PAP 352 Galaxy Survey Cosmology

Introduction

Cosmology curriculum

Galaxy Survey Cosmology

- PAP352 Galaxy Survey Cosmology 18.1 3.3
- https://moodle.helsinki.fi/course/view.php?id=56110
- Lecture notes
 - Homework problems
- Lecturer: Hannu Kurki-Suonio Assistant: Kimmo Kiiveri
- Lectures : We 12-14, Th 12-14 ?
- Homework problem sets given out on Wednesdays
- Exercise session: Fr 14-16
- The course is lectured in English (I take questions also in Finnish)
- No exam, grade 100% from homework

HIP SEMINAR ROOM A315 RESERVATIONS SPRING 2023

(16.1.-5.3.2023)

	Monday	Tuesday	Wednesday	Thursday	Friday
8.00 - 9.00					
9.00 - 10.00					
10.00 - 11.00	г ТFT	г НIР	ر Quantum	г НІР	
11.00 - 12.00	Vuorinen	Seminar	mechanics IIa Keski-Vakkuri [」]	Seminar [」]	
12.00 - 13.00	۲ Statistical	۲ Statistical	ر Galaxy Survey	۲ Galaxy Survey	
13.00 - 14.00	Mechanics Kerminen ^J	Mechanics Kerminen ¹	Cosmology Kurki-Suonio ¹	Cosmology Kurki-Suonio ¹	
14.00 - 15.00	۲ Gen. relativity	۲ Gen. relativity	۲ Astroparticle		۲ Galaxy Survey
15.00 - 16.00	Räsänen	Räsänen [_]	Seminar		Cosmology Exercises
16.00 - 17.00	ر Quantum		ر Gen. relativity		
17.00-18.00	Mechanics IIa Keski-Vakkuri		Exercises [」]		
18.00 - 19.00					
19.00 - 20.00					

FOR RESERVATIONS PLEASE CONTACT TARJA H. (tarja.heikkila@helsinki.fi)

16.01.2023

The CMB shows us the early universe at t \approx 370 000 years

CMB in Galactic coordinates

Planck 2013

Composition and fate of the universe

- Expansion of the universe appears to be accelerating
- This may eventually lead the universe to be very empty
- General relativity => energy component with negative pressure
- This is called "dark energy": $p = w\rho$, w < 0 (w = -1 cosmological const.)
- Alternative explanation: modify general relativity (at very large scales)

Planck satellite

Launch 2009, observations 2009-13, final results 2018

Standard ΛCDM parameters

Parameter	Planck 2018	+ other data
$arOmega_b h^2$	0.02237±15	0.02242±14
$\Omega_c h^2$	0.1200±12	0.1193±9
<i>100θ</i> *	1.04110±31	1.04119±29
τ	0.054±7	0.056±7
n _s	0.9649±42	0.9665±38
$\ln(10^{10}A_s^2)$	3.044±14	3.047±14

(68% CL errors are for the least significant digits, $h = H_0$ in units of 100 km/s/Mpc)

$arOmega_{\!A}$	0.685±7	0.689±6
$arOmega_{m}$	0.315±7	0.311±6
H ₀	67.4±5	67.7±4
Age/Gyr	13.797±23	13.787±20

Recipe for the universe

Dark energy 68.5%
Cold dark matter 26.7%
Ordinary matter 4.8%

Limits to extended models

 Λ CDM + one extra feature (parameter):

Parameter	Planck 2018	+ other data
$\Omega_{K} = 1 - \Omega$	-0.011±13	0.001±4
Σm_{v} [eV]	< 0.241	< 0.120
N _{eff}	2.89±0.38	2.99±0.34
r = T/S	< 0.101	< 0.065
<i>w</i> = DE <i>p</i> / <i>ρ</i>	-1.57±0.50	-1.04±0.10
nonG $f_{\rm NL}$	-0.9±10.2	
$lpha_{ au}$ (matter)	< 1.3%	
$lpha_{ au}$ (neutrinos)	< 1.7%	

(95% confidence limits)

Flatness of the universe

- Planck data agrees with a flat universe
- No sign of background curvature
- Deviation from critical density < 0.5%
- Curvature radius > 5.9 x distance to the horizon (from where CMB comes)

Smallest allowed closed (3-sphere) universe

Lensing of the CMB $T(\hat{n}) = T^{\text{unl}}(\hat{n} + \nabla \phi(\hat{n})),$

