of actual ELVOC found (𝑁E) also expressed as percentage. AL model 5 was still trained, but we
terminated the AL cycle after this stage, i.e. did not compute potential ELVOCs for a batch 6.
Acquisition stage Batch no. 𝑁Pot 𝑁lab 𝑁E Percentage per batch

AL random init. 0 – 500 27 5.4%
AL model 0 1 1520 500 292 58%
AL model 1 2 1467 500 331 66%
AL model 2 3 1196 500 331 66%
AL model 3 4 992 500 305 61%
AL model 4 5 717 500 320 64%
AL model 0–4 0–5 3439 3000 1606 54%
AL model 5 6 512 – – –

the ensemble). However, at a training set size of 24k out of 32k possible molecules, the statistical variation is limited and we would
need larger datasets to improve the GE performance.

The identification success rates of GS and GE are 32% and 38%, respectively. While 38% is the 3rd best identification accuracy
eported in Table 2, it is far from ideal. Including more molecules in the GS and GE training sets would increase the 𝑝Sat prediction

accuracy and therefore the identification accuracy, however, at the cost of having to label more molecules. Furthermore, the
identification accuracy is limited by the fact that our decision boundary cuts through the 𝑝Sat distribution (cf. Section 2.2) and
molecules close to the threshold have a high likelihood of being misclassified. Secondly, ELVOCs are underrepresented in the Gecko
data and it will thus be harder to predict their 𝑝Sat accurately with regression models.

The cost of GS and GE is determined by the total number of molecules that need to be labeled. The base cost for both methods
are the number of unique molecules in the training sets, i.e. 24,000 for GS and 31,637 for GE. In addition, all predicted ELVOC were
checked by computing their 𝑝Sat , which added further 3165 molecules for GS and 3939 for GE. Dividing the number of correctly
identified ELVOCs by the cost gives us the following cost ratios of 0.077 found ELVOCs per cost unit for GS and 0.069 for GE. The
higher ELVOC identification success rate of GE is therefore offset by its higher overall cost.

3.1.2. Active learning
With AL, we identified 1606 ELVOCs correctly, which is similar, although slightly lower, than with GS and GE. AL was the only

method that was applied to the whole raw Gecko dataset (minus the 500 molecules of the initial training set). With an expected 8,027
ELVOCs we arrive at an identification accuracy of 20% after 5 AL iterations. Continuing the iterations did not produce appreciably
more ELVOCs (see below). While the identification accuracy is lower than for the other methods, the total cost of only 3000 labels
is significantly lower than for any other method in this work. The resulting cost ratio of 0.54 implies that we find one ELVOC for
any two labeled molecules, which is by far the highest of any of the tested methods.

Fig. 4 and Table 3 illustrate the evolution of the AL strategy. Fig. 4 shows the 𝑝Sat distributions of each AL batch, both sequentially
(a) and cumulatively (b) and Table 3 lists the corresponding statistics. Batch 0 still resembles the GeckoQ distribution (with 5.1%
ELVOC), because it is randomly picked. In contrast, batch 1 already homes in on the ELVOC region and contains 58% ELVOC. For
batches 2 and 3 the percentage rises to 66%. For comparison, the GS method achieved the same percentage (2088 ELVOCs out 3165
potential ELVOCs) albeit with a lot more training data.

The batch distributions in Fig. 4 show that our exploitation-only acquisition strategy of adding only molecules with low 𝑝Sat to the
AL training set immediately finds the decision boundary. Due to the difficulty of classifying molecules close to the decision boundary
accurately, each batch also includes molecules with 𝑝Sat higher than the decision threshold. The peak of the distribution shifts only
slightly to lower 𝑝Sat with increasing iteration. The fact that the distribution does not shift more appreciably is an indication of the
ELVOC scarcity in our dataset. We are searching for the low 𝑝Sat tail of the raw Gecko distribution and our AL algorithm does this
efficiently.
7
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Fig. 4. Evolution of ELVOC content in chosen batch, (a) sequentially and (b) cumulatively. Histogram of the 𝑝Sat distributions by batch with a bin size of one
log unit for all active learning iterations, where each batch contains 500 molecules. The counts for each bin are listed in the SI, Table. S1. Four molecules with
a 𝑝Sat below 10−17 Pa are not depicted, because the corresponding histogram bar would have been too low to be visible.

