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Hadrons differ from atoms
e They are strongly bound My, >> 2 my, +my
e Color confining
e Chiral symmetry breaking

Yet:

 Heavy quarkonia are similar to atoms
e Light hadrons have qq and qqq quantum numbers (No J, g dof’s)

e Intriguing regularities: duality, OZI rule, ...
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Similarity of quarkonia and atoms ;
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"The J/y is the Hydrogen atom of QCD"



Linear Cornell potential agrees with Lattice QCD
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Hadron spectrum is too(?) simple

Why only qq and qqq quantum numbers?

The sea quarks and gluons are not
manifest in hadron spectra

Cf. relative (rotational, vibrational) motions
of atomic and nuclear constituents.

Relativistic effect
Cf. Dirac bound states

=

A relativistic wave function for
valence quarks implies a qq sea.
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Bloom-Gilman Duality

W. Melnitchouk et al, Phys. Rep. 406 (2005) 127

0.4 4 & JabHallC - Resonance contributions
ep —> eN*
build DIS scaling in
ep — eX

M- = My + Q7 (——1)

Scattering dynamics is built into hadron wave functions.

We must understand relativistic bound states in motion.
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The OZI rule 6

Connected diagrams: Unsuppressed, string breaking from confining potential
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Disconnected, perturbative diagrams are suppressed

JU 610 MeV 153 %

This suggests that perturbative corrections are small even in the soft regime.
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QCD bound states

How are atoms treated in perturbative QED?

Can the same method be applied to QCD?

Use temporal gauge: AY =0
Confinement: A novel boundary condition in Gauss’ law.

Relativistic binding with PT for hadrons (not for atoms).

Chiral Symmetry Breaking: Massless bound states
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QED bound states are (non)perturbative

* There is no Positronium pole in any ete- — e*e- Feynman diagram

e Atomic binding energies do have a perturbative expansion in o

Example: Hyperfine splitting in Positronium G.S. Adkins,
Hyperfine Interact. 233 (2015) 59
Avgpp = mea’ {% — % (g + ln72)
+:—2 [—25—47'('2 Ina + 163T687 — %WQ + <%7‘(‘2 + %) In2— %C(B)]
—%.;j In® o + %3 In o (%7 In2— %07) + O (a3>} = 203.39169(41) GHz

Avexp =203.394+ 002 GHz

e Binding energy 1is perturbative in a. and log(a) (measurable)

e Wave function 9 (r) « exp(— mar) is of O(0l*) (gauge dependent)



Developments in bound state QED

S
1T 1T
---- = ---- K
e 1951: Salpeter & Bethe
1S

Perturbatively expand propagators S and kernel K
Explicit Lorentz covariance
No analytic solution even at lowest order in S and K

e 1975: Caswell & Lepage: BS 1s not unique: o # of equivalent equations, § <> K

We may choose to expand around Schrodinger atoms
Give up explicit boost invariance

e 1986: Caswell & Lepage NRQED: Effective NR field theory

Expand QED action in powers of V/m,
Choose to start from Schrodinger atoms

Paul Hoyer EP January 2019



The perturbative S-matrix

Feynman diagrams are derived in the Interaction Picture:
H="Ho+Hr Ho |t) s, = Eilt);,

@)

Sfizout<f,t%oo|{Texp[—i/ dt?—[ﬂt)}}]i,t%—oo}m

— OO

Formally exact expression, provided the in- and ouz-states
have a non-vanishing overlap with the the physical i, f states.

Bound states have no overlap with free in- and our-states at f = + o

No Feynman diagram 5 g 3 E’ E > E
- E v o+ - '
has a bound state pole. ( S o

Expanding around free states 1s inappropriate for bound states.

Paul Hoyer EP January 2019 Quarks and gluons are not even physical states (c¢f. D=1+1).



