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Hadrons differ from atoms
• They are strongly bound                 Mp >> 2 mu +md

• Color confining
• Chiral symmetry breaking

Yet:
• Heavy quarkonia are similar to atoms
• Light hadrons have qq̅ and qqq quantum numbers (No q̅, g dof’s) 
• Intriguing regularities: duality, OZI rule, …
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Adapted from presentation by J. Ritman (2005)
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“The J/ψ is the Hydrogen atom of QCD”
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even a pure Coulomb potential, σ = 0, implies a non-vanishing σeff at finite t ≪ r.
Of course, the symmetry of the Wilson loop under interchange of r and t also implies
that no plateau in V (r, t) can be found, unless t ≫ r. For smeared Wilson loops, one
would still expect a similar 1/t2 approach (with a different coefficient) of σeff towards
the asymptotic limit, while effective masses, V (r, t), will approach V (r) exponentially
fast at any r.

4.7.2 The quenched potential

-4

-3

-2

-1

0

1

2

3

0.5 1 1.5 2 2.5 3

[V
(r)

-V
(r 0

)] 
r 0

r/r0

β = 6.0
β = 6.2
β = 6.4
Cornell

Figure 4.2: The quenched Wilson action SU(3) potential, normalised to V (r0) = 0.

In Figure 4.2, we display the quenched potential, obtained at three different β values
in units of r0 ≈ 0.5 fm from the data of Refs. [173, 29]. The lattice spacings, determined
from r0, correspond to a ≈ 0.094 fm, 0.069 fm and 0.051 fm, respectively. The curve
represents the Cornell parametrisation with e = 0.295. At small distances the data
points lie somewhat above the curve, indicating a weakening of the effective coupling
and, therefore, asymptotic freedom. We will discuss this observation later. All data
points for r > 4a collapse onto a universal curve, indicating that for β ≥ 6.0 the scaling
region is effectively reached for the static potential. Moreover, continuum rotational
symmetry is restored: in addition to on-axis separations, many off-axis distances of the
sources have been realised and the corresponding data points are well parameterised by
the Cornell fit for r > 0.6 r0. Prior to comparison between the potential at various β,
the additive self-energy contribution, associated with the static sources, that diverges
in the continuum limit has been removed. This is achieved by the parametrisation-
independent normalisation of the data to V (r0) = 0.

42

The quenched Wilson action SU(3) potential.

Gunnar S. Bali, Phys.Rept. 343 (2001) 1

Linear Cornell potential agrees with Lattice QCD
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 4Hadron spectrum is too(?) simple

Why only qq̅ and qqq quantum numbers?

The sea quarks and gluons are not
manifest in hadron spectra

Cf. relative (rotational, vibrational) motions
of atomic and nuclear constituents.

⇒ Relativistic effect
Cf. Dirac bound states

A relativistic wave function for 
valence quarks implies a qq̅ sea.

18. Structure functions 15
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Figure 18.5: The bands are x times the unpolarized (a,b) parton distributions
f(x) (where f = uv, dv, u, d, s ≃ s̄, c = c̄, b = b̄, g) obtained in NNLO NNPDF3.0
global analysis [56] at scales µ2 = 10 GeV2 (left) and µ2 = 104 GeV2 (right), with
αs(M2

Z) = 0.118. The analogous results obtained in the NNLO MMHT analysis can
be found in Fig. 1 of Ref [55]. The corresponding polarized parton distributions are
shown (c,d), obtained in NLO with NNPDFpol1.1 [15].
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W. Melnitchouk et al, Phys. Rep. 406 (2005) 127

Resonance contributions 
ep → eN*

build DIS scaling in 
ep → eX

Bloom-Gilman Duality

Q2 ≈ 4.5

ξ≈xB

Q2 ≈ 0.5
Jlab Hall C

Δ, S11xBN

γ* Q2

Scattering dynamics is built into hadron wave functions.
We must understand relativistic bound states in motion.

m2
N⇤ = m2

N +Q2
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 6The OZI rule
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Disconnected, perturbative diagrams are suppressed

Connected diagrams: Unsuppressed, string breaking from confining potential

This suggests that perturbative corrections are small even in the soft regime.
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 7QCD bound states

How are atoms treated in perturbative QED?

Can the same method be applied to QCD?

Confinement: A novel boundary condition in Gauss’ law.

Relativistic binding with PT for hadrons (not for atoms).

Use temporal gauge: A0 = 0

Chiral Symmetry Breaking: Massless bound states
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QED bound states are (non)perturbative

G. S. Adkins,
Hyperfine Interact.  233 (2015) 59

7

where the products imply convolutions over four-momenta similar to that in (2.19). This equation is valid provided
the kernel satisfies

K = (1 +GT S)�1
GT = GT �GT S GT + ... (2.22)

Thus the “propagator” S may in fact be chosen freely. The expansion of K in ↵ follows from the corresponding
expansions of S and GT . As a consequence of unitarity the residues of the bound state poles of GT factorize into a
product of wave functions similarly as in (2.17). Since the finite order kernel K in (2.21) cannot have a bound state
pole the Bethe-Salpeter wave function �P

T (with external propagators truncated) must satisfy

�P
T (q) ⌘

Z
d
4
x�P

T (x)eiq·x =

Z
d
4
k

(2⇡)4
�P

T (k)S(k)K(k, q) (2.23)

which is the all-orders equivalent4 of (2.19). With a suitable choice of the propagator S analytic expressions for the
wave functions are obtained when the lowest order kernel is used in the BSE. These solutions facilitate calculations
of higher order corrections to the binding energies [2].

The wide range of possibilities in the choice of propagator in the BSE motivated a search for an optimal approach
based on physical arguments. The perturbative expansion relies on the non-relativistic nature of atoms, v/c ' ↵ ⌧ 1.
This suggested the use of an e↵ective QED Lagrangian (NRQED) [7], which is essentially an expansion of the standard
Lagrangian in inverse powers of me. At the expense of introducing more interactions the NRQED Lagrangian allows
to use non-relativistic dynamics, which is of great help in high order calculations [3]. The contribution of relativistic
momenta (p ⇠ me) in positronium is only of O

�
↵
5
�
⇠ 10�11, making NRQED very e�cient.

The continuous development of theoretical and experimental techniques have allowed precision tests of QED using
bound states. Thus the hyperfine splitting in positronium, i.e., the energy di↵erence �E between orthopositronium
(JPC = 1��) and parapositronium (JPC = 0�+), expressed in terms of �⌫ ⌘ �E/2⇡~, is calculated using NRQED
methods to be [8]
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= 203.39169(41) GHz (2.24)

Table 1: Summary of systematic errors.