Table 3 further shows that the number of potential ELVOCs predicted by AL decreases after batch 2. This suggests that AL has
identified most of the ELVOC in the raw Gecko data that are similar to its training set. The characteristics of molecules found by
AL and GS/GE are contrasted and analyzed further in the SI. The total number of correctly identified ELVOCs could be increased
further by restarting the AL method with a new initial molecule distribution. Considering that the initial distributions are randomly
drawn from the raw Gecko data, the likelihood that we end up with similar ELVOCs is high. It is therefore plausible that a certain
percentage of ELVOCs are structurally and chemically so different from the rest of the Gecko data that our regression models
cannot capture them accurately enough. Finding such ultra-rare molecules would require different strategies, e.g., coupling AL with
generative models that learn the structure and chemical identity of ELVOCs. However, such approaches are beyond the scope of
this work.

3.1.3. SIMPOL and RULE
By applying SIMPOL we correctly identified 39%, i.e. 1951, of all ELVOC in the pool of 42k molecules. This identification

accuracy is the second highest identification accuracy, narrowly higher than that of GE. Nevertheless, the SIMPOL identification
cost is very difficult to quantify. While the immediate cost to the user is zero, SIMPOL was fitted to experimental measurements of
272 compounds at different temperatures. Such measurements carry a disproportionately higher cost than a computation, due to
the cost of lab equipment and invested time of human labor. The ELVOC identification cost can therefore not be expressed easily
in terms of computational units as we did for GS, GE and AL.

The parametrization of SIMPOL comes with some caveats that require consideration in the analysis: it is limited to molecules
containing the FGs SIMPOL was parameterized with. Also, species that actually drive pure organic particle formation mostly include
C15 – C20 accretion products, (Dada et al., 2023) which are chemically even further from the SIMPOL fitting data than the sequential
oxidation products contained in GeckoQ. (This is also a reason why there is such a low percentage of ELVOC in the GeckoQ data.)
Finally, SIMPOL serves the atmospheric science community and does not generalize to other application domains as the ML methods
do (once they have been retrained on the new data).

With RULE we correctly identified 2136 out of 42k molecules giving us an identification accuracy of 42%. This comparatively
high percentage illustrates that once we have sufficient data, we can use it to derive chemical and physical rules from it. The price
to pay is the dataset generation, which in this case amounts to 42k labeled molecules. The resulting cost ratio of 0.05 is then
comparable to that of GS and GE. We nevertheless marked the cost ratio as unspecified in Table 2, because we did not test how
much or rather how little labeled data would be needed to derive the rules for RULE reliably. Furthermore, it is not clear if the
rules derived for the Gecko dataset in this work will be transferable to other atmospheric science datasets.

3.2. Classification accuracy

The classification accuracy indicates the percentage of actual ELVOC in a set of molecules predicted to be ELVOC. As such
it is obtained by dividing the true positives (‘‘TP’’) by the sum of all positives. Fig. 5 depicts the confusion matrices for GS,
GE, SIMPOL and RULE, including the percentage of each class. The classification accuracy is the percentage indicated at ‘‘TP’’.
Because AL is constructed iteratively, no single confusion matrix can be created. Nevertheless, we can determine the overall AL
classification accuracy, which is the number of correctly identified ELVOC (1606) divided by the labeled molecules (3000). Then
the AL classification accuracy is 54%.

The ML-based methods have the highest classification accuracy: 66% (GS), 62% (GE) and 54% (AL), in contrast to SIMPOL and
RULE with 44% and 52%, respectively. The reason for this is that the classification accuracy reflects how well a method understands
8
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Fig. 5. The classification matrices for GS, GE, SIMPOL, and RULE. In each square the first line is the classification outcome (True Positive, False Negative, False
Positive and True Negative), the second line is the absolute number of instances for the outcome and the third line indicates the percentage of instances that
where classified correctly and incorrectly ( = TP/(TP+FP)). The color corresponds to the third line. We refer with the classification accuracy, to the percentage
of actual ELVOC within all predicted ELVOC.

Fig. 6. Binned MAE on the general test set (test set size 2000) of AL, RND, GS and SIMPOL. The iterative models AL, and RND evolve with iterations. Iteration
zero (a) and five (b) are depicted. ‘‘Counts’’ indicates the number of molecules in each bin. The corresponding MAE values are listed in the SI, Table S2.

the data overall, including if it knows what does not constitute an ELVOC. ML methods have a fairly good understanding of the full
𝑝Sat range (cf. Section 3.3), and thus, yield much fewer false positives than the less selective SIMPOL and RULE methods. SIMPOLs
accuracy for higher 𝑝Sat molecules is so poor that it even identifies more false positives than true positives. The AL classification is
comparably low because of the random initial batch, and if this batch was omitted, the AL classification would be 1579∕2500 = 63%

3.3. ML prediction accuracy

Finally, we want to evaluate if the applied ML methods are capable of producing a reasonably accurate 𝑝Sat predictor, and to
this end we examine the prediction accuracy. Because GS and GE MAEs are practically identical, only GS, together with AL, and
the RND reference are considered. Fig. 6(a) and (b) display the test set MAE for AL training set sizes 500 (iteration 0) and 3000
(iteration 5), respectively, as a function of 𝑝Sat . For 𝑝Sat lower than 10−10 Pa, we have only 11 molecules in the test set and therefore
we excluded this region from our analysis.

