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From the art to the science of bound states
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Hadrons lie on linear Regge trajectories :
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Oleg Andreev & Warren Siegel (2005) http://insti.physics.sunysb.edu/~siegel/reggepart/reggepart.html



Deep inelastic lepton scattering: gluons and sea quarks °
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Deep Inelastic Scattering

In Parton Model
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Gluons at low x arise from evolution
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There are fewer gluons in the proton at low Q.

Sea quarks evolve more slowly, remain at hadronic scales.
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Sea quarks can be described analytically

fime
—
Time ordering results in qq pairs from

a single quark line in a strong field.

The pairs are present in the Dirac states,
as described by the Dirac wave function. §

g

=

The states corresponding to Dirac wave functions are rarely discussed.

This 1s related to the “Klein paradox™.

Dirac wave functions describe a Bogoliubov transformed
electron, which in the free basis has many pairs.

The “Dirac pairs” can qualitatively describe the sea quarks.
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Dirac bound states

Electron in a strong external potential

Paul Hoyer Pavia 2020 J. P. Blaizot & PH



Dirac equation from Feynman diagrams

. . . € p)
Summing the interactions of the
electron with a static AY field gives AO% + % % + § % % +

a pole at p¥ = E 1if its wi P satisfies

(—iV -y + eA” + my)®(z) = E®(x) Dirac equation

Note: The Dirac eq. 1s of Born level: There are no loop corrections.

The wave function ®(x) has single electron quantum numbers.

Time-ordering the vertices by Fourier-transforming the electron propagators,

1 —i )
Se(t:p) = 2F, [Q(t)(Ep’YO —p-y +me)e P 9(_t)(_Ep’YO —p-y+me)e Ept]
p

we find “Z-diagrams” from the negative energy components,
implying, at any given time, additional e*e- pairs in the state.
Paul Hoyer Pavia 2020



Time ordering reveals the pair contributions

The poles of the electron Dirac propagator at p¥ = £, and p¥ = —FE, give rise
to two time-ordered diagrams in the Fourier transtorm (p°, p) — (¢, p) :

0
(P’ p) n ! b (z, p) -
F.T. : :
R G
eA0(x) < b Hh> b

— At fixed ¢, a Dirac state has Fock components with any number of et+e- pairs.
The Dirac equation: ,YO( — iV -y +ed+ m)gb(:v) = FE¢(x)

involves the “single electron” wave function ¢(x) . The equation specifies
the energy E and the quantum numbers of the state, but not (explicitly) its
Fock components.
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Determination of the Dirac state

The operator expression for the Dirac states is J. P. Blaizot and G. Ripka:

found by diagonalizing the Dirac Hamiltonian Quantum Theory of Finite Systems,
for a given external field Ax(x). MIT Press, Cambridge, MA (1986)

H = /d?’az@ﬁ(m)[—iv-'y—l—m—l—eA(w)}w(az)

. . B d’p
0@ = Y [bpaulp. NP +dl olp e P 2= [ Gomng

DA
DA

Since H 1s quadratic in b, b7, d, d' it can be diagonalized for any A*(x).
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Determination of the Dirac state (cont.) 10

Denote the solutions of the Dirac equation with positive and negative energies as

(—iV -y +m+ed)d,(x) = E,7 ¢ () E, >0
( A Y M+ GA)CETL(J;) — _Envoén(w) En > (0

The eigenstates and their creation operators are then

H1n) = E, |n) n) = / 0z 1. (2)dn (@) ) = ¢, |)

H|n) = B, |n) i) = / iz 3, ()da(x) Q) = &, )

Using {wa(w), %(y)} = 0ap0°(z —y) we next verify that these are eigenstates

of H, provided H [2) =0 The pair contributions are hiding in

Paul Hoyer Pavia 2020 the gI’OllIld state |Q>



Determination of the Dirac state (cont.) I

Verification that |n) = / dz T (x)p,(x) Q) is an eigenstate of H:

Hin) = [ do [H.6/(@)] 6u(@) |2 + [ dovl@)on(@)H |0)
H= [ dyd()[ - iV v+ m+edw)] o) and {tolv). o))} =@ - y)
(H, ¢ (z)] :/dy@(y)[—iv-7+m+eA(y)}53(w—y)
Hin) = Bu ) + [ do vl (@)n(@)H |9)

Thus we need [ ]Q> =0

Note that H |0) # 0 since the bid' term in H creates an e*e- pair.
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Determination of the Dirac state (cont.) 12

The eigenstate operators can be expressed in terms of the wi’s in mom. space:

- Z b1.(P) [u(P)bp + v(— )dT—p] = Bypbp + Dypd),

Cn. = Z bT T _|_ d_p’U ( p)] &n(p) = Bnpbp + andp

The Dirac Hamiltonian is diagonalized: [ = Z [EnCLCn + EnELEn}

n

The ground state is 1) = Nyexp [ - b]To (B_l)pm

and satisfies: Cn ‘Q> = Cn, ’Q> = H ’Q> —

Check:  Buyby [2) = =By (B™),, Digdh| 19) = ~Dygd} 9)

pm
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The Dirac states

The case of a linear potential in D=1+1 dimensions
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Example of Dirac states: V(z) = %|z| in D=1+1

The Coulomb potential in D=1+11s V(x) = %eQM . We set e = 1 (scale).

The potential confines electrons, and repels positrons: V(et) =— V(e)
Any e in the state 1s accelerated to large lx|.

To keep T+V = constant, positrons have large momenta at high |x!:
Ipl ~ E, ~ Ix1/2

Since we consider time independent solutions, there will also be
decelerating positrons, moving towards x = 0.

The positron energy spectrum 1s continuous, whereas the electrons
form bound states around x = 0, with discrete energies.

The relative size of the electron and e+e- pair components can be adjusted.

However, pairs are completely absent only in the NR limit, m — .

This explains the observation made already in the 1930°s:

Paul Hoyer Pavia 2020
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AUGUST 1, 1932 PHYSICAL REVIEW VOLUME 41

The Dirac Electron in Simple Fields*

By MILTON S. PLESSET
Sloane Physics Laboratory, Yale University

(Received June 6, 1932)

The relativity wave equations for the Dirac electron are transformed in a
simple manner into a symmetric canonical form. This canonical form makes readily
‘possible the investigation of the characteristics of the solutions of these relativity
equations for simple potential fields. If the potential is a polvnomial of any degree
in x, a continuous energy spectrum characterizes the solutions. If the potential is a
polynomial of any degree in 1/x, the solutions possess a continuous energy spectrum
when the energy is numerically greater than the rest-energy of the electron: values
of the energv numerically less than the rest-energv are barred. When the potential
1s a polynomial of any degree in 7, all values of the energy are allowed. For poten-
tials which are polynomials in 1/7 of degree higher than the first, the energv spec-
trum is again continuous. The quantization arising for the Coulomb potential is an
exceptional case.

E. C. Titchmarsh, Proc. London Math. Soc. (3) 11 (1961) 159 and 169; Quart.

J. Math. Oxford (2), 12 (1961), 227.
Paul Hoyer Pavia 2020
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Example of Dirac states: V(z) = 3|z in D=1+1

The Dirac matrices can be 0 o 01—
represented as 2x2 Pauli matrices 7= o3 T =9
D(x) = [ o () ] —i0zp = (M =V +m)x

x() —i0,x = (M —V —m)yp
We may choose the phases of @(x) and y(x), and their parity n = +1:
o™ (z) = p(z) = np(—z) X" (z) = =x(x) = nx(—z)
Defining

f(z) = [p(2) + x(2)]e’

where oc=(M-V)?
g9(x) = [p(x) = x(7)]e

10
the (arbitrarily normalized) solution is, in terms of the parameter 5 = 5* :

Paul Hoyer Pavia 2020



Example of Dirac states: V(z) = 3|z in D=1+1 17

f(z) = e 1 Fy(— itm?, %, 2i0) + 2ime”"P (M — V) 1 Fi (3 —idm?, 2, 2i0)

glx) =e"" 11 (3 —idm?, 1, 2i0) — 2ime® (M — V) 1 Fy (1 — izm?, 2, 2i0)

For x — o, with § = arg [[(1 —igm?)/T(5 —izm?)] |

(-6
o iz’ /4 ¢! —0)

o) + x(r) = 2 omm

F(l o i%m2>(%x2)im2/263wm2/4

X [\/1 — e~ 2mm? ei(5_25_7r/4)(1 — e_wm2)} {1 + 0O (:U_1> }

p(a) = x(2) = lp(z) + x(@)]"
The wf’s oscillate at with constant norm at large x: ~ exp(Ziz”/4)

There 1s a solution for any M (the spectrum 1s continuous).