Source Errors in �HFS (ppm)

Material E�ect:

o-Ps pick-o� 3.8

Gas density measurement 1.0

Thermalization of Ps 1.0

Magnetic Field:

Non-uniformity 3.0

O�set and reproducibility 1.0

NMR measurement 1.0

RF System:

RF power 0.7

QL value of RF cavity 0.3

RF frequency 1.0

Analysis:

Choice of energy window 0.6

Quadrature sum 5.4

considered in the previous experiments, fitting without taking

into account the time evolution of �HFS and �pick is performed.

The fitted Ps-HFS value with an assumption that Ps is well ther-

malized results in 203.392 1(16) GHz. Comparing it with Eq.
(15), the non-thermalized o-Ps e�ect is evaluated to be as large

as 10 ± 1 ppm in the timing window we used. This e�ect might
be larger if no timing window is applied, since it depends on the

timing window used for the analysis. In the timing window of

0–50 ns, which we do not use for the analysis, Ps-HFS is dra-

matically changing because Ps is not well thermalized and Ps

velocity is still rapidly changing.

Systematic errors are summarized in Table 1. The largest

contribution is an uncertainty of o-Ps pick-o� rate (�pick(n,�)).
It is estimated by taking the error of the fitting of the o-Ps decay

curve. The uncertainty of the gas density is computed from the

uncertainties of the gas pressure and temperature, resulting in

1.0 ppm uncertainty. The uncertainty of Ps thermalization e�ect

comes from the uncertainties of �m and E0. The second largest
contribution is an uncertainty of the static magnetic field. Dis-

tribution of the static magnetic field is measured by the NMR

magnetometer with the same setup as Ps-HFS measurement for

twice (before and after the measurement). The results of the

two measurements are consistent with each other and the non-

uniformity is weighted by the RF magnetic field strength and

distribution of Ps formation position, which results in 1.5ppm

RMS inhomogeneity. The strength of the static magnetic field

is measured outside of the RF cavity during the run. An o�set

value at this point is measured during the measurement of the

magnetic field distribution, and its uncertainty including repro-

ducibility is 0.5 ppm. The precision of magnetic field measure-

ment is 0.5 ppm, which comes from the polarity-dependence

of the NMR probe. These uncertainties are doubled because

�HFS is approximately proportional to the square of the static

magnetic field strength. The uncertainty of RF power meter re-

sults in 0.7 ppm systematic error. The QL value of the cavity

is measured before and after each run, and the uncertainty is
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                  average
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Figure 5: Summary of �HFS measurements from past experiments and this

work. The circles with error bars are the experimental data (a�[4], b�[5]),
the hatched band is the average of the previous experiments (a and b), and the

black band is the QED calculation [6, 7, 8].

estimated by the di�erence between them. The uncertainty of
microwave frequency causes 1.0 ppm systematic error. Anal-

ysis with energy window of 511 keV ± 1.5 s.d.(� 26 keV) has
been performed, and the result has changed by 0.6 ppm. This

change is taken into account as a systematic error.

The systematic errors discussed above are regarded as in-

dependent, and the total systematic error is calculated to be

their quadrature sum. When the non-thermalized Ps e�ect is

included, our final result with the systematic errors is

�HFS = 203.394 1±0.001 6(stat.)±0.001 1(sys.) GHz.(16)
A summary plot of �HFS measurements is shown in Fig. 5. Our
result favors the QED calculation within 1.2 s.d., although it

disfavors the previous experimental average by 2.7 s.d.

6. Conclusion

A new precision measurement of Ps-HFS free from possible

common uncertainties from Ps thermalization e�ect was per-
formed to check the Ps-HFS discrepancy. The e�ect of non-

thermalized o-Ps was evaluated to be as large as 10 ± 1 ppm
in a timing window we used. This e�ect might be larger than
10 ppm if no timing window is applied, since it depends on

timing window. Including this e�ect, our new experimental

value results in �HFS = 203.394 1 ± 0.001 6(stat., 8.0 ppm) ±
0.001 1(sys., 5.4 ppm)GHz. It favors theO(�3 ln��1) QED cal-
culation within 1.2 s.d., although it disfavors the previous mea-

surements by 2.7 s.d.
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for useful discussions. This work was supported by JSPS KAK-
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FIG. 4: Data on positronium hyperfine splitting
compared to theory. Two previous results (a [9],
b [10]) compared to a new measurement [11] and
QED [8] (black band). Figure from [11].

The appearance of ln↵ in (2.24) demonstrates that bound state
perturbation theory indeed di↵ers from the usual expansions of
scattering amplitudes. Such factors arise from apparent infrared
divergences which are regulated by the neutrality of positronium
at the scale of the Bohr radius (↵me)�1.

The combined result of the two most precise measurements
of the hyperfine splitting in positronium [9, 10] is �⌫EXP =
203.38865(67) GHz, which is more than 3� from the QED value
(2.24). Very recently a new measurement [11] gave �⌫EXP =
203.3941 ± .0016 ± .0011 GHz, which is closer to the theoretical
value. The present situation is illustrated in Fig. 4.

Bound state poles in the photon propagator a↵ect also standard
perturbative calculations. The positronium contribution to the
anomalous magnetic moment of the electron was recently evalu-
ated [12]. It was found to be of the same order as state-of-the-art
five-loop calculations – and several times bigger than the weak
corrections.

The successes of QED have inspired the use of analogous methods for the other interactions. In particular, Bethe-
Salpeter and Dyson-Schwinger equations have been extensively applied in QCD (see [13] and references therein).

4 In (2.19) a factor P 0 � Eq+ � Eq� was extracted from the wave function  (q).

Example: Hyperfine splitting in Positronium

ΔνEXP = 203.394± .002 GHz

• Binding energy is perturbative in α and log(α)    (measurable)

• Wave function ψ(r) ∝ exp(– mαr) is of O(α∞)  (gauge dependent)

• There is no Positronium pole in any e+e– → e+e– Feynman diagram

• Atomic binding energies do have a perturbative expansion in α
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• 1986: Caswell & Lepage NRQED: Effective NR field theory
Expand QED action in powers of ∇/me 

Choose to start from Schrödinger atoms

• 1951: Salpeter & Bethe

44 Craig D. Roberts

Figure 6.1. Omitting the inhomogeneity, the upper panel illustrates the textbook form
of the Bethe-Salpeter equation, Eq. (3.10), whereas the lower panel depicts the form ex-
pressed in Eq. (6.1). The reversal of the total-momentum’s flow is immaterial here. N.B.
In any symmetry-preserving truncation, beyond the leading-order identified in Ref. [97];
i.e., rainbow-ladder, the Bethe-Salpeter kernel is nonplanar even if the vertex in the gap
equation is planar [167]. This is illustrated in Fig. 3.1.

