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Preface

These are the lecture notes of the first part (GSC1) of my Galaxy Survey Cosmology course
lectured at the University of Helsinki in spring 2017. The second part of the course discussed
gravitational lensing with the focus on weak lensing and cosmic shear. The lecture notes for the
second part (GSC2) are based on the lectures by Schneider in the textbook Schneider, Kochanek,
and Wambsganss (Gravitational Lensing: Strong, Weak and Micro; Springer 2006), and they
are available in hand-written form only. This was the first time I lectured this course, and
consequently the lecture notes are a bit raw. In the future I hope to add more material about
the practical aspects and cosmological results from galaxy surveys.

– Hannu Kurki-Suonio, May 2017

Preface for 2019

The current version of these lecture notes contains no introduction, but jumps directly to the
mathematical formulation of correlation functions and power spectra, the main tools in galaxy
survey cosmology. For a 4-page introduction to the field, read Sec. 2.7 of [2]. I also gave a
(different) introduction during the first lecture. The amount of calculus in these lecture notes
may seem formidable to some students. I have aimed for completeness so these notes can be
used as a reference for results that may be needed, but the student need not absorb all of
the mathematical results. This year I have added new material including recent observational
results, and correspondingly some of the older material (Sec. 3 and the latter half of Sec. 5) in
these notes were not covered in the course.

– Hannu Kurki-Suonio, February 2019

Preface for 2021

These lecture notes will be updated as the course progresses. The current version is essentially
as it was at the end of the 2019 course, except some typos and errors have been fixed. I thank
Elina Keihänen for finding some of them.

– Hannu Kurki-Suonio, January 2021

Preface for 2023

For 2023 the course was divided in two. The first part became the new shorter course Galaxy
Survey Cosmology, for which these are the lecture notes. The second part became the course
Gravitational Lensing, lectured by Elina Keihänen.

– Hannu Kurki-Suonio, January 2023



1 STATISTICAL MEASURES OF A DENSITY FIELD 1

1 Statistical measures of a density field

We begin by discussing statistical measures of a density field ρ(x) in Euclidian d-dimensional
space. We begin with a general treatment where we do not specify in more detail what density
we are talking about. It may refer to number density of objects such as galaxies (which will be
the main application) or just mass density, but we treat ρ(x) as a continuous quantity for now.

In d dimensions the volume element corresponding to radial distance between r and r + dr
is1

dV = Cdr
d−1dr , where Cd =

2πd/2

Γ(d/2)
, (1.1)

and the volume within distance R is

V (R) =
Cd
d
Rd . (1.2)

We will have applications for d = 1, 2, and 3, for which

C1 = 2 , C2 = 2π , C3 = 4π . (1.3)

The main application is d = 3 (3D), but d = 1 (1D) corresponds to, e.g., a pencil-beam survey
with a very long exposure of a small field on the sky with distance (redshift) determinations for
a large number of galaxies along this line of sight. The main 2D application is the distribution
of galaxies on the sky, without distance determinations, when the sky is approximated as a flat
plane, but it also corresponds to a redshift survey along a great circle on the sky (e.g., the
equator, see Fig. 1).

We assume that the density variations originate from a statistically isotropic and homoge-
neous ergodic random process, and we are really interested in the statistics of this random process
rather than in that of a particular realization of ρ(x).

It is currently thought that initial density perturbations in the Universe2 were produced
during inflation in the very early universe by quantum fluctuations of the inflaton field, which
is a random process that in standard models of inflation satisfies these properties of isotropy,
homogeneity, and ergodicity. The density field then evolved until today through determinis-
tic physics, which modified its various statistical measures, but maintained these fundamental
properties.

We follow [1] and [2]. Sec. 2.7 of [2] gives a 4-page introduction to the field. I recommend
reading it at this point.

1.1 Ergodicity and statistical homogeneity and isotropy

Statistical properties are typically defined as averages of some quantities. We will deal with two
kind of averages: volume average and ensemble average.3

The volume average applies to a particular realization (and to some volume V in it). We
denote the volume average of a quantity f(x) with the overbar, f̄ , and it is defined as

f̄ ≡ 1

V

∫
V
ddxf(x) . (1.4)

1Here Γ(x) = (x − 1)! is the gamma function, with values Γ( 1
2
) =
√
π, Γ(1) = 1, Γ( 3

2
) =
√
π/2, etc. You get

easily other values using the recursion formula Γ(x+ 1) = xΓ(x).
2‘Universe’ with a capital U refers to the universe we live in; whereas ‘universe’ refers to the theoretical concept,

or any hypothetical universe we may consider.
3We are redoing here material from Cosmology II, Section 8.1 (2018 version), but with a different approach.

In Cosmo II the approach was theoretical, so we assumed the volume V was very large so that ρ̄ = 〈ρ〉. Now the
volume V is related to the volume of a galaxy survey, and for accurate treatment we need to take into account
that ρ̄ 6= 〈ρ〉.
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Figure 1: Distribution of galaxies according to the Sloan Digital Sky Survey (SDSS). This figure shows
galaxies that are within 2◦ of the equator and closer than 858 Mpc (assuming H0 = 71 km/s/Mpc).
Figure from astro-ph/0310571[12].
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The ensemble average refers to the random process. We assume that the observed density
field is just one of an ensemble of an infinite number of possible realizations that could have
resulted from the random process. To know the random process, means to know the probability
distribution Prob(γ) of the quantities γ produced by it. (At this stage we use the abstract
notation of γ to denote the infinite number of these quantities. They could be the values of
the density field ρ(x) at every location, or its Fourier coefficients ρk.) The ensemble average
of a quantity f depending on these quantities γ as f(γ) is denoted by 〈f〉 and defined as the
(possibly infinite-dimensional) integral

〈f〉 ≡
∫
dγProb(γ)f(γ) . (1.5)

Here f could be, e.g., the value of ρ(x) at some location x. The ensemble average is also
called the expectation value. Thus the ensemble represents a probability distribution. And the
properties of the density field we will discuss (e.g., statistical homogeneity and isotropy, and
ergodicity, see below) will be properties of this ensemble.

Statistical homogeneity means that the expectation value 〈f(x)〉 must be the same at all x,
and thus we can write it as 〈f〉. Statistical isotropy means that for quantities which involve
a direction, the statistical properties are independent of the direction. For example, for vector
quantities v, all directions must be equally probable. This implies that 〈v〉 = 0.

If theoretical properties are those of an ensemble, and we can only observe one realization
(the Universe) from that ensemble, how can we compare theory and observation? It seems
reasonable that the statistics we get by comparing different parts of a large volume should be
similar to the statistics of a given part over different realizations, i.e., that they provide a fair
sample of the probability distribution. This is called ergodicity. Fields f(x) that satisfy

f̄ → 〈f〉 as V →∞ (1.6)

are called ergodic. We assume that the density field is ergodic. It can be shown that a statistically
homogeneous and isotropic Gaussian random process is ergodic4 (but we do not here make the
assumption of Gaussianity).

Because of the ergodicity assumption, the concepts of volume and ensemble average are not
always kept clearly separate in literature, so that the notation 〈·〉 is used without specifying
which one it refers to, but we shall distinguish between these concepts.5 The equality of f̄
with 〈f〉 does not hold for a finite volume V ; the difference is called sample variance or cosmic
variance. The larger the volume, the smaller is the difference. Since cosmological theory predicts
〈f〉, whereas observations probe f̄ for a limited volume, cosmic