Adjusting 3 the oscillations can be made to vanish for x — o,

up to terms of O[ exp(—mwm”)]
Paul Hoyer Pavia 2020



Example of Dirac states: V(z) = 3|z in D=1+1

m = 2.5; generic [ : Dirac @(x) versus the Schrodinger Ai solution Q(x)

/

NR region: b7

wf
1t

| Di
0.75 === Dirac ¢{x)

d (pairs)
| = = Schrodinger p(x)
0.5 /

0.25§-

-0.25} 5

0| m/e = 2.5 \

V=2m
/27T2E/dm P 4 dyv' (p)e'? } [ () ] 1©2)

) = Noexp | — b} (B_l)mequH 0)
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Example of Dirac states: V(z) = 3|z in D=1+1 19

As Ipl — o the x-integrand oscillates rapidly in

/%QE/da: bT H(p)e ™" + dyvt(p)e sz} [ igg ] Q)

The stationary phase approximation shows that only d), contributes:

* dp . im?
(M > 0) )5 o0 = (C +nC )/ NeT exp(ip?)(2p%)™ /2 d, |Q)

where

1. 2
O — €¢(5—5—w/4)r(1; g Um )637Tm2/4|:\/1 ~e—2mm? 67;(6—2B—7r/4)(1 B e—ﬁmQ)}
wm

E.g. . form=2wehave exp(—mm?)~3.49-107°

The term in [ ] is minimized for 8 = 0.8170. The ratio of the wave function
at x = 0 to the amplitude of the oscillations depends sensitively on f3 :

Paul Hoyer Pavia 2020



Example of Dirac states: V(z) = 3|z in D=1+1 20

o le(z=0)
osc 1
Mg o0 [0(2) + Xx(2)]
Minimal pair contributions:
6 [ . .
11071 <«—— Schwinger rate of pair
5 x 105 | production in constant field
m=72
1x10° |
5x 10%
1x10* F
5000
1 1 | 1 1 1 | 1 1 1 | 1 1 1 | 1 1 1 | 1 1
0.8166 0.8168 0.8170 0.8172 08174 f3
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Hadron spectrum: No gluon nor sea quark dof's

n2stly,  gPC | =1 | = % | =0 =0 Oquad Olin

ud, ud, - (dd — va) us, ds; ds, —us I f [°] [°]
V2

118, 0~ ™ K n 7’ (958) —11.3 —245

135, 1=~ p(770) K*(892) ¢(1020) w(782) 39.2 36.5

11p 1t- b1(1235) Kip' h1(1380) h1(1170)

13P (U ap(1450) K}(1430) fo(1710) fo(1370)

13P; 1t a1(1260) K4t f1(1420) f1(1285)

13Py 2+ + a2(1320) K3(1430) 15(1525) f2(1270) 29.6 28.0

11Dy 2+ 72(1670) Ko (1770)f 12(1870) 12(1645)

13D, 1= p(1700) K*(1680) w(1650)

13Dy 27~ K2(1820)

13D3 37~ p3(1690) K3(1780) $3(1850) w3(1670) 31.8 30.8

13F, 4+ a4(2040) K (2045) F4(2050)

13G5 5~ p5(2350) K*(2380)

13Hg 6+t a6(2450) f6(2510)

218, 0—+ w(1300) K (1460) 1(1475) 1(1295)

238, 1=~ p(1450) K*(1410) »(1680) w(1420)

318y 0~ (1800) n(1760)

M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018)
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Quarkonia are like atoms with confinement

Binding energy Positronium
[meV]
A L
3 P lonization energy _
3'S, 3°S, 3D, 3Dz
-1000f~ o a 8D
2's 2%, \’L* % 302
5p,~] ~ 600 meV
-3000f- 104 eV
-5000f~
1s 1S, ¥y
0 — 8:104eV
-7000}- t
& 01'nm G

Mass [i\/IeV]

4100

3900

3700

3500

3300

3100

2900
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Charmonium
B @’ * (4040)
3P (~ 3940)
— (~ 3880) D, (~3800)
T o P (~3800) 'D 5
=TT =9 ‘B636). . T T T T AR - L
e DD Threshold
74(35%0) ¥+(3556)

h.(3525) T G510)

B Yo(3415)
B w3097 K ¥
n(2980) 117 MeV G m’
v
4 o
V(r)=V'r — §—S (1980)
T

E. Eichten, S. Godfrey, H. Mahlke and J. L. Rosner,
Rev. Mod. Phys. 80 (2008) 1161

“The J/y 1s the Hydrogen atom of QCD”
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The OZI Rule

Connected diagrams: Unsuppressed, string breaking from confining potential

— = % AE Br
s/ '

S

$(1020) - KK ¢ 26 MeV  83.1 %

o~

Disconnected, perturbative diagrams are suppressed

JU 610 MeV 153 %

This suggests that perturbative corrections are small even in the soft regime.

Paul Hoyer Subatech 2015



Lattice QCD agrees with the Cornell potential

3 F | | | | |
o L
1+
O
2 of
>
=l
=,
4 o
2 Cornell: V(r) = ViPp— -2 7
3T
3 L The quenched Wilson action SU(3) potential. _
Gunnar S. Bali, Phys.Rept. 343 (2001) 1
-4 I I | | |

0.5 1 1.5 2 2.5 3

Paul Hoyer Pavia 2020



25

The Positronium atom

Parapositronium (S = 0) L=0 Orthopositronium (S = 1)

Schrodinger eq.: [— V—2 + V(w)} ¢(x) = Ep ®(x) V(z) =

m

)
|

(I)pos (33) = N GXP(—Oé m \213!/2) Has all powers of o, is gauge dependent

Fy = — ioﬂm E» can be expanded in powers of a, 1s measurable
Ey(ortho) — Ey(para) = 5 a*m + O (a°)

Hyperfine structure gives the 21 cm line observed in H I regions in interstellar medium

Paul Hoyer Pavia 2020



26

QED atoms (are not) in QF T textbooks

Bound states are not discussed in today’s textbooks. The last exception:

C. Itzykson and J.-B. Zuber: Quantum Field Theory (1980)

10-3 HYPERFINE SPLITTING IN POSITRONIUM

It should not be concluded that relativistic weak binding corrections cannot be
obtained for two-body systems that agree with experiment. On the contrary, the
positronium states give an example of a successful agreement. This will serve to

illustrate the theory.|To be completely fair, we should admit that accurate pre-

dictions require some artistic gifts from the practitioner.|As yet no systematic
method has been devised to obtain the corrections in a completely satisfactory

way.

I & 7 do not derive the Schrodinger equation from the QED action.

The situation has not improved qualitatively.

Paul Hoyer Pavia 2020
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The art of atoms

Review paper: Rev. Mod. Phys. 57 (1985) 723
Recoil effects in the hyperfine structure of QED bound states

G. T. Bodwin

High Energy Physics Division, Argonne National Laboratory, Argonne, Illinois 60439

D. R. Yennie

Laboratory of Nuclear Studies, Cornell University, Ithaca, New York 14853

M. A. Gregorio

Instituto de Fisica, Universidade Federal de Rio de Janeiro, Rio de Janeiro, Brazil

“In spite of the statement in the preceding paragraph that bound-
state theory is nonperturbative, it is possible to make use of small
parameters such as o and me/ma (where mais the mass of the
nucleus) to develop expressions in increasing orders of smallness.
However, the nonperturbative nature of the expansion shows up in
non-analytic dependence on these parameters (such as logarithms).
As indicated in the preceding paragraph, there is an art in developing
a theoretical expression in this manner.”