Consider Eq. (6.2). Rainbow-ladder is the leading-order term in the systematic DSE
truncation scheme of Refs. [96,97]. It corresponds to Γf

ν = γν , in which case Eq. (6.2)
is solved by Λfg

5µβ ≡ 0 ≡ Λfg
5β . This is the solution that indeed provides the rainbow-

ladder forms of Eq. (6.1). Such consistency will be apparent in any valid systematic
term-by-term improvement of the rainbow-ladder truncation.

However, since the two-point functions of elementary excitations are strongly modified
in the infrared, one must accept that the same is generally true for three-point functions;
i.e., the vertices. Hence the bare vertex will be a poor approximation to the complete
result unless there are extenuating circumstances. This is readily made apparent, for
with a dressed-quark propagator of the form in Eq. (2.7), one finds immediately that the
Ward-Takahashi identity is breached; viz.,

Pµiγµ ≠ S−1(k + P/2) − S−1(k − P/2) , (6.3)

and the violation is significant whenever and wherever the mass function in Fig. 2.9
is large. This was actually realised early on, with studies of the fermion–gauge-boson
vertex in Abelian gauge theories [177] that have inspired numerous ensuing analyses. The
importance of this dressing to the reliable computation of hadron physics observables
was exposed in Refs. [178,179], insights from which have subsequently been exploited
effectively; e.g., Refs. [14,114,120,180–185].

The most important feature of the perturbative or bare vertex is that it cannot
cause spin-flip transitions; namely, it is an helicity conserving interaction. However, one
must expect that DCSB introduces nonperturbatively generated structures that very
strongly break helicity conservation. These contributions will be large when the dressed-
quark mass-function is large. Conversely, they will vanish in the ultraviolet; i.e., on the
perturbative domain. The exact form of the vertex contributions is still the subject of
study but their existence is model-independent.

Critical now is a realisation that Eq. (6.2) is far more than just a device for checking
a truncation’s consistency. For, just as the vector Ward-Takahashi identity has long

Perturbatively expand propagators S and kernel K
Explicit Lorentz covariance
No analytic solution even at lowest order in S and K

Developments in bound state QED

• 1975: Caswell & Lepage: BS is not unique: ∞ # of equivalent equations,  S ↔ K
We may choose to expand around Schrödinger atoms
Give up explicit boost invariance
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 10The perturbative S-matrix

Bound states have no overlap with free in- and out-states at t = ± ∞

H = H0 +HI H0 |iiin = Ei |iiin

Formally exact expression, provided the in- and out-states
have a non-vanishing overlap with the the physical i, f states.

Sfi = outhf, t ! 1|

⇢
Texp

h
� i

Z 1

�1
dtHI(t)

i�
|i, t ! �1iin

Expanding around free states is inappropriate for bound states.

No Feynman diagram 
has a bound state pole.

+ + + ...+ γ

Quarks and gluons are not even physical states (cf. D=1+1).

Feynman diagrams are derived in the Interaction Picture:
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 11 Hamiltonian approach: The classical field in QED

�SQED

�Â0(t,x)
= 0 ⇒

�r2Â0(t,x) = e †(t,x) (t,x)

Â0(t,x) =

Z
d3y

e

4⇡|x� y| 
† (t,y)

|x1,x2i =  ̄(t,x1) (t,x2) |0i

x2

x1

The classical field is the expectation value of Â0 in the state

hx1,x2| eÂ0(x) |x1,x2i
hx1,x2|x1,x2i

=
↵

|x� x1|
� ↵

|x� x2|

⌘ eA0(x;x1,x2)

Note:  •  A0 is determined instantaneously for all x

eA0(x1) = �eA0(x2) = � ↵

|x1 � x2| is the classical –α/r potential•

•  It depends on x1, x2                  The charges determine the field⇒
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Canonical quantisation in temporal gauge: A0 = 0

Avoids problem due to the missing conjugate field for A0

Ei = F i0 = �@0A
i

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

conjugate to Ai = �Ai
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

(i = 1,2,3)

⇥
Ei(t,x), Aj(t,y)

⇤
= i�ij�(x� y)

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

�
 †
↵(t,x), �(t,y)

 
= �↵� �(x� y)

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

G(x) ⌘ �S
�A0(x)

= @iE
i
L(x)� e † (x)

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Gauss’ operator does not vanish:

G(x) generates time-independent gauge transformations, allowed by A0 = 0

Fix the gauge completely by constraining physical states: G(x) |physi = 0
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

This constrains EL(x) for each state, in effect imposing Gauss’ law.

H =

Z
dx

⇥
1
2E

2
L + 1

2E
2
T + 1

4F
ij
F

ij +  
†(�i↵

i
@i � e↵

i
A

i +m�
0) 

⇤
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>
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Schrödinger equation for Positronium

G(x) |physi = 0
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

⇒ 
@iE

i
L(t,x) |physi = e † (t,x) |physi

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Ei
L(t,x) |physi = �@xi

Z
dy

e

4⇡|x� y| 
† (t,y) |physi

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

For the component of Positronium with 
an electron at x1 and a positron at x2:

Ei
L

��e�(x1)e
+(x2)

↵
= �@x

i
e

4⇡

⇣ 1

|x� x1|
� 1

|x� x2|

⌘ ��e�(x1)e
+(x2)

↵

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

The instantaneous Hamiltonian
gives the classical potential:

HV ⌘ 1
2

Z
dxEi

LE
i
L(x)

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

HV

��e�(x1)e
+(x2)

↵
= � ↵

|x1 � x2|
��e�(x1)e

+(x2)
↵

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

The Schrödinger equation follows when the kinetic energy term in H is added.

��e�(x1)e
+(x2)

↵
=  ̄↵(x1) �(x2) |0i

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>
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A classical field in QCD?