Hamiltonian approach: The classical field in QED
5SoED ~V2A0(t, ) = eyl (t, @) (t, @)

A =0 =
0A°(t, x)

10 - 3 € ¥
Atw) = [y —wtity)

The classical field is the expectation value of Ain the state

’3317 $2> — w(ta wl)w(ta 2132) |O>

Sy
(@1, 2| eA0(z) |21, 22) @ . &@r\\
A

(1, 2| 1, 22) | —x1| [T — 2

=cA’(z; 21, T2)

Note: * A0is determined instantaneously for all x

e It depends on xi, x> = The charges determine the field
(87

o eAO(azl) = —6A0($2) = —

z1 — T is the classical —o/r potential
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Canonical quantisation in tfemporal gauge: A° = O

Avoids problem due to the missing conjugate field for AY

E'=FY = —_9,A" conjugate to  A; = — A’ (i=1.2.3)
E't,x), A (t,y)] = 6 5(x — y) {Wh(t, ), va(t,y)} = dap d(x —y)

0 / da[3 B}, + 5B + (FYF7 + 91 (=ia'0; — ea’ A"+ my )]

0S8 -
Gauss’ operator does not vanish:  G(7) = 5A0(7) = O; B (z) — eypT)(z)

G(x) generates rime-independent gauge transformations, allowed by A9 =0
Fix the gauge completely by constraining physical states: G(z) |[phys) = 0

This constrains Ez(x) for each state, in effect imposing Gauss’ law.

Paul Hoyer EP January 2019



Schrdodinger equation for Positronium

0;E} (t, ) [phys) = ep (¢, z) |phys)
G(x) [phys) =0 =

€ 4

Ei (t, @) [phys) = —° / Iy B(t, y) [phys)

Ar|x — y\¢

For the component of Positronium with
an electron at x; and a positron at x»:

e (z1)et (x2)) = a(x1)Yp(22) 0)

By e @)et @) = 07 (g — mmyp) o @06 (@)

The instantaneous Hamiltonian Hy = / deE: E: ()
gives the classical potential:

8

HV {6_ ($1)€+(£B2)> - — |€_ (331)6+(£B2)>

T — T2

The Schrodinger equation follows when the kinetic energy term in H 1s added.
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A classical field in QCD?

Global gauge invariance allows a classical gauge field for neutral atoms,
but not for color singlet hadrons in QCD

a0

0 — _ 0 _
A? = lx — x| |x— x Aa(w) =
Positronium Proton
QED QCD
However:
The classical gluon field is non-vanishing for each color component C of the state
Ag(w;C) =+ () ZA?L(CE;C):O
C

Note: This possibility does not exist for quarks and gluons.



Temporal gauge in QCD: AL =0

0S
0AY (x)

= 0, FL () + gfarc ALEL — g T ()

Gauss’ operator G ()
generates time-independent gauge transformations, which keep Ag =0
The gauge is fully defined (in PT) by the constraint &, (x) [phys) = 0

= 0;E} (z) [phys) = g[ — favcALEL + ¥ T%p(x)] [phys)

In QED one solves for E; requiring Er(x) — O for x| — o0

In QCD the (globally) color singlet bound states

‘M> = Z /dibldwg @é(t = O, CEl)(SAB(I)ag(QZ‘l — wg)wg(t = O, 332) ‘O>
A,B;a,

cannot generate a classical octet field at any x. Hence for a given quark color A
homogeneous solutions, which do not vanish at spatial infinity, may be considered
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Including a homogeneous solution for E o

B} .(x) [phys) = —0; /dy{mr y+4ﬂlw_yd5a(y) phys)

where  &,(y) = —furcAVEL(Y) + ' T%(y) and K # K(x,y)

The linear dependence on x makes E; independent of x, which is required by
translation invariance. The field energy density 1s constant and x % .

The E1 contribution to the QCD Hamiltonian is

Hy = /dydz{ y - z[%/.g? /d:v —l—g/i} + 3 \yofz\ }Ea(y)ga(z)

The field energy o volume of space is irrelevant only if it is universal.
This relates the normalisation # of all Fock components, leaving only
an overall scale A as a parameter.
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Perturbative expansion = Fock state expansion

time — time —
q g
X1 5 5
Er + Er  +
_ X2
Instantaneous Transverse &
O(g° g?) O(g?)

The instantaneous Hamiltonian Hy determines the potential energy.
The qGAr etc. terms in H determine couplings between Fock states.

The q and A7 kinetic terms determine the time evolution.

Essential: The O(g0) potential does not create particles.
Paul Hoyer EP January 2019 Gauss’ law 1s a constraint, not an operator identity.
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Examples: Fock state potentials (I)

49  Hy |g(%1)q(z2)) =

Vq(j — AQ‘.CUl — 332‘ —

48q : Vaga (@1, 24,

daga (@1, @, @2) = \/ (N = 2/N) (@1 — @2)? + N —

(!