28

The NRQED expansion inp/m=v = a

Non-Relativistic QED has turned out to be the most efficient way of
calculating higher order QED corrections to atoms. The Lagrangian is
expanded in powers of p/m.. Loops contract to effective vertices.

The NRQED effective Lagrangian is found to be:
Cxnromp =  —1 J4(FP)? + W{i&; —¢Ag +D? /2m + D* /3m?
+c1 e/2mo -B+ coe /8m*V - E
+c3ie/8m*o- (D xE—-E x D)+ }¢

+dy Jm? (T)? + dy fm? (T oy)? + ..

+ positron and positron-electron terms.

The coeftficients c1, di... are determined by matching with the exact theory.

T. Kinoshita and G. P. Lepage,
in Quantum Electrodynamics (1990)

Paul Hoyer Pavia 2020
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Corrections via e*e- — e*e” scattering at threshold

e R R 0(0(4) e
0-Ps, — 0-Ps
e+ > > e+
O(o)
(a) (b) (c)
crossed crossed
% % + photons + photons

A. Czarnecki, hep-ph/9911455
Paul Hoyer Pavia 2020



State of the art: Hyperfine splitting in Positronium *

Atomic calculations choose to perturb around the Schrodinger atom at rest,

with its O(0) wave function U(x) ~ exp(—amr/2)

Example: Hyperfine splitting in Positronium G.S. Adkins,
Hyperfine Interact. 233 (2015) 59
7 a8 In2
A = meatd = - = (24 ==
YQED mo‘{m 77(9+2)
o’ S o 1367 5197 221 1 53
— | -—7?1 S T [ S 2 - =2¢(3
2 [ 24" T i T 3ame” T (1447T +2) n2 = a5l )]
3 3 1 21
et C e (Yme - 2 10 (0?) | = 203.30160(41) CH:
8 T 3 90

AVExp =203.394+ .002 GHz

Paul Hoyer Pavia 2020



QED vs Data: Hyperfine splitting in Positronium ’
Avorp = 203.39169(41) GHz

Previous experimental  o(,3ne ') QED
average

2
4

\

(RS

Old method

1984 b
2013

This measurement

Fan\
N4

—

] | ] ] ] ] | ] ] ] ] ] | ] ] ] |
203.386 203.388 203.39 203.392 203.394 203.396
Ayes (GHZ)

Avexp = 203.38865(67) GHz (1984) M. W. Ritter et al, Phys. Rev. A30 (1984) 1331

Avexp =203.3941+ .003 GHz (2013)  A. Ishida et al, PLB 734 (2014) 338 [1310.6923]
Paul Hoyer Subatech 2015



Present understanding of hadrons in QCD

32

Established and successful at large Q:

Factorize the short distance, perturbative
part of hard scattering from the universal
parton distributions

At low O:
hadronic scales

Paul Hoyer Pavia 2020

http://fisica.unipv.it/ricerca/LineeRic/ENG/EN_FisTeo_StrutAdrQCD .htm

In principle, the structure of the nucleon should be
computed starting from the theory of Quantum
Chromodynamics (QCD). In practice, the confinement of
quarks and gluons within nucleons i1s a nonperturbative
phenomenon, and QCD is extremely hard to solve in
nonperturbative regimes. For this reason, despite the
enormous progress of the last decades, we still have a
limited knowledge of the internal structure of nucleons,
which constitute more than 99% of ordinary matter.
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Minority view of a perturbative approach to hadrons

Yu. Dokshitzer: Perturbative QCD Theory (Includes our knowledge of as)
Plenary talk at ICHEP 98, Vancouver. hep-ph/9812252

“To embark on such a quest one should believe in
legitimacy of using the language of quarks and gluons
down to small momentum scales, which implies
understanding and describing the physics of
confinement in terms of the standard QFT machinery,
that is, essentially, perturbatively.”

Ml o . 4 o o o ey . . 5 2 . Saaainna

A ARt i |

i QQCD practitioners prepare themselves - slowly but steadily - to
| start using, in earnest, the language of quarks and gluons down

QCD s about to undergo a faith transition i

Paul Hoyer Pavia 2020 Yu. Dokshitzer, Colloguium (2011)

into the region of small characteristic momenta - “large distances” {
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—> %

Gribov

crit
S

The running of Ois

78 2
(QCD) = cn (1 — \/;) ~0.43  (1997)

0(Q) |

03+

01!

Sept. 2013
v T decays (N3LO)
Lattice QCD (NNLO)
a DIS jets (NLO)

0 Heavy Quarkonia (NLO)
o e'¢ jets & shapes (res. NNLO)

® 7/ pole fit (N3LO)
v PP —> jets (NLO)

127
(33 — 2ny) log(Q?/A?)

O‘S(QQ) =

QCD 0,x(M,) = 0.1185 % 0.0006

Paul Hoyer Pavia 2020
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Values of os in the infrared 3

Pinch Technique Lattice QCD: SU(2) in Landau gauge
0’7 T LERELRRRLY | LERLELLARLY | LELELLARLL | LELELLARLL | LELELLARLL | rrrTT 12
0,6 ?;EE{;?%ZESE?;{:EZ\\; ] 1of— as(p) Pel'turbathe
05 —-—Z(:2)=0:13andi=22 GeV _ 8:_
0.4 Gf_
0,3 4 4f_
0,2 1 ( 2) 2f_
0,1_'OLPTq . . e R
0’0 T LERELRRRLY | LERLELLARLY | LELELLARLL | LELELLARLL | LELELLARLL | T 0.1 1 p [GeV] 10
1E4  1E-3 001 0.1 1 10 100 1000

q’[GeV]

J. M. Cornwall;
A. C. Aguilar, D. Binosi, J. Papavassiliou,
J. Rodriguez-Quintero, PRD 80 (2009) 085018

A. Maas, PRD 91 (2015) 034502
[arXiv:1402.5050v2]

M1 5 Yu.L. Dokshitzer, G. Marchesini,
Event shapes: -~ | dQaefi(Q°) = ao(e1) G.P. Salam, EPJdirect C3 (1999) 1
o2 GeV) = 0.5132 £ 0.0115(exp) &= 0.0381(th) T. Gehrmgnn, M. Jaquier,
G. Luisoni,

Eur. Phys. J. C 67 (2010) 57
Paul Hoyer Pavia 2020
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s in the infrared from event shapes

1 129 )
— dQuesr(Q7) = ao(par)
U1 Jo
0.7 L e
o ! Yu.L. Dokshitzer, G. Marchesini,
0 ' G.P. Salam, EPJdirect C3 (1999) 1
0.6 ‘ \\ —
\\\MH
BTk\\\
05 TS~ |
- Ca~. ~~ T -
NN \:\
\\\\\ \\\\\) C
\ \\\\3
0.4 \\ N BT 7
N N\
N \\
N o BW
03 L L L L 1 A A A A 1 A A A A 1 A A 1 A A A A
0.08 0.09 0.1 0.11 0.12 0.13

as(Mz) =0.1153 2 0.0017(exp) £ 0.0023(th)  T. Gehrmann, M. Jaquier, G. Luisoni,

ap = 0.5132 £0.0115(exp) £ 0.0381(th) Eur. Phys. J. C 67 (2010) 57
Paul Hoyer Subatech 2015 U1 = 2 GeV




s freezes in the infrared
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Theory & Phenomenology +* Popular view of confinement
LR o rrn ALY | LA | ! ".""'I vorrrrrn 10 il T T L "'I
067 QCD effective charge '(xs ] perturbative QCD strong QCD
| 0.8
o "
« ®

- 2
014 Ol (Q°)  Pinch Technique

1 0.4+

1E-3 0,01 0,1 1 10 100
q’[GeV?]

D. Binosi and, J. Papavassiliou,
Phys. Rept. 479 (2009) 1

Paul Hoyer Pavia 2020
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J. Messchendorp, 1306.6611

may enable perturbative
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QED bound state calculations use Feynman diagrams

The Feynman diagram expansion of scattering amplitudes i — f 1s defined by

S5 = owlil{ e [—i [ avino] b,

oo
— OO

where the in and out states are free, O(00) asymptotic states at 1 = + o,

The free electrons/photons get “dressed” by the H; interactions.
The expression is formally exact provided the in and out states
have a non-vanishing overlap with the physical i and f states.