Global gauge invariance allows a classical gauge field for neutral atoms,
but not for color singlet hadrons in QCD

Positronium
QED

↵

|x� x1|
� ↵

|x� x2|
A0 = 

Proton
QCD

A0
a(x) = 0

However: 
The classical gluon field is non-vanishing for each color component C of the state

A0
a(x;C) 6= 0

X

C

A0
a(x;C) = 0

Note: This possibility does not exist for quarks and gluons.
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 15Temporal gauge in QCD: Aa0 = 0

Gauss’ operator Ga(x) ⌘
�S

�A0
a(x)

= @iE
i
a(x) + gfabcA

i
bE

i
c � g †T a (x)

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

generates time-independent gauge transformations, which keep A0
a = 0

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

The gauge is fully defined (in PT) by the constraint Ga(x) |physi = 0
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

@iE
i
L,a(x) |physi = g

⇥
� fabcA

i
bE

i
c +  †T a (x)

⇤
|physi

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

In QED one solves for EL requiring  EL(x) → 0 for |x| → ∞

In QCD the (globally) color singlet bound states

|Mi =
X

A,B;↵,�

Z
dx1dx2  ̄

A
↵ (t = 0,x1)�

AB�↵�(x1 � x2) 
B
� (t = 0,x2) |0i

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

cannot generate a classical octet field at any x. Hence for a given quark color A 
homogeneous solutions, which do not vanish at spatial infinity, may be considered.

⇒ 
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 16Including a homogeneous solution for ELa,i 

Ei
L,a(x) |physi = �@x

i

Z
dy

h
x · y +

g

4⇡|x� y|

i
Ea(y) |physi

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

where Ea(y) = �fabcA
i
bE

i
c(y) +  †T a (y)

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

 6= (x,y)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

and

The linear dependence on x makes EL independent of x, which is required by 
translation invariance. The field energy density is constant and ∝ κ .

The field energy ∝ volume of space is irrelevant only if it is universal.
This relates the normalisation κ of all Fock components, leaving only
an overall scale Λ as a parameter.

The EL contribution to the QCD Hamiltonian is

HV =

Z
dydz

n
y · z

h
1
2

2

Z
dx+ g

i
+ 1

2

↵s

|y � z|

o
Ea(y)Ea(z)

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>
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EL AT

Instantaneous Transverse

time → time →g

g

EL
EL

EL

O(g0, g2) O(g2)

x1 x1

x2 x2

xg

q

q̅

+ + …

The instantaneous Hamiltonian HV determines the potential energy.

The qq̅AT   etc. terms in H determine couplings between Fock states.

The q and AT kinetic terms determine the time evolution.

Essential: The O(g0) potential does not create particles.
Gauss’ law is a constraint, not an operator identity.
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 18Examples: Fock state potentials (I)

HV |q(x1)q̄(x2)i = Vqq̄ |q(x1)q̄(x2)i
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

qq̅ :

Vqq̄ = ⇤2|x1 � x2|� CF
↵s

|x1 � x2|
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

qgq̅ : V (0)
qgq (x1,xg,x2) =

⇤2

p
CF

dqgq(x1,xg,x2)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

dqgq(x1,xg,x2) ⌘
q

1
4 (N � 2/N)(x1 � x2)2 +N(xg � 1

2x1 � 1
2x2)2

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

V (1)
qgq (x1,xg,x2) =

1
2 ↵s

h 1

N

1

|x1 � x2|
�N

⇣ 1

|x1 � xg|
+

1

|x2 � xg|

⌘i

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

V (0)
qgq (x1 = xg,x2) = ⇤2|x1 � x2| = V (0)

qq̄
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

When q and g coincide:

V (1)
qgq (x1 = xg,x2) = V (1)

qq̄
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>
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 19Fock state potentials (II)

qqq :

Vqqq = ⇤2dqqq(x1,x2,x3)�
2

3
↵s

⇣ 1

|x1 � x2|
+

1

|x2 � x3|
+

1

|x3 � x1|

⌘

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

dqqq(x1,x2,x3) ⌘
1p
2

p
(x1 � x2)2 + (x2 � x3)2 + (x3 � x1)2

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

gg : Vgg =

r
N

CF
⇤2 |x1 � x2|�N

↵s

|x1 � x2|
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

This agrees with the qgq̅ potential where the quarks coincide:

Vgg(x,xg) = Vqgq̄(x,xg,x)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

It is straightforward to work out the instantaneous potential for any Fock state.
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|Mi =
X

A,B;↵,�

Z
dx1dx2  ̄

A
↵ (t = 0,x1)�

AB�↵�(x1 � x2) 
B
� (t = 0,x2) |0i

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

    qq ̅bound states

Express a qq̅ bound state in terms of a wave function Φ,

The bound state condition H |Mi = M |Mi
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

gives, with H |0i = 0
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

and keeping only the O(αs0) terms in H,

⇥
i�0� ·

!
r+m�0

⇤
�(x) + �(x)

⇥
i�0� ·

 
r�m�0

⇤
=

⇥
M � V (|x|)

⇤
�(x)

where x ≡ x1-x2 and V(| x |) = V´| x | = Λ2| x | .

In the non-relativistic limit (m ≫ Λ) this reduces to the Schrödinger equation,
and we may add the instantaneous gluon exchange potential.

The successful quarkonium phenomenology with the Cornell potential.⇒ 
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  Relativistic qq ̅bound states

Expanding the 4 × 4 wave function 
in a basis of 16 Dirac structures Γi(x) �(x) =

X

i

�i(x)Fi(r)Yj�(x̂)

we may use rotational, parity and charge conjugation invariance to determine
which Γi(x) may occur for a state of given jPC:

10

“trajectories”, identified by the J
PC quantum numbers of their j = 0 member5:

0�+ trajectory [s = 0, ` = j] : �⌘P = ⌘C = (�1)j �5, �
0
�5, �5 ↵ · x, �5 ↵ · x⇥L

0�� trajectory [s = 1, ` = j] : ⌘P = ⌘C = �(�1)j �
0
�5 ↵ · x, �

0
�5 ↵ · x⇥L, ↵ ·L, �

0 ↵ ·L

0++ trajectory [s = 1, ` = j ± 1] : ⌘P = ⌘C = +(�1)j 1, ↵ · x, �
0↵ · x, ↵ · x⇥L, �

0↵ · x⇥L, �
0
�5 ↵ ·L

0+� trajectory [exotic] : ⌘P = �⌘C = (�1)j �
0
, �5 ↵ ·L

(4.4)