A2

Vag lg(x1)q(x

g

T — T3]

2))

) — \/77 dng(wl? Lg, :132)

1

V(l)(w17 wg: an) — 5 Qg

q949

When q and g coincide:
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Fock state potentials (IT)

qqq -
2 1 1 1
Vagg = A2dqqq($17m27$3) 3 O‘S(\an — &9 + [z — 3 T x5 — 2131’)
1
dgqq(T1, T2, T3) = ﬁ\/(wl — )% + (X2 — x3)? + (23 — T1)?
N Q
. V. = —A2 o _ N S
g8 - 99 Cr T — x| PE——

This agrees with the qgq potential where the quarks coincide:
Vog(@, @g) = Vgg(x, x4, )

It 1s straightforward to work out the instantaneous potential for any Fock state.
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qq bound states

Express a qq bound state in terms of a wave function P,

’M> = Z /de‘ldiBg &ﬁ(t — O, $1)5AB(I)QB(ZU1 — Zbg)wﬁB(t — O, CEQ) ‘O>
A,B;a,3

The bound state condition H |M) = M |M) gives, with H |0) =0
and keeping only the O(a.) terms in H,
— —
(i - V +mA?]@(x) + ®(z)[iv’y - V —mr’] = [M — V(|z|)] ®(x)
where x =xi-xo and V(Ix ) =VixI=A2lx 1.

In the non-relativistic limit (m > A) this reduces to the Schrédinger equation,
and we may add the instantaneous gluon exchange potential.

—> The successful quarkonium phenomenology with the Cornell potential.
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Relativistic qq bound states
AR {707, CID(w)} +m [’yo, CID(.CU)} — [M — V(a:')]CI)(a:)

Expanding the 4 x 4 wave function B | | .
in a basis of 16 Dirac structures [';(x) O(x) = Z L (x)F; (T)Y}A ()

we may use rotational, parity and charge conjugation invariance to determine
which I'/(x) may occur for a state of given jPC:

0~ trajectory [s =0, £ =j]: —np =1nc = (=1)7 v, 95, Ba-x, ya-xx L

0~ trajectory [s=1, £ =j]: np=nc=—(-1)Y YPywa -z, Vsa-xxL, a-L, y°a-L

0" trajectory [s=1,f=35+1]: np=nc=+(-1) 1, -z, Ya -z, a-zx L, Ya-zx L, Vy5a-L
0"~ trajectory [exotic] : np=-nc= (-1 4% s a-L

—> There are no solutions for quantum numbers that would be exotic
in the quark model (despite the relativistic dynamics)



Example: O trajectory wf's

(icx - €+mvo) + 1}75 Fy(r)Yja() e =(-1y

, : 2 Vv’ (7 +1
Radial equation: F|" + (; + M—V)F{ + [ (M —V)? —m? — iU+ )}Fl — 0

N

Local normalizability at » = 0 and at V(r) = M determines the discrete M

m=>0
Mass spectrum:
. 4+
Linear Regge J e e e
trajectories 3+ ® © e o o o o o o o
with daughters
2 - [ [ [ [ [ o o [ o [
Spectrum similar to *
dual models 10 ® o o o o o o o o o
7 M?>/V°
o ® @ ® o o ® e o @ ‘ : ‘
) 10 15 20
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Sea quark contributions

[ —

23

On general grounds, and as seen in PT, —
relativistic interactions imply '
contributions from Z-diagrams, :

B

implying higher Fock states.

This effect 1s included in the wave function @,
It 1s manifest in the behavior, for V= V’lx| ,

lim |®(x)|* = const.
r— 00

The Dirac wave function has the same
behaviour for a linear potential.

The asymptotically constant norm reflects, via duality,
pair production as the linear potential V(I x |) increases.

These sea quarks show up in the parton distribution measured in DIS.
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Parton distributions have a sea component

In D=1+1 dimensions the sea component 1s prominent at low mi/e :

/ - O 1 D. D. Dietrich, PH, M. Jiarvinen
m/ie =Uu. arXiv 1212.4747
xg;f (xg;) xg;jf (xg;)
10 (a) L (b)
Sl 12}
10} .
6l sl (log scale 1n x3))
4t ol
4t
2 5
2 2 2 2 ° ° » xBj 2 2 M o . x
0.2 04 0.6 0.8 1.0 0.001 0.01 0.05 0.1

The red curve 1s an analytic approximation, valid in the xp; — 0 limat.