Free states have infinite size and thus zero overlap with bound states (atoms).

The technical difficulties of atomic perturbation theory originate
(in part) from the inappropriate boundary conditions.

We cannot expect to describe confinement in QCD using Feynman diagrams:

The in and out states exclude confinement.
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e*e- — e*e”: Positronium from Feynman diagrams

pi p1 pr__pik  ps pi Pl—k 9
3 ‘ Pete-|
pO + k k + — = +
_> q - . e o o
. ! 0 — E+ie
D2 p; D2 p;i-k D3 p2 p3—k

Rest frame: I = 2m, — imecf + O (a4)

LHS: Z Cra' Bound state poles can arise only
n=2 ., through a divergence of the

RHS: Not polynomial in o perturbative series (n — )

Why does the QED perturbative series diverge for atoms (at any o.)?

Which diagrams cause the divergence?

Paul Hoyer Pavia 2020
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Ladder diagrams (rest frame)

The Bohr momentum scale is |pl ~ am , kinetic energy Ipl2/2m ~ a2m ~ Ep

With momenta x a, the propagators bring inverse powers of o :

pI pi
—
e 62 o 1 0 2
g e Note: ¢° ~ a” < |g| ~ «
_ q q o
e >
D2 p3
pi pljk P4
A 2
e Q 1
k k=g ™~ /dko d°k ~a®a? T
2)2 (AE,)? (@?)? (a?)? «

All “ladder diagrams™ are of order 1/00 => Sum can diverge at bound states

Divergence is due to expanding around free states, no V(r) = — a/r potential
Paul Hoyer Pavia 2020



Non-ladders are suppressed by a

k =
! These diagrams have the same number of
‘ propagators and vertices as the 2-photon ladder.
Pz psk  P3 A similar counting would again give ~ 1/a. .
)
oS pa However, the O(1/a) term vanishes:
9 / dk? 1
X : — =0
2w (kY —a + 1) (kY — b + ie)
>
p2 D3
In the straight ladders 10 1
. . 0
Fhe .mtegratlon contour X / om (KO —a+ie) (kO — b — ie) #
is pinched:

— Only straight ladders are of the leading order, 1/a .
Paul Hoyer Pavia 2020
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Summing ladder diagrams 2

O I A

G=LL1+GSLi|\=Li1i+LLSLi+GSLiSLi=...

;
At a bound state pole: G(p”) ~ p(\)Ij_\IJE = U =vS5[,
q k q
p — d4k' ——  —————— —
- - / (¥ (b () %L«k—q)
(27)
—— —,——_——

This 1s the Bethe-Salpeter equation for a single photon kernel L; .

It 1s valid 1n any frame (since Feynman diagrams are Lorentz covariant).
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The Bethe-Salpeter equation  (1951) “

Dressing the e~ and et propagators and adding all corrections to the single
photon exchange (kernel) gives the formally exact B-S equation:

q k q

— dk —~ ——

F(g) = / I (k) S(k) IK(k—q)
(27)

—— —— —@—

Expanding the propagators and kernel in a defines a perturbative expansion.

Explicit Lorentz covariance: Feynman propagators and vertices.

The B-S wave function: (2| T {¥s(z2)1ba(x1)} |P) = e 0w 2 QP (1) — 2,)
' =Ar: UP (2] —al) = SNV (21 — 22)S 1 (A)
Note: Equal time is not preserved in boosts: ;1 =t = 1 #1t>

Not a Hamiltonian formalism!
Paul Hoyer Pavia 2020



Dyson-Schwinger equations

There are 1identities between Green functions, valid to all orders in «.

E.g., the Dyson-Schwinger equation for the quark propagator:

. ) S(p) = i/(p—m —%)
9‘@* = The circles contain quark and
Y ‘S 0 gluon loops to all orders.

There are analogous identities for the gluon propagator and the vertices.
The D-S equations do not close. Truncations and assumptions are needed.

D-S equations are used to model hadron dynamics. C.D. Roberts, arXiv 1203.5341

Paul Hoyer Pavia 2020
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Bound state constituents propagate in a field

For QED lamb shift, need to calculate
e~ propagator in the field of e+

In an NR approximation, this can be
described by a fixed —a/r potential.

-

" $33

Lamb shift: M(2S12)-M(2P1,2)

In QCD, colored gluons interact
with relativistic quarks

45

QED

Gluon and quark propagators depend
on the state in which they propagate.

q

q

Bl

Cannot build bound states with constituents
that have predetermined propagators.
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Three developments in the theory of atoms

S
1T 1T
---- = ---- K
e 1951: Salpeter & Bethe
1S

Expand propagators S and kernel K in powers of o
Explicit Lorentz covariance (frame dependent time separations)
No analytic solution even at lowest order in S and K

e 1975: Caswell & Lepage: BS 1s not unique: o # of equivalent equations, § <> K

We may choose to expand around Schrodinger atoms
Give up explicit boost invariance

e 1986: Caswell & Lepage NRQED: Effective NR field theory

Expand QED action in powers of V/m,
Choose to start from Schrodinger atoms (at rest)

—>  Need a physical principle for the choice of initial wave function.
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Equal time bound state condition ¥

The S—I.natrn.( is suitable for scattering: P {Texp [_ Z. / dt Hy t)} } i),
Start with widely separated, free states —0

Bound states are eigenstates of the
Hamiltonian at an instant of time

Horp(t)|Pos, P,t) = Ep |Pos, P, 1)

There 1s no need to consider the propagation of bound state constituents in time.

The time dependence of the
bound state 1s by definition:

|Pos, P,t) = e "7t | Pos, P,t = 0)

Bound state calculations can be done at 7 = 0, at
any order and for any bound state momentum P.




Method for Positronium perturbation theory 48

https://www.mv.helsinki.fi/home/hoyer/Pavia/200120_Hoyer_Pavia-figs.pdf

e Expansion in o around “lowest order” bound state.

— Not unique, since wave function is already O(a®).

Use Fock state expansion at an instant of time 7.
—  |Pos) = e |e e_> + Peery ‘€+6_’Y> + O~y |Y) + Pae ’e+e_ e e_> + ...

Define “lowest order” to be the valence Fock state: Dee |€ €_>

Higher Fock states are given by the Hamiltonian:  (H;pn:)" |e+e_>
— This 1s a perturbative expansion, since H, « e .

— Determine the ¢, through H |Pos) = E |Pos), with E of O(a")
— JPC and other quantum numbers of lete-) are conserved by Hiy .

Include instantaneous gauge field in each Fock state.
— E.g., gives V =— a/r for lete)

Is applicable for Positronium in motion.
— Instantaneous field is determined by instantaneous positions only.



Canonical quantization #

SL(t)
0[Oron(t, )]

Conjugate fields: 7, (f, ) =

satisfy equal * commutation: [@m (ta w)a Tn (ta y)]¢ — idmn5(w — y)

QED Lagrangian: LQED (t,z) = @Z(Z@ —m — €A)¢ — iFWFW
FrY =0rAY — 0" A¥

0 [dyL
5[at¢04 (tv :U)]

— W:& (ta w)

Conjugate to electron field:

Anticommutation relation: {¢a (t, 33), @D; (t, y) } = 5@55(33 — y)

0 [dyL
5[875140(757 .’13)]

No conjugate to A% photon field: =0 What to do?
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Temporal gauge: A9 =0 50

e Avoids problem with missing conjugate to A9 .

e Maintains spatial symmetries. J. D. Bjorken, SLAC Summer Institute (1979)
—t is anyway Special in canon. quant. G. Leibbrandt, Rev. Mod. Phys. 59, 1067 (1987)

* No ghosts, no operator constraints

The standard gauge for bound states 1s Coulomb gauge, V-A =0
— Perhaps because of the form of the photon propagator;: D"’ = —i/ k*
— Has ghosts and operator constraints N. H. Christ and T. D. Lee, PRD 22 (1980) 939