The non-relativistic spin s and orbital angular momentum ` are indicated in brackets. Relativistic e↵ects mix the
` = j ± 1 states on the 0++ trajectory, resulting in a pair of coupled radial equations. The j = 0 state on the 0��

trajectory and the entire 0+� trajectory are incompatible with the s, ` assignments and thus exotic in the quark
model. They turn out to be missing also in the relativistic case. The bound state equation (3.8) has no solutions for
states on the 0+� trajectory (�i = �

0 or �5 ↵ ·L) since

ir ·
�
↵, �

0
 
= ir · {↵, �5 ↵ ·L} = m

⇥
�
0
, �

0
⇤
= m

⇥
�
0
, �5 ↵ ·L

⇤
= 0 (4.5)

B. Properties of the 0�+ trajectory: ⌘P = (�1)j+1, ⌘C = (�1)j

1. Wave function and radial equation

According to the classification (4.4) we expand the wave function ��+(x) of the 0�+ trajectory as

��+(x) =
h
F1(r) +↵ · xF2(r) +↵ · x⇥LF3(r) +m�

0
F4(r)

i
�5 Yj�(x̂) (4.6)

Using this in the bound state equation (3.8), noting that ir · x ⇥ L = L2 and equating terms with the same Dirac
structure we get the conditions:

�5 : i(3 + r@r)F2 + j(j + 1)F3 +m
2
F4 = 1

2 (M � V )F1

�5 ↵ · x :
i

r
@rF1 = 1

2 (M � V )F2

�5 ↵ · x⇥L :
1

r2
F1 = 1

2 (M � V )F3

�
0
�5 : F1 = 1

2 (M � V )F4 (4.7)

Expressing F2, F3 and F4 in terms of F1 we find the radial equation (denoting F
0
1 ⌘ @rF1)

F
00
1 +

⇣2
r
+

V
0

M � V

⌘
F
0
1 +

h
1
4 (M � V )2 �m

2 � j(j + 1)

r2

i
F1 = 0 (4.8)

in agreement with the corresponding result in Eq. (2.24) of [11].

The relations (4.7) allow to express the wave function (4.6) as

��+(x) =
h 2

M � V
(i↵ ·

!
r+m�

0) + 1
i
�5 F1(r)Yj�(x̂) = F1(r)Yj�(x̂) �5

h
(i↵ ·

 
r�m�

0)
2

M � V
+ 1

i
(4.9)

The radial equation (4.8) is readily found when the first (second) form is used in the first (second) term of the bound
state equation (3.9). Both terms have a spin-orbit interaction which cancels in their sum. The contribution from the
quark term is, taking into account the radial equation,

h 2

M � V
(i↵ ·

!
r+m�

0)� 1
i
��+(x) =

4V 0

r(M � V )3
(2S ·L� im� · x)�5 F1(r)Yj�(x̂) (4.10)

where the spin S = 1
2�5↵. This contribution is cancelled by the antiquark (second) term of (3.9), ensuring that the

bound state is stationary in time.

5 The first three trajectories were named ⇡, A1 and ⇢ in [11].

There are no solutions for quantum numbers that would be exotic 
in the quark model (despite the relativistic dynamics)

⇒ 

ir ·
�
�0�,�(x)

 
+m

⇥
�0,�(x)

⇤
=
⇥
M � V (x)

⇤
�(x)
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  Example: 0–+ trajectory wf’s

��+(x) =
h 2

M � V
(i↵ ·

!
r+m�0) + 1

i
�5 F1(r)Yj�(x̂)

Radial equation: F 00
1 +

⇣2
r
+

V 0

M � V

⌘
F 0
1 +

h
1
4 (M � V )2 �m2 � j(j + 1)

r2

i
F1 = 0

ηP = (–1)j+1

ηC = (–1)j

Spectrum similar to
dual models

/V´

Linear Regge
trajectories 

with daughters

• • • • • • • • • •
• • • • • • • • • •
• • • • • • • • • •
• • • • • • • • • •
• • • • • • • • • •

5 10 15 20

1

2

3

4

5

6

M2

j
Mass spectrum:

m = 0

Local normalizability at r = 0 and at V(r) = M determines the discrete M
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   Sea quark contributions

The Dirac wave function has the same
behaviour for a linear potential.

On general grounds, and as seen in PT, 
relativistic interactions imply
contributions from Z-diagrams, 
implying higher Fock states.

This effect is included in the wave function Φ, 
It is manifest in the behavior, for V = V´|x| ,

lim
x!1

|�(x)|2 = const.
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

The asymptotically constant norm reflects, via duality,
pair production as the linear potential V(| x |) increases.

These sea quarks show up in the parton distribution measured in DIS.

t →



 24Parton distributions have a sea component

In D=1+1 dimensions the sea component is prominent at low m/e :

0.2 0.4 0.6 0.8 1.0
xBj

2

4

6

8

10
xBjf xBj( )

xBj
2
4
6
8
10
12
14
xBjf xBj( )

0.10.050.010.001

(a) (b)

The red curve is an analytic approximation, valid in the xBj  → 0 limit.

m/e = 0.1

(log scale in xBj)

Note: Enhancement at low x is due to bd (sea), not to b†d† (valence) component.

D. D. Dietrich, PH, M. Järvinen
arXiv 1212.4747
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39

(ii) It has been known since 1932 [28] that the normalization integral
R
d
3x| (x)|2 of the Dirac wave function diverges

for all polynomial potentials V (|x|) and that the energy spectrum is continuous17. There is little awareness and
understanding of this property of the Dirac bound states (see [30] for a recent discussion). With retarded boundary
conditions  †

 is the number operator of positive and negative energy fermions, and its expectation value in the
Dirac state is | (x)|2. Fig. 14 supports the interpretation of | (x)|2 as an inclusive particle density.

δ1

δ2
A

B

C

FIG. 19: The dual diagram for meson
splitting A ! B + C, given by (7.1).
The qq̄ pair is created at distance �1

from the quark and �2 from the anti-
quark of meson A.

The ff̄ bound states that we studied in Section V also need to be built on
a vacuum that is an eigenstate of the Hamiltonian. This suggests an analogy
to the in and out states used as asymptotic states of the perturbative S-
matrix, which are eigenstates of the free Hamiltonian H0. States defined at
asymptotic times are on-shell and thus independent of the i" prescription in
their propagator. The ff̄ states discussed here may be used as asymptotic
states of the S-matrix, as in the electromagnetic form factor (5.48).