Note: Enhancement at low x is due to bd (sea), not to bid" (valence) component.

Bj



N

5

Decays and hadron loops

The bound state equation determines zero-width states.

There 1s an (9(1/\/]\70)
(B, ClA) =

states: string breaking 5

coupling between the A%

7N

C
(27)°

vNe

§°(Ps— Pp — Pg) /d51d52 e'01Pc/2=i02 Pr /2y [70(132(51)(1’14(51 +02) P (d2)]

Q—X—

When squared, this gives a 1/N¢ hadron loop unitarity correction:

7N

a a

\/

Unitarity should be satisfied at hadron level at each order of 1/Nc¢ .
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Bound states in motion

A q@ bound state with CM momentum P may be expressed as

M, P) = /da’;l dro Yt = 0,21) T @F22)/2P) (11 — 20) (¢t = 0, z5) |0)
The potential is P-independent, V (x) = V! lz|  so the BSE becomes
iV - {a, CID(P)(:U)} — 1P |a, CID(P)(:B)] +m[y°, CID(P)(CU)] = |E - V(w)]Q)(P)(w)
P breaks rotational symmetry: angular & radial dependence does not separate.

The solution for ®®)(x) in D = 1+1 dimensions is not simply Lorentz contracting.

It provides a boundary condition at x; =0 on ®®)(x) in D = 3+1 dimensions.
This works only for a linear potential.
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States with M = 0 Y

We required the wave function to be normalizable at r =0 and V'r = M

For M = 0 the two points coincide. Regular, massless solutions are found.

O+ meson ‘O

The masslefs” o) = /dazl dxo P (x1) Py (x1 — T2) Y(x2) |0) = 6 10)

(
Form=0andV'=1: @,(x) =N, JO(iTZ)jLa.m; Jy(Lr?)

Jo and J; are Bessel functions.

P"|o) =0  State has vanishing four-momentum in any frame.
It may mix with the perturbative vacuum.
This spontaneously breaks chiral invariance.
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A chiral condensate (m = 0) *

Since | 0 ) has vacuum quantum numbers and zero momentum it can mix
with the perturbative vacuum without violating Poincaré invariance

Ansatz: ‘X> — eXp((Af) ‘O> implies <XW¢ Ix) = 4N,

An infinitesimal chiral rotation of the condensate generates a pion

U(8) =exp [iB [ dewl@hsv@)]  Uy(8) ) = (1= 2087 |x)

where 7 is the massless 0 state with wave function ¢_ = V5P,
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Small quark mass: m > 0

When m # 0 the massless (M, = 0) sigma 0++ state has wave function

(I)U(a}) — fl (r) +i00- @ f2 (7‘) +iv - go (7‘) Radial functions

are Laguerre fn’s

An M > 0 pion O+ state has rest frame wave function

Or(x) = [Fi(r)+ic-zF(r)+7 Fa(r)]ys  Fi0) = 22 Fi(0)

M
F”+<g+ )FL + [H(M = )% = m?| Fy = 0
1 r M—r) 1 4 1
(x|7E (x)7 |x) = iP* fre " = F4(0) = 2iM, fx
B e - M2
Sv) = - f il = — i
(x| (x)ys¢ () 7t |x) ig—fre F1(0) = - fr

CSB relations are satisfied for any P.
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Final remarks

QED bound states have both perturbative and non-perturbative aspects.

Positronium may be derived from QED using temporal gauge: AV = 0

The solution of Gauss’ law in QCD allows a homogeneous solution for
color singlet states. This gives an () (042) linear potential for qq states.

The quarkonium phenomenology is derived.

One obtains relativistic states with exact J =L + S.

Massless bound states allow spontaneous chiral symmetry breaking.

The perturbative and Fock expansions are closely related.

String breaking effects (decays, efc.) are calculable: AN

Hadron-level unitarity should be checked.

7

Paul Hoyer EP January 2019 Many interesting studies & tests are waiting to be done!