Temporal gauge:

SL(t)

T8, A (1,2 O E'(t,z), A(t,y)] =iV 6(x — y)

The Hamiltonian in temporal gauge:
HQeD = /dfb {W(—ia -V 4+my —ea- A+ LE? + iF@'jFij}

Paul Hoyer Pavia 2020



Time independent gauge transformations d

Preserve A0 = ()

Generated by Gauss’ G(x) 05 — &L-Ez (x) — €¢T¢($)

operator: ) AO (x)

Unitary operator U(¢) with 14 A
infinitesimal parameter A(y) Ut) T / dy Gt y)A(Y)
Transforms the photon U)AI (t, ) U (t) — A (t,z) = O;A(x)

and electron fields as:

ULYY(t, U (L) — (L, ) = ie A(z)Y(t, z)

Physical states are constrained to satisfy:  G/(¢, @) |phys) = 0

and are thus invariant under U(?). J.F. Willemsen, PRD 17 (1978) 574

The 1nstantaneous electric field acts on physical states as:

E(t,z) |phys) = =V, / dy o WIp(t, y) phys)

Paul Hoyer Pavia 2020
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The potential energy 52

The instantaneous E-field: FE(t,x)|phys) = =V, / dy M\g}e_ " YTY(t, y) [phys)
Contributes to the Hamiltonian: Hy = % / dx E7

€ €

Hy phys) = § [ dedydzo; wtoty)] [or o(2)] Iphys)

"Ar|x — y "Ar|x — z|

B %/dmdy Zm;_ . Wip(x)] [vTy(y)] [phys)

Hy acts as a constraint on Iphys) (not as an operator), so it annihilates | 0 ) .
Equivalently: E.10)=0 .

The potential energy of a state with an e at x1 and an e* at x; 1s then,

Hy Da(@1)s(x2) |0) = L (@) (as) [0)

T — T2

The result of Hy acting on any other Fock state 1s similarly determined.

Paul Hoyer Pavia 2020
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Fock state expansion for Positronium in A%=0 gauge

eTe”)
The le+e-) Fock state, bound by the : : — e
classical field of its constituents, 1s EL : | s
taken to be of * lowest order” in o : : : €
. . ‘ e+ e fy>
Spin dependence arises from states
with a transverse photon, le+e-y). ! : e
AT
. . . [ |
Ar vertices give suppression by o. | l I et

The Lamb shift also arises from le+e-y). M
o-

Each Fock component of a bound state
includes the instantaneous E, field. ‘ ete )
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Schrdodinger equation for Positronium

Express the valence Fock state le+e-) at r = 0 in terms of a 4x4 wf. @,

Pos) = [ derdws dalen)e @200 (@) - wa)ia(an) [0

o) = [ Gatag, 3 (10N om0 )

e For Positronium at rest we set P = 0.

* For weak binding (QED) there are no Z-contributions:
Only bf in 1 and df in 1 contribute.

* For strong binding (QCD) also the b, d operators contribute (cf. Dirac)

Determine @ from the bound state condition Hogrp |Pos) = (2m + Ey) |Pos)

For Positronium at rest we may neglect le+e-y) Fock state, i.e., transverse y

HQEeD = /dfv W(—ia -V +my)y + %E%} = Ho + Hy
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Schrodinger equation for Positronium (cont.)

Recalling that u(p, \)(p - v +m)y° = u(p, \)E, , and only bt in ¢ contributes:

— <—2

[Ho, d(@1)] = D@1)(—ia -V, +mr°) = wm)\/ V3 m? = () (m — O j2m)

and similarly [Ho, ¥ (x2)] ~ (m —V./ Qm)w(wg) . After partial integrations,

(87

Hopp |Pos) = /dmldaxg B(ar) [m =V /2m — [®(a1 — 2) [m — V7 /2m] () [0)

[T — 22

= (2m + Ep) | Pos)

The condition on the wave function ®(x; — x2) is the Schrodinger equation,

- V(@) o) = B 0() V(@) =

m

84

x|

All 4x4 components of ® satisfy the same equation, but only 2x2 are leading.
The structure of the 2x2 leading components depend on the JPC of the state.
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Wave functions of NR e*e- states

(e +1)

r2

Standard radial equation: F"'(r) + gF’ (r) + [m( E,—V)—
T

}F(T) =0

In terms of the sph. harm. Y and the orbital angular momentum L = x x (—iV)

s=0,L=j,7=h  ®(x) = (1+7")y F(r)Y;\(Q)
s=1,0=j,7=h  ®(x)=(1+1")a  LF(r)Y(Q)

s=1,0=jxl, =\

() = %(1 0t @[ £ (25 + 1) +1] +ia-z x LYF(r)Y;a(Q)

The factor 1+Y0 projects on positive energy components bt of \(x1), and
negative energy components di of P(x2).
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Hyperfine splitting of Positronium
In the rest frame | Pos, S) = ¢! |€ e”) + $L2) |€+€_7> T Qi(ys) )

eery

suffices for O(a#) in Ep. The spin $=0 for Para- and S=1 for orthopositronium.
The ¢eey and ¢, wave functions are determined by ¢e. and Hinlete-),

together with the stationarity requirement 7 |Pos,S) = (2m + Ey) |Pos, S)

This corresponds to the standard evaluation in terms of Feynman diagrams:

e e
0-Ps, - % 0-Ps
E > ¥
e e

and gives the same result at O(04) in Ejp.

Also the O(a®) contribution to Ep should be checked.
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Positronium with P 2z O

AtO(o?) inEpneed  |[Pos, P) = UE) |ete™) + WD) efe )

where U'P)(x1. xo) = exp[iP - (1 + x2) /2]F) (21 — x2)

The transverse photon contributes even at lowest order for P # 0.
The eey vertex x p., where p, o« am in the rest frame, but now p, o« P.

Intuitively: For P = (0,0,P) the boost turns A% into cosh& A0 + sinh& A3

Does ®P)(x1—x2) Lorentz contract? Note that

62

Hy Iphys) = 1 / dawdy ()] [0 (w)] [phys)

Ar|x — y|

The 1nstantaneous potential depends only on Ix;—x2l, not on P.

Detailed derivation in Appendix A of the lecture notes
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The relativistic invariance of equal-time states is not trivial

PHYSICAL REVIEW D VOLUME 29, NUMBER 6 15 MARCH 1984

Quantum noncovariance of the linear potential in 1 +1 dimensions

Xavier Artru
Laboratoire de Physique Theorique et Hautes Energies,*
Université Paris-Sud, Batiment 211, 91405 Orsay, France
(Received 19 July 1983)

The two-body bound states governed by the Hamiltonian (p,%+ m,?) Y2+ (py2+mpy?) 2+ k|x, — x| in
1+1 dimensions do not have Lorentz-invariant masses (E,,Ju?'——Pz)l/2 even to first order in P2, if one
used the standard commutation relations [x;,p;]1 = i#. This is shown explicitly for m, = m, =0 and general-
ized by continuity to m, + my % 0. The same is true for any other potential ¥ ({x, —x,1).

The eigenvalues E(P) have
H=/p2+m2+ \/p% + m3 + K|z, — x| the wrong dependence on
the CM momentum P.

Lorentz covariance 1s guaranteed in QED and QCD, if the QFT rules are obeyed.

Bound states in relative motion are needed in form factors, scattering, decays...
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Positronium with P 2 O (cont.)

The energy eigenvalue must be Ep = \/ P? 1+ 4m?2
2
E:\/P2+(2m+Eb)2:Ep+—mEb _ Ep _ P
Ep Y= 5 5 T
2m Ep

The le+e-) Fock state contributes (see Appendix A of notes)

1 1 o
(Ho + Hy) [0 = ' Bp— (V34 V) W}Q<P>>

The kinetic terms scale with y as expected for contraction: X|| — Y X||
The potential energy 1s, however, independent of .

- Q d e’ .
Instantaneous potentlalz — = — / q3 5€ 1q-x
| (2m)° q

dqg €232 2]q]qi —iqa
)*2la| ¢* g% +qj/7?