The time development from t = ±1 to the (finite) scattering time is deter-
mined by the full Hamiltonian. The asymptotic states therefore develop into
eigenstates of H by the time of scattering. In addition to contributions from
higher orders in ↵s, the bound states can split and merge as illustrated in
the dual meson diagram of Fig. 19. The amplitude hB,C|Ai can be evaluated
directly from the definition (6.12) of the meson states, using anticommutation
relations for the quark fields according to Fig. 19. Suppressing Dirac and color
indices,

hB,C|Ai =
1p
NC

Z h Y

k=A,B,C

dxk
1dx

k
2

i
e
i(xA

1 +xA
2 )·PA/2�i(xB

1 +xB
2 )·PB/2�i(xC

1 +xC
2 )·PC/2

⇥ h0|
⇥
 
†(xB

2 )�
†
B�

0
 (xB

1 )
⇤⇥
 
†(xC

2 )�
†
C�

0
 (xC

1 )
⇤⇥
 
†(xA

1 )�
0(xA

1 )�A (x
A
2 )

⇤
|0i

= � (2⇡)3p
NC

�
3(PA � PB � PC)

Z
d�1d�2 e

i�1·PC/2�i�2·PB/2Tr
⇥
�
0�†

B(�1)�A(�1 + �2)�
†
C(�2)

⇤
(7.1)

If the A ! B + C amplitude is combined with B + C ! A we get a hadron loop correction to the propagation of A.
The loop also induces mixing between hadrons, A ! B + C ! D. Thus the orthogonal basis of wave functions �(x)
which satisfy the bound state equation (6.10) needs to be rediagonalized when hadron loop corrections are considered.
Similarly to the Dirac wave functions (see remark (ii) above) the original basis functions are not normalizable, as
their norm �†(x)�(x) approaches a constant at large |x|. The mixing will likely redistribute the large |x| components
of low-lying states onto higher-lying states (which then decay into on-shell pairs, much like the pions produced in
phenomenological string breaking). The states of the rediagonalized basis may thus become normalizable. The
importance of the loop corrections for physical quantities depends on how sensitive measurables are to the large |x|
components of the wave functions. In D = 1+ 1 both the parton distributions and duality relations were determined
by low values of x, and should therefore be fairly insensitive to the mixing e↵ects.

There is an essential di↵erence between the Dirac wave functions and the ff̄ solutions of (6.10). The ff̄ wave functions
�(x) are (in the rest frame) generally singular at M = V (|x|) [42]. Regular (locally normalizable) solutions exist
only for discrete bound state masses. The Dirac wave functions have no singularities, implying a continuous mass
spectrum [28, 29].

The bound state equation (6.10) appears to have a hidden boost invariance, which ensures the correct frame depen-

dence for the energy eigenvalues, E =
p

M2 + P 2. We investigated this in some detail in D = 1 + 1 dimensions,
where the P -dependence of the wave function is given by (5.16). In D = 3+ 1 a similar relation holds when x||P , in
which case the bound state equation can be cast in the covariant form (6.32). Whether the frame dependence of the
wave function can be expressed analytically for general x is an open question.

The Poincaré covariance makes it possible to consider dynamical processes involving bound states. We studied
electromagnetic form factors and parton-hadron duality in D = 1+ 1. Many more processes are of interest, including
hadron-hadron scattering. The outcome of such studies, including the loop corrections mentioned above, will determine
whether considering the O

�
g
0
�
homogeneous solution (6.11) of Gauss’ law is physically viable.

17 The sole exception is the V (r) ⇠ 1/r potential in D = 3 + 1 dimensions, which is often found in textbooks.
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The ff̄ bound states that we studied in Section V also need to be built on
a vacuum that is an eigenstate of the Hamiltonian. This suggests an analogy
to the in and out states used as asymptotic states of the perturbative S-
matrix, which are eigenstates of the free Hamiltonian H0. States defined at
asymptotic times are on-shell and thus independent of the i" prescription in
their propagator. The ff̄ states discussed here may be used as asymptotic
states of the S-matrix, as in the electromagnetic form factor (5.48).

The time development from t = ±1 to the (finite) scattering time is deter-
mined by the full Hamiltonian. The asymptotic states therefore develop into
eigenstates of H by the time of scattering. In addition to contributions from
higher orders in ↵s, the bound states can split and merge as illustrated in
the dual meson diagram of Fig. 19. The amplitude hB,C|Ai can be evaluated
directly from the definition (6.12) of the meson states, using anticommutation
relations for the quark fields according to Fig. 19. Suppressing Dirac and color
indices,

hB,C|Ai =
1p
NC

Z h Y

k=A,B,C

dxk
1dx
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If the A ! B + C amplitude is combined with B + C ! A we get a hadron loop correction to the propagation of A.
The loop also induces mixing between hadrons, A ! B + C ! D. Thus the orthogonal basis of wave functions �(x)
which satisfy the bound state equation (6.10) needs to be rediagonalized when hadron loop corrections are considered.
Similarly to the Dirac wave functions (see remark (ii) above) the original basis functions are not normalizable, as
their norm �†(x)�(x) approaches a constant at large |x|. The mixing will likely redistribute the large |x| components
of low-lying states onto higher-lying states (which then decay into on-shell pairs, much like the pions produced in
phenomenological string breaking). The states of the rediagonalized basis may thus become normalizable. The
importance of the loop corrections for physical quantities depends on how sensitive measurables are to the large |x|
components of the wave functions. In D = 1+ 1 both the parton distributions and duality relations were determined
by low values of x, and should therefore be fairly insensitive to the mixing e↵ects.

There is an essential di↵erence between the Dirac wave functions and the ff̄ solutions of (6.10). The ff̄ wave functions
�(x) are (in the rest frame) generally singular at M = V (|x|) [42]. Regular (locally normalizable) solutions exist
only for discrete bound state masses. The Dirac wave functions have no singularities, implying a continuous mass
spectrum [28, 29].

The bound state equation (6.10) appears to have a hidden boost invariance, which ensures the correct frame depen-

dence for the energy eigenvalues, E =
p

M2 + P 2. We investigated this in some detail in D = 1 + 1 dimensions,
where the P -dependence of the wave function is given by (5.16). In D = 3+ 1 a similar relation holds when x||P , in
which case the bound state equation can be cast in the covariant form (6.32). Whether the frame dependence of the
wave function can be expressed analytically for general x is an open question.