At zeroth iteration, AL and RND are identical. Their 𝑝Sat predictions are most accurate for molecules around the peak of the 𝑝Sat
distribution of the GeckoQ dataset (10−4–10−3 Pa (MAE = 0.85 log units)). Predictions degrade for lower and higher 𝑝Sat . Both,
the AL and RND, models are worse than GS. At iteration 5, the performance of AL and RND has improved. Their predictions are
now level with those of GS, although at much lower training set sizes. AL performs poorer for high 𝑝Sat , which is expected, since its
training data predominately comprises molecules with low 𝑝Sat . For 𝑝Sat below 10−6 Pa, the error of all methods rises and the error
begins to vary more. This indicates that we are approaching the low 𝑝Sat tail of the distribution. Notably, AL predictions are also
less accurate than RND predictions for low 𝑝Sat . The SI contains a detailed analysis of the molecules acquired by AL. We observed
that the ELVOC can be grouped into three structurally distinct clusters. AL is only able to identify ELVOCs reliably in two of these
three clusters.

Overall, GS (and GE) provide the highest predictive accuracy for the whole 𝑝Sat range. Considering the much higher cost of the
9
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3.4. Final assessment

Having analyzed our performance measures, we now reconnect with our research objectives. Our main objective was to identify
ew ELVOC cost-efficiently. Our secondary objective was to compare different ELVOC identification methods and assess their pros
nd cons. We discuss the performance of the different methods for two different scenarios:

1. Labeled data is available:
If a sufficient (uniform) subsample of the molecular data is labeled or can be computed, we recommend training ML models
on as much data as possible. The larger GS and GE models in our work had a better identification and classification accuracy
and identified more ELVOCs than AL. These larger models could then be used as starting point for further AL searches to
identify more ELVOC.

2. No labeled data is available:
With a cost ratio of 0.5, AL is by far the most cost efficient method to identify new ELVOCs. Its identification accuracy,
however, is not the highest and it depends on the application, if it is good enough. If the ELVOC search is performed in a large
or potentially infinite space, the demonstrated identification accuracy will be sufficient. For smaller datasets, the accuracy
should be improved, which could be done by running AL ensembles or adding exploration criteria to the acquisition function.
Both improvement strategies, however, come at the expense of increased labeling cost.
Pre-parameterized methods such as SIMPOL or rule-based methods such as RULE derived in this work, can also be applied, if
no labeled data is available. SIMPOL and RULE identified slightly more ELVOCs than AL, but at the price of many labeled false
positives. However, both methods have been derived specifically for 𝑝Sat predictions and will not generalize to identification
tasks for other properties, unlike AL. Shortcomings of SIMPOL or RULE will become even more apparent for new molecular
datasets that emerge from auto-oxidation and accretion reactions that are currently being added to the GECKO-A reaction
mechanism generator (RMG) (Franzon, Camredon, Valorso, Aumont, & Kurtén, 2024). The resulting molecules are more
complex than the data for which SIMPOL and RULE were developed for and their accuracy is not hitherto known.

The more atmospheric chemistry GECKO-A or other RMGs include, the more molecular data they will produce, which makes it
essential to have reliable tools to identify molecules of interest for aerosol formation, such as ELVOCs. As a specific example of a use
case, RMGs combined with mass spectrometric measurements can be used to connect measured mass peaks of complex oxidation
products with likely molecular structures (Sandström, Rissanen, Rousu, & Rinke, 2024). The machine learning methods developed
in this work can then be used to determine which of these structures are the most likely to participate for example in new particle
formation.

4. Conclusions

We have compared active learning, traditional machine learning, the group contribution method SIMPOL, and a rule-based
approach (RULE) for their ability to identify sparsely represented EVLOC in a pool of OOM data. We found that active learning
is particularly data efficient, while larger, traditional machine learning models, SIMPOL and RULE exhibit better identification
accuracy. Altogether, we identified 3459 new ELVOC in this work with our different search strategies, which can now be further
investigated. The machine learning methods investigated in this work are more generally applicable than SIMPOL or RULE and will
be beneficial in atmospheric science as more data becomes available.
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