Transverse photon g exchange: / (27

Paul Hoyer Pavia 2020
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6l

Positronium with P 2 O (cont.)

The instantaneous and transverse photon exchanges sum to the desired result:

2 .2 2 2
_ezf(dq 1{1 8¢ q /v }e_z-q.w__ o

2m)3 @* L @t +4f/7*  a +ai/y? 71y

where Y, = T Y = ey

1 Q
The bound state condition: [ — — Vi R —

L9 o s

is satisfied by the Lorentz contracted wave fn: P (F) (:B) = ¢ (0) (y )

This works only with the correct QED potential and transverse photon couplings.
Works differently in QCD (with confinement)
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Applying the QED method to QCD

Our perturbative approach to bound states was guided by hadron features:

e o, freezes: No loop contributions at lowest (“Born”) order

e Hadrons have valence quantum numbers (lowest Fock state = valence)
e Transverse gluons are perturbative, O(a) corrections to lowest order

e Sea quarks arise from Z-diagrams (Bogoliubov transformed by field)

e The E; field i1s instantaneous even for relativistic constituents

How can color confinement arise?

* Quarkonia suggest that the confining potential is classical

e Gauss’ law has no Aqcp scale

— The scale must arise from a boundary condition on Gauss’ law

Paul Hoyer Pavia 2020
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Temporal gauge in QCD: AL = 0 .
0S

_ . 8 nt A Tra
5148(33) a’bEa(x) +gfabcAbEc 9¢ T w(ﬂf)

Gauss’ operator G ()
generates time-independent gauge transformations, which keep Ag =0

Physical states satisfy the constraint G (x) |[phys) = 0
= 0;E} () [phys) = g| — fave ALEL + ¢ T(x)] Iphys)  (QCD)

In QED we solved for E; with a boundary condition: E;(x) — O for lx| — o

€

T
o y‘w Y(t,y) lphys)  (QED)

E;(t,x) |phys) = —V d
L(t,x) [phys) " / Y
This was required to avoid long range interactions.

Is it any different in QCD?
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There is a difference between QED and QCD

Global gauge invariance allows a classical gauge field for neutral atoms,
but not a color octet gluon field for color singlet hadrons.

X1 X2
Positronium (QED) Q Proton (QCD) ®@®
1 e

X3
€ 1 1
E :——vx( _ ) “(p) =0 forall
L(w) A ’.’13—2131‘ \w—wg\ EL(J;) O O X
However:
The classical ¢l field 1 - 1shi
e classical gluon field 1s non-vanishing ECLL (x’ C) # 0

for each color component C of the state

The blue quark feels the color field generated by the red and green quarks.

An external observer sees no field:
The gluon field generated by a color Z Ef(x,C)=0
singlet state vanishes. C
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Including a homogeneous solution for Ej ,

Bra(@)lphys) = <07 [ dy[wa -y + 2] .(v) Iohys)

where  €,(y) = —farc AL EL(Y) + YT T P(y)
k # Kk(x,y) ensures O;E'(x) =0 (ahomogeneous solution of Gauss’ law)

The linear dependence on x makes E; independent of x, as required by
translation invariance: The field energy density is spatially constant.

The field energy o volume of space is f ey
irrelevant only if it is universal. \ ‘ /
This relates the normalisation % of all <—
Fock components, leaving an

overall scale A as the single parameter. \J /

“empty vacuum QCD vacuum

“Bag model without a bag”
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The potential energy #y = / deEa E4

Hy = %/dw{@f/dy{mw-yqt 47r|a:g— ydé’a(y)}{@f/dz[mw-er 47r|wg—z|}ga(z)}

Partial integration in x, except for the ®2 term:

Hy, —/dydz{y- { /dm—kgli} + 12 }5 (y)E€a(2)

>y — 2|

Recall: £,(y) = — farc AL EL(y) + V1T (y)

For the state |g(x1)q Zw x1) )3 (x) |0) we get:

/ dydz - 2 Ea(w)En(®) la(z1)a(@2)
= (] + x5 — 221 - T2)Va(x1) TS 5T (x2) |0)

— Op (331 B C132)2 ‘q($1)q_($2)> Energy density is %#2/2 times this
Hence » o« 1/lx1—x2l



The qq potential ¥
A? 1

Define the universal scale A: Kqgg =
gCr \wl — 332\

q

The gn term in Hy gives: gﬁ;ng’F(wl — $2)2 — A2‘:131 — I9

Together with the O(ais) term the potential agrees with the Cornell one:

«
qu(wl,ibg) :A2|Zl31 —$2| —CF i

T — T2

The parameter A is of O(a%). Only confinement contributes at O(a.0).

Transverse gluons are calculable at O(os) (and dominate in hard processes)

The linear term was mandated by translation and rotation symmetry.

As we shall see, 1t also ensures boost covariance (without transverse y’s).
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The qqq potential

Baryon component: |¢(x1)q(x2)q(xs3)) = Z 6ABC¢L(CB1)¢TB($2)¢TC(CU3)\O>
A.B,C

Action of Hy: / dydz y - 2 £ (y)Ea(2) (1) q(22)a(s))

Ea(Y) = — farc AL EL(y) + TT Y(y)

4
T eapcti (1) Vb (m2) Yl (23) |0) TG0 4 TG 4 = 3 19qq)
i i i ¢ ra 4
Ly I . 26ABC¢A/(5’31) ¢B/(CB2) ¢c(w3) ‘0> TA’ATB’B — —g ‘QQQ>

Sum: Hy |qqq) = |26 [dx + gr| 5 [dgqq(1, T2, mgﬂ2 lqqq) + O (as)

1
dgqq(Z1, T2, %3) = \ﬁ\/(ml —T2)% + (22 — x3)% + (T3 — 21)?

The normalization ® should give the same energy density as for qq .
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The qqq potential (cont.)
A? 1

gCF dqqq(wla L2, 333)

Universality of the energy density: Kgqq =

fixes the qqq potential to be

2 1 ! :
Viga(T1, 2, 3) = AN dygq(T1, T2, T3) — 3 &S(\:m — x| ’ T2 — 3| i 3 — ml‘)

1
dqqq(wla L2, 333) = —\/(wl — $2)2 + (w2 — $3)2 + (wB — wl)Q

V2

The baryon potential is completely determined, given the universal scale A.

When two quarks are at the same x, V4, reduces to Vi :

VQQQ(mla L2, L3 — CL'Q) — VQQ(mla 5132) for N=3
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The qqq potential

] LA |
A qq state, after the emission of a transverse gluon: % i
|

g(x1)g(2g)q(22)) Z ha(z) wg)TAng(@) 0)

A2
Vq(gg(an,a:g,a:g) — —\/@ dggql

1, Ty, T2) (universal A)

dygq(@1, T g, T2) = \/i(N —2/N)(x1 —x2)? + N(xy — %:Bl — %:@)2

1 1 1 1
ez = o[y g o )
ngq(iﬁhwg,wZ) 5 s N ‘5131 — 5132\ ‘331 — wg’ + \:132 — wg’
When ¢ and g coincide: Vq(gog( =T, xa) = A2|331 — | = Vq(g)

(1) _ _ 1)
ngq( =Xy, T2) = Vyq
Paul Hoyer Pavia 2020
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The gg potential

A “glueball” component: ’9(331)9(332» - Z AZ(%) Ai(wz) |O>

N
has the potential Vg = o A?|zy — 9| — N
I

g

|2131 — 9

This agrees with the qgq potential where the quarks coincide:
Vog(@, 2g) = Vygg(x, 24, )

It 1s straightforward to work out the instantaneous potential for any Fock state.

Paul Hoyer Pavia 2020



72

Quarkonium in motion

A valence, (globally) color singlet quarkonium state with momentum P = (0,0,P):

1 _ .
|qq_7 P> — \/Ni Z/d$1d€£2 wA(ml)ezP-(ercz)/QéABq)(P)(xl o CUQ)ZﬂB(CEQ) |O>
¢ AB

Recall that for Positronium a contribution from transverse photons was required:

M #B(P) = (Bp+ 153) 9

(7—[0+7-lv)\\11>—“Ep—?7;(V + VH) ‘z’

For a linear potential the [ 1 V / } (P) (P)
— — —|— V + Vx| | () = Ep @7 (x
bound state condition: m ( ”) Wi () : ()
agrees with the Lorentz contracted rest frame wf. forx; =0: 7z — vz,

There 1s no transverse photon contribution at O(o).

Since V_ V(x, =0, z) =0 also VPP (x, =0, z) Lorentz contracts. This defines
a boundary condition for the PDE, allowing its (numerical) solution for all x

Standard Lorentz contraction only at x;, = 0: y‘w‘ — \/(’yajj_)2 4+ (’yz)z
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A perturbative approach to soft QCD?!

e The instantaneous () (042) field binds the valence Fock states
* The higher Fock states generated by the Hamiltonian Hocp are of O(g)

* Method seems fully defined, requires further checks.

For the approach to be viable the () (o)) dynamics must have:

Poincaré symmetry (also for relativistic binding)

Unitarity (at the hadron level) No O () contributions
Confinement from gluon exchange,
Chiral Symmetry Breaking (CSB) transverse gluons, etc.

Correct mass spectrum, up to O(als) corrections

The EM form factors, pdf’s, hadron scattering, ... may be evaluated in any frame
Many opportunities (if it works!)

Paul Hoyer Pavia 2020



74

O (o) light qQ bound states
An O (ozg) meson state with P = 0 and wave function ®:

’M> = Z /d.’I;ldCBQ &ﬁ(t — O, $1)5AB(I)QB(ZU1 — mg)wﬁB(t — O, 2132) ‘O>
A,B;a,3

The bound state condition H |M) = M |M) gives, at () ( @2)
—> +—
[z'fyofy -V + m'yo] O(x) + ¢(x) [ifyofy .V — m,yo] — [M _ V(\az\)]@(az)
wherex=xi—x;and V(lx ) =VixI=A2lx1.

In the non-relativistic limit (m > A) this reduces to the Schrédinger equation.

If we add the instantaneous gluon exchange potential:

—> The quarkonium phenomenology with the Cornell potential.
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O (?) qq bound states (cont.) 75
iV {10y, ()} +m [0, 8(x)] = [M - V()] ()

Expanding the 4 x 4 wave function F .
) X
in a basis of 16 Dirac structures Fi(x) Z jr (@)

we may use rotational, parity and charge conjugatlon invariance to determine
which I'/(x) may occur for a state of given jPC:

0~ trajectory [s =0, £=j]: —np =nc = (=1)7 ~v5, Vv, s -z, -z x L

0™~ trajectory [s=1, £ =j]: np=nc=—(-1)Y YPywa -z, Vsa-xxL, a-L, y°a-L

0" trajectory [s=1,f=35+1]: np=nc=+(-1) 1, -z, Ya -z, a-zx L, Ya-zx L, Vy5a-L
07~ trajectory [exotic] : np=-nc= (-1 4% y5a- L

—> There are no solutions for quantum numbers that would be exotic
in the quark model (despite the relativistic dynamics)

The BSE gives the radial equations for the Fi(r)
(There are two coupled radial equations for the O++ trajectory)
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Example: O trajectory wf's

2 . — 0 X np = (_1)i+1
O, ()= [M_V(za-V—l—m*y )+1b5 Py (r)Yin (&) ne= -1y
- S 2 v’ r |1 2 o JU+1) _
Radial equation: F|" + (; + 7 V)F1 + [Z(M — V)" —m* — ;- }Fl =0

Local normalizability at » = 0 and at V(r) = M (!) determines the discrete M

C.1.: Dirac eq.: Has continuous spectrum

m=20
Mass spectrum: 7
4 L .
Linear Regge J e e e e e e
trajectories 3+ ® © o e o o o o o o
with daughters
2 - o o o o o o [ o [ o
Spectrum similar to *
dual models 10 ® o o o o o o o o o
; Mz/V°
® ® @ ® e o ® e —© @ ‘ : ‘
) 10 15 20

Paul Hoyer Pavia 2020



77

Sea quark contributions

Quark states in a strong field have E<O components
Bogoliubov transformation, cf. Dirac states. ,t ;

In time-ordered PT, these correspond to Z-diagrams, g
and interpreted as contributions from gg pairs.

This effect 1s manifest in the behavior lim ‘ b (m) ‘2 — const
of the wave function @ for large V=V’ Ixl : T — 00 N '

The asymptotically constant norm apparently reflects, via duality,
pair production as the linear potential V(I x |) increases.
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Radial wave function for r — o

The radial equation was, with V(r) = V'r:

: v 1 2 > JU+1
FU (5 g o) B+ [JO =) = = 22 R =

The leading terms at large 7=~ F"'(r) + 4 V’2r2F(fr) =0

which implies:  F'(r — 00) ~ exp | = £V'r?]

This 1s similar to the Dirac equation with a linear potential, but now
the spectrum 1s discrete.

—— di(x) (m=4V2V")
Plot of one component ' - = plz) (m=2vV2V")

of the D = 1+1 wt.:

, V2V
YT . 30 32 34

The sea quarks show up in the parton distribution measured in DIS.
Paul Hoyer Pavia 2020



Parton distributions have a sea component

In D=1+1 dimensions a sea component appears at low /e :

m/e = 0.1
xg;f (xg;) xg;jf (xg;)
10¢ (a) 1

N A

1 1 1 1 ° ° 1 xBj
0.2 04 0.6 0.8 1.0

The red curve 1s an analytic approximation, valid in the xp; — 0 limat.

12}
10§

N A N X
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D. D. Dietrich, PH, M. Jarvinen

arxiv 1212 .4747

(b)

(log scale in xp))

0.001

0.01

a X
0.050.1

Note: Enhancement at low x is due to bd (sea), not to bid" (valence) component.

To be calculated in D=3+1 (and in various frames!)

Bj
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Example: Glueball spectrum
99) = /dwld@ (AL (1) AL 1 (w2) @] 4 (1 — T2)
+AZ,TE£,T(I)7XE + EZ,TAZ,T(I)%A + EZLTEZT(I)ZEZE} 0)

All components have the same instantaneous potential: Vg g (7“) — %AZT

Imposing Hocp lgg) = M Igg) relates @aq and Pap = Ppato Prr = F(r) Y (Q),
2 v,

| ((0+1)

1" g / 1 2 g . —
where I (r)+(;—M_V)F(r)+{Z(M—V) _r(M—V) > }F(fr)_()
The spectrum (M) 1s determined p° © o o o o o o o o o
by local normalizability at r =0 . o o o o o o o o o
and V(r) =M. 3
With A2 =0.18 GeV2 the lowest ; e e e e e e e e

glueball state 1s
M® =0,n=1) = 1.6 GeV.
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Time evolution in e+e- — of hadrons

Final state evolves in Monte Carlo models = T
(proper) time T with / §»<E i
decreasing virtuality ME - £
and decreasing energy T
uncertainty AE
Evolution is unitary: At ~1/0 WMMWE .
Measured cross section in < > paCD + LPHD \N§E§
energy interval E, = AE ) ;\
must average to (parton) AT~1/GeV ~02fm
cross section at T ~ 1/AE
>
AtT~11m

Paul Hoyer IU 2015



10

10

Paul Hoyer IU 2015

Duality in e+e- — hadrons

82

-

u, d, s

3-loop pQCD

Naive quark model

¢
$ » ,
! !
f?f ““ I# p 2 L M . ‘ +

#:‘ *\ R WW L T e

= ! ! MW -
| + |
- L ]
- o Sum of exclusive Inclusive i
- ++* measurements measurements .

| + | ‘ | ‘ | ‘ | ‘ | ‘ |

0.5 1 1.5 2 25 3

B T T ‘ ‘ T ]
- I -
- P(28) ]
— » Markl ]
B Mark | + LGW |
= = Markll i
- « PLUTO E
- ¢) DASP 11)‘3770 |
B o Crystal Ball ]
- « BES E
i ‘ ‘V l llllllllllllllllll é
- | | ! A 0 LAk PR i
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Ezhela et al. hep-ph/0312114
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: 0% = 1 A E94-110"
ks Cw. L— 1 Resonance Fit
. RN —— LT+TMC