The Poincaré covariance makes it possible to consider dynamical processes involving bound states. We studied
electromagnetic form factors and parton-hadron duality in D = 1+ 1. Many more processes are of interest, including
hadron-hadron scattering. The outcome of such studies, including the loop corrections mentioned above, will determine
whether considering the O

�
g
0
�
homogeneous solution (6.11) of Gauss’ law is physically viable.

17 The sole exception is the V (r) ⇠ 1/r potential in D = 3 + 1 dimensions, which is often found in textbooks.
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(ii) It has been known since 1932 [28] that the normalization integral
R
d
3x| (x)|2 of the Dirac wave function diverges

for all polynomial potentials V (|x|) and that the energy spectrum is continuous17. There is little awareness and
understanding of this property of the Dirac bound states (see [30] for a recent discussion). With retarded boundary
conditions  †

 is the number operator of positive and negative energy fermions, and its expectation value in the
Dirac state is | (x)|2. Fig. 14 supports the interpretation of | (x)|2 as an inclusive particle density.
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FIG. 19: The dual diagram for meson
splitting A ! B + C, given by (7.1).
The qq̄ pair is created at distance �1

from the quark and �2 from the anti-
quark of meson A.

The ff̄ bound states that we studied in Section V also need to be built on
a vacuum that is an eigenstate of the Hamiltonian. This suggests an analogy
to the in and out states used as asymptotic states of the perturbative S-
matrix, which are eigenstates of the free Hamiltonian H0. States defined at
asymptotic times are on-shell and thus independent of the i" prescription in
their propagator. The ff̄ states discussed here may be used as asymptotic
states of the S-matrix, as in the electromagnetic form factor (5.48).

The time development from t = ±1 to the (finite) scattering time is deter-
mined by the full Hamiltonian. The asymptotic states therefore develop into
eigenstates of H by the time of scattering. In addition to contributions from
higher orders in ↵s, the bound states can split and merge as illustrated in
the dual meson diagram of Fig. 19. The amplitude hB,C|Ai can be evaluated
directly from the definition (6.12) of the meson states, using anticommutation
relations for the quark fields according to Fig. 19. Suppressing Dirac and color
indices,
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If the A ! B + C amplitude is combined with B + C ! A we get a hadron loop correction to the propagation of A.
The loop also induces mixing between hadrons, A ! B + C ! D. Thus the orthogonal basis of wave functions �(x)
which satisfy the bound state equation (6.10) needs to be rediagonalized when hadron loop corrections are considered.
Similarly to the Dirac wave functions (see remark (ii) above) the original basis functions are not normalizable, as
their norm �†(x)�(x) approaches a constant at large |x|. The mixing will likely redistribute the large |x| components
of low-lying states onto higher-lying states (which then decay into on-shell pairs, much like the pions produced in
phenomenological string breaking). The states of the rediagonalized basis may thus become normalizable. The
importance of the loop corrections for physical quantities depends on how sensitive measurables are to the large |x|
components of the wave functions. In D = 1+ 1 both the parton distributions and duality relations were determined
by low values of x, and should therefore be fairly insensitive to the mixing e↵ects.

There is an essential di↵erence between the Dirac wave functions and the ff̄ solutions of (6.10). The ff̄ wave functions
�(x) are (in the rest frame) generally singular at M = V (|x|) [42]. Regular (locally normalizable) solutions exist
only for discrete bound state masses. The Dirac wave functions have no singularities, implying a continuous mass
spectrum [28, 29].

The bound state equation (6.10) appears to have a hidden boost invariance, which ensures the correct frame depen-

dence for the energy eigenvalues, E =
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M2 + P 2. We investigated this in some detail in D = 1 + 1 dimensions,
where the P -dependence of the wave function is given by (5.16). In D = 3+ 1 a similar relation holds when x||P , in
which case the bound state equation can be cast in the covariant form (6.32). Whether the frame dependence of the
wave function can be expressed analytically for general x is an open question.

The Poincaré covariance makes it possible to consider dynamical processes involving bound states. We studied
electromagnetic form factors and parton-hadron duality in D = 1+ 1. Many more processes are of interest, including
hadron-hadron scattering. The outcome of such studies, including the loop corrections mentioned above, will determine
whether considering the O
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g
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homogeneous solution (6.11) of Gauss’ law is physically viable.

17 The sole exception is the V (r) ⇠ 1/r potential in D = 3 + 1 dimensions, which is often found in textbooks.

When squared, this gives a 1/NC hadron loop unitarity correction:

The bound state equation determines zero-width states.

Decays and hadron loops

There is an O

⇣
1/
p

NC

⌘ coupling between the 
states: string breaking

Unitarity should be satisfied at hadron level at each order of 1/NC .
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 26Bound states in motion

P breaks rotational symmetry: angular & radial dependence does not separate.

The potential is P-independent, V (x) = V 0|x|

The solution for Φ(P)(x) in D = 1+1 dimensions is not simply Lorentz contracting.

It provides a boundary condition at x⊥ = 0 on Φ(P)(x) in D = 3+1 dimensions.
This works only for a linear potential.

A qq̅ bound state with CM momentum P may be expressed as

|M,P i =
Z

dx1 dx2  ̄(t = 0, x1) e
iP ·(x1+x2)/2 �(P )(x1 � x2) (t = 0, x2) |0i
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so the BSE becomes
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 27States with M = 0

We required the wave function to be normalizable at r = 0 and V´r = M

For M = 0 the two points coincide. Regular, massless solutions are found.

P̂µ |�i = 0 State has vanishing four-momentum in any frame.
It may mix with the perturbative vacuum.
This spontaneously breaks chiral invariance.