Lensing Potential ≈ *Distribution of Dark Matter*

Planck 2015

Lighter color = more dark matter

Summary

- We have a working cosmological model that agrees with observations:
 - The universe is flat (Ω = 1)
 - Expands according to the laws of general relativity
 - Energy content:
 - ≈ 69% dark energy (cosmological constant, vacuum energy)
 - ≈ 26% cold dark matter
 - ≈ 5% ordinary ("baryonic") matter
 - < 0.6 % neutrinos
 - 0.005% photons
 - Structure (galaxies, their clustering) formed by gravitational attraction starting from small primordial seed density variations,
 - which were created by some random process in the very early universe (consistent with quantum fluctuations during inflation)

- Primordial perturbations:
 - almost scale invariant ($n = 0.965 \pm 0.004$)
 - no gravitational waves observed so far (r < 6.5%)
 - no deviations from Gaussianity observed so far $(f_{NL} < 11(\approx 0.2\%))$
 - no deviations from adiabaticity observed so far ($\alpha_T < 1.7\%$)
 - agrees with predictions from the simplest inflation models
 - but we would like to observe primordial gravitational waves
- Open questions:
 - Nature of dark energy ? (New ESA mission Euclid, launch 2023)
 - What is the cold dark matter particle ? (LHC)

Galaxy survey cosmology

- Current observational information on cosmology is dominated by the cosmic microwave background (z ~ 1000)
 - WMAP and Planck space missions
- Focus on the early universe
- Constraints on evolution from then to now are weak
- Attention now turning to large galaxy surveys
- Focus on the evolution during the last ³/₄ of the history

 $-z \sim 2 to 0$

Ground-based surveys

- Current (or past)
 - Sloan Digital Sky Survey (SDSS)
 - Baryon Oscillation Spectroscopic Survey (BOSS)
 - Kilo-Degree Survey (KiDS)
 - Dark Energy Survey (DES): 3-year results published
- Future
 - Vera C. Rubin Observatory Legacy Survey of Space and Time (LSST), first light 2023

Space missions

• Euclid (ESA), launch 2023

 Nancy Grace Roman Space Telescope (NASA), launch after 2025 (2026-27 ?)

Two-point correlation function $\boldsymbol{\xi}$

- Measure of clustering of galaxies
- ξ(r) = excess probability of finding another galaxy a separation
 r from a randomly chosen galaxy

Fig. 2.37. The two-point correlation function of galaxies in redshift space (left) and real space (right). The straight line is a power law, $\xi(r) = (r/r_0)^{-\gamma}$, with $r_0 = 5.05 h^{-1}$ Mpc and $\gamma = 1.67$. [Based on data published in Hawkins et al. (2003)] [MBW p. 83]

Redshift-space distortions (RSD)

- Distance to the galaxy determined from redshift
 - Affected by peculiar velocity
- Affects radial component of position
 - Transverse component (position on sky) not affected

[Peacock et al, Nature 410, 169 (2001)

Baryon Acoustic Oscillation scale

- Distance scale (~ 140 Mpc) imprinted on matter distribution in the early universe by oscillation of the baryon-photon fluid
- Prominent in the CMB anisotropy (z = 1090)
- Faint in galaxy distribution, can be measured at different redshifts z
- A standard ruler to measure expansion

Ross et al. arXiv:1607.03415 MNRAS 464, 1168 (2017) Two-parameter dark energy equation of state: $p = [w_0+w_a(a-a_0)]\rho$

[Planck Collaboration, arXiv:1807.06209]

Dark energy vs modified gravity

- Both can give the same expansion history
- But they affect growth of structure (formation of galaxies and galaxy clusters) differently
- Expansion slows down formation of structure
- Modifying gravity has an additional effect
- Most of the structure is in the distribution of dark matter; galaxies provide only a crude measurement
- How to see dark matter structures?
 - Gravitational lensing

Gravitational lensing

Abell 2218: strong gravitational lens

All galaxies are lensed

- For most galaxies the effect is small (weak lensing)
 - Image stretched by a few %
- But large enough to be measured
- If we only knew the true shape of the galaxy!
- Statistical method
 - Fit an ellipse to each galaxy image
 - Assume galaxies oriented randomly
 - If galaxies in the same small region of sky appear elongated in the same direction on average; conclude this is due to lensing

Shear (lensing) field

C. Seitz, dissertation (1996)

Gravitational lensing maps dark matter

Structure in dark matter

HST COSMOS survey of 2 square deg

[Planck Collaboration, arXiv:1807.06209]

THE END