8 w : | .*.-,Li LT
B 1.1 + ) lh >kJLEl.b Hall C
i “&!“+.+* )

1 I ] I I | 1 | 1 | = I ] _ '|— - 1
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Resonances average scaling (large O?) curve. This holds at all 0?2z 1 GeV?2

TMC = Target Mass Correction

Paul Hoyer IU 2015

Bloom & Gilman (1970) W. Melnitchouk (2010)
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Resonances slide on the scaling curve

1l —=x 2
WQZMJQV*:MJQV+( 5)¢
LB
0?2=007 020 045 085 14 24 3.1GeV?
l l C.S. Armstrong et al,
) l _1 S Amsongetal,
0.4
0.3}
i 12<W2<1.9GeV2
‘6A7’
0.1}
0 Solid curve: Large Q2
0.4}
Jlab Hall C
0.3}
ol 1.9<W2<25GeV?
“-IZ “Sll,,
| 2 o 1 o 3 s g 0 5 5 3 2
0 0.1 62 6.3 04 05 0.6 0.7 5

0.8 &= 22 2
E~xp 1+\/1+4Mpr/Q
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Implications of duality

® Resonances build scattering: the two must be considered together.
e The masses, spins and couplings of all bound states are related.

® Dual diagrams are relevant.

(
(

| N O N e e
O e e e e e e
B O O e e e e

. e e .

Pt e g — o —
O B B B e e e
B e e e e e e

)
)

Kopeliovich et al, arXiv:0811.2024
Paul Hoyer IU 2015
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Plane waves in bound states

In the parton picture, high energy quarks can be treated as free constituents.
They are momentum eigenstates, described by plane waves.
How does this fit into the bound state wave functions?

VAVAVAVAVA ______ VAVAVAVAVAREEEEEN_ |
J P
k=P -

Consider a highly excited state (P=0)

= (M-V)2 = M2 —2MV —
nD=1+1: Mo Vay<<p = °0=HMV) Vi

. A2 .
®(0 — 00) ~ exp(Fio/2) = eTM" exp(Fiz M/2)
Thus oscillations of the wt at large 0 gives a plane wave with p = +M/2

The state agrees, in this limit, with the parton picture:

VAT ot t
IM,P =0) = 7 (bM/Qd_M/2 +b_M/2dM/2)\Q>

Only “valence” particles appear (no b or d operators).



Decays and hadron loops

There is an O (1/ \/ATC> states: string breaking N

(27T>3 3 |
B,C|A) = — 0°(Py — Pgp— P
X /d51d52 e01Pc /27102 Pe/2Ty (09T (§))D 4(8; + 82)DL,(82)]

The bound state equation determines zero-width states. %
coupling between the A%

87
B
C

The overlap suggests that hadron A is an “average” (dual) description of B+C.

When squared, this gives a 1/N¢

hadron loop unitarity correction: /_\

a a
Unitarity should be satisfied \/
at hadron level at each order of 1/N¢ .

Paul Hoyer Pavia 2020
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Bound states in motion

An O (o)) gg bound state with CM momentum P may be expressed as

M, P) = /dazl dro Y(t = 0,21) e F@F22)/2P) (11 — z0) (¢t = 0, z5) |0)

The 1nstantaneous potential is P-independent, V(a;) — 1V’ |;B , hence the BSE:

AVERE: @(P)(w)} — 1P e, @(P)(w)] +m[4°, @(P)(w)] = |E - V(w)]é[)(P)(w)

The solution for ®®)(x) is not simply Lorentz contracting in x.

There 1s an analytic solution in D = 141 dimensions.
In D = 3+1 dimensions there is a boundary condition at x; =0

States with general P are needed for:

e P-dependence of angular momentum (P — % frame).
 EM form factors (gauge invariance has been verified)
e Parton distributions

e Hadron scattering
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Z-contributions dilate in x

fime
P
The energy of the qq pairs increase with P. —
Hence their production requires a larger 9. -
potential V(x), ie., IxI grows with P. : 9
.
v q
This is seen in the D=1+1 analytic wi’s: :
D[ H D, B D[+ D, [ p—s
, ,\ P=0 . | = lrl
Loy [ =51 |
0.8 " ' I," 'l
0.6/
0.4¢ m=315] |
0.2 \ ’
h 5 10 20 25 yx 30

15
(b)



EM form factor at O(o°) »

Matrix element of EM current between states A, B of momenta P, Pp

’A,Pa> — /d:pldwg zﬁ(azl)eip'(ler‘”Q)/Z(I)A(ml — $2)¢(CL‘2) ‘O>

A A

EM current ]“(z) — Q@Z(Z)fyﬂw(z) _ eiPZj,u(O)e—iP-z
Fip(z) = (B, Py|j"(2) |A, Pa)

— (1 CaCp)e PP [ g eilPiori el

X 1T [(I)TB (m)v“vOCI)A(:B)} Ca, Cp : Charge conjugation

0

Can show: ——F 1’41“ B (z) — () Current conservation, for any P, P»
~H



States with M = O

For M = 0 the two points coincide. Regular, massless solutions are found.

The massless o) = /dazl dxo &(wl) O, (x1 — x2) Y(x2) |0) = 7 |0)

O++ meson “0”’

. . 1 2 Z 1 2
Form=0and V'=1: d,(x) = Ny |Jo(57 >+a'm;‘]1(1r )
Jo and J; are Bessel functions.

P"|o) =0  State has vanishing four-momentum in any frame.
It may mix with the perturbative vacuum.
This spontaneously breaks chiral invariance.
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A chiral condensate (m = 0)

A chiral condensate vacuum ansatz:

X) = exp(d)|0)  forwhich (x[¢e) [x) = 4N,

An infinitesimal chiral rotation of the condensate generates a pion

U8 = exp [i8 [ dout@nsv@)]  Ug(8) x) = (1= 2iB7 )

where 77 is the massless 0 state with wave function ®__ = V5P

= An explicit realisation of the features we expect for a chiral condensate.

Paul Hoyer Pavia 2020
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Bound state comments (1)

The mantra: Hadrons are non-perturbative could be unfounded.

— It’s important: PQCD and LQCD are the main first principle tools in the SM.
— Based(?) on confinement and CSB being absent from Feynman diagrams.
— Feynman diagrams assume free quarks and gluons as boundary conditions.

The wave in’s of QED atoms have non-perturbative features: O(a”) .
Nonetheless, atomic binding energies are calculated with high accuracy

Example: Hyperfine splitting in Positronium G.S. Adkins,
Hyperfine Interact. 233 (2015) 59
7 a (8 In2
A = motd L 2 (2422
YQED mo‘{u w(9+2)
[ 5, 1367 5197 221 1 53
— I — 4+ ==+ = | In2 - —((3
2 [ 24" T Gas T 3an6” (144” +2) n2 = a5l )]
7o’ 3 17 217
— o+ T lna(=m2- ") +0(e¥) b =203.39169(41) GHz
8 ™ 3 90

Avexp =203.394+ .002 GHz
Paul Hoyer Pavia 2020



Bound state comments (2)

Hadrons are bound states of QCD (as shown by lattice calculations).

— The only strongly bound states in Nature (need not mean o > 1)
— Should consider states with any P (form factors, scattering)
— Relativistic description only if the rules of QFT are obeyed

Steven Weinberg, in Preface to Vol. I of “The Quantum Theory of Fields™:

The point of view of this book is that quantum field theory is the way

it is because (aside from theories like string theory that have an infinite
number of particle types) it is the only way to reconcile the principles
of quantum mechanics (including the cluster decomposition property)
with those of special relativity.

Paul Hoyer Pavia 2020
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Bound state comments (3)

Hadron data invites a perturbative approach

— Hadrons have valence quark quantum numbers (cf. QED in D = 1+1)

— Atomic features of quarkonia (Cornell potential, incl. confinement)
— Selection rules such as OZI ¢(1020) — KK, —»
— Duality and dual diagrams

JT

C Only quark lines
M Tt o
Confining interaction
T
C No transverse gluons

JT
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