The massless 
0++ meson “σ”

��(x) = N�

h
J0(

1
4r

2) +↵ · x i

r
J1(

1
4r

2)
i

|�i =
Z

dx1 dx2  ̄(x1)��(x1 � x2) (x2) |0i ⌘ �̂ |0i

For m = 0 and V´ = 1 :

J0 and J1 are Bessel functions.
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 28A chiral condensate (m = 0)

Since | σ 〉 has vacuum quantum numbers and zero momentum it can mix
with the perturbative vacuum without violating Poincaré invariance

|�i = exp(�̂) |0iAnsatz: implies h�| ̄ |�i = 4N�

An infinitesimal chiral rotation of the condensate generates a pion

U�(�) |�i = (1� 2i� ⇡̂ |�i

�⇡ = �5��where π̂  is the massless 0–+ state with wave function

U�(�) = exp
⇥
i�

Z
dx †(x)�5 (x)

⇤
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 29Small quark mass: m > 0

When m ≠ 0 the massless (Mσ = 0) sigma 0++ state has wave function

��(x) = f1(r) + i↵ · x f2(r) + i� · x g2(r)

An Mπ > 0 pion 0–+ state has rest frame wave function

�⇡(x) =
⇥
F1(r) + i↵ · xF2(r) + �0 F4(r)

⇤
�5

F 00
1 +

⇣2
r
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1

M � r

⌘
F 0
1 +

⇥
1
4 (M � r)2 �m2

⇤
F1 = 0

F4(0) =
2m

M
F1(0)

h�|jµ5 (x)⇡̂ |�i = iPµf⇡ e
�iP ·x

h�| ̄(x)�5 (x) ⇡̂ |�i = �i
M2

2m
f⇡ e

�iP ·x

F4(0) =
1
4 iM⇡f⇡

F1(0) = i
M2

8m
f⇡

⇒ 

⇒ 

CSB relations are satisfied for any P.

Radial functions
are Laguerre fn’s
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Final remarks

QED bound states have both perturbative and non-perturbative aspects.

Positronium may be derived from QED using temporal gauge:

String breaking effects (decays, etc.) are calculable:
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(ii) It has been known since 1932 [28] that the normalization integral
R
d
3x| (x)|2 of the Dirac wave function diverges

for all polynomial potentials V (|x|) and that the energy spectrum is continuous17. There is little awareness and
understanding of this property of the Dirac bound states (see [30] for a recent discussion). With retarded boundary
conditions  †

 is the number operator of positive and negative energy fermions, and its expectation value in the
Dirac state is | (x)|2. Fig. 14 supports the interpretation of | (x)|2 as an inclusive particle density.
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splitting A ! B + C, given by (7.1).
The qq̄ pair is created at distance �1

from the quark and �2 from the anti-
quark of meson A.

The ff̄ bound states that we studied in Section V also need to be built on
a vacuum that is an eigenstate of the Hamiltonian. This suggests an analogy
to the in and out states used as asymptotic states of the perturbative S-
matrix, which are eigenstates of the free Hamiltonian H0. States defined at
asymptotic times are on-shell and thus independent of the i" prescription in
their propagator. The ff̄ states discussed here may be used as asymptotic
states of the S-matrix, as in the electromagnetic form factor (5.48).

The time development from t = ±1 to the (finite) scattering time is deter-
mined by the full Hamiltonian. The asymptotic states therefore develop into
eigenstates of H by the time of scattering. In addition to contributions from
higher orders in ↵s, the bound states can split and merge as illustrated in
the dual meson diagram of Fig. 19. The amplitude hB,C|Ai can be evaluated
directly from the definition (6.12) of the meson states, using anticommutation
relations for the quark fields according to Fig. 19. Suppressing Dirac and color
indices,

hB,C|Ai =
1p
NC

Z h Y

k=A,B,C

dxk
1dx

k
2

i
e
i(xA

1 +xA
2 )·PA/2�i(xB

1 +xB
2 )·PB/2�i(xC

1 +xC
2 )·PC/2

⇥ h0|
⇥
 
†(xB

2 )�
†
B�

0
 (xB

1 )
⇤⇥
 
†(xC

2 )�
†
C�

0
 (xC

1 )
⇤⇥
 
†(xA

1 )�
0(xA

1 )�A (x
A
2 )

⇤
|0i

= � (2⇡)3p
NC

�
3(PA � PB � PC)

Z
d�1d�2 e

i�1·PC/2�i�2·PB/2Tr
⇥
�
0�†

B(�1)�A(�1 + �2)�
†
C(�2)

⇤
(7.1)

If the A ! B + C amplitude is combined with B + C ! A we get a hadron loop correction to the propagation of A.
The loop also induces mixing between hadrons, A ! B + C ! D. Thus the orthogonal basis of wave functions �(x)
which satisfy the bound state equation (6.10) needs to be rediagonalized when hadron loop corrections are considered.
Similarly to the Dirac wave functions (see remark (ii) above) the original basis functions are not normalizable, as
their norm �†(x)�(x) approaches a constant at large |x|. The mixing will likely redistribute the large |x| components
of low-lying states onto higher-lying states (which then decay into on-shell pairs, much like the pions produced in
phenomenological string breaking). The states of the rediagonalized basis may thus become normalizable. The
importance of the loop corrections for physical quantities depends on how sensitive measurables are to the large |x|
components of the wave functions. In D = 1+ 1 both the parton distributions and duality relations were determined
by low values of x, and should therefore be fairly insensitive to the mixing e↵ects.

There is an essential di↵erence between the Dirac wave functions and the ff̄ solutions of (6.10). The ff̄ wave functions
�(x) are (in the rest frame) generally singular at M = V (|x|) [42]. Regular (locally normalizable) solutions exist
only for discrete bound state masses. The Dirac wave functions have no singularities, implying a continuous mass
spectrum [28, 29].

The bound state equation (6.10) appears to have a hidden boost invariance, which ensures the correct frame depen-

dence for the energy eigenvalues, E =
p

M2 + P 2. We investigated this in some detail in D = 1 + 1 dimensions,
where the P -dependence of the wave function is given by (5.16). In D = 3+ 1 a similar relation holds when x||P , in
which case the bound state equation can be cast in the covariant form (6.32). Whether the frame dependence of the
wave function can be expressed analytically for general x is an open question.

The Poincaré covariance makes it possible to consider dynamical processes involving bound states. We studied
electromagnetic form factors and parton-hadron duality in D = 1+ 1. Many more processes are of interest, including
hadron-hadron scattering. The outcome of such studies, including the loop corrections mentioned above, will determine
whether considering the O

�
g
0
�
homogeneous solution (6.11) of Gauss’ law is physically viable.

17 The sole exception is the V (r) ⇠ 1/r potential in D = 3 + 1 dimensions, which is often found in textbooks.

Hadron-level unitarity should be checked.

The perturbative and Fock expansions are closely related.

Many interesting studies & tests are waiting to be done!

A0 = 0
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The solution of Gauss’ law in QCD allows a homogeneous solution for
color singlet states. This gives an              linear potential for qq̅ states. O

�
↵0
s

�
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Massless bound states allow spontaneous chiral symmetry breaking.

One obtains relativistic states with exact J = L + S.

The quarkonium phenomenology is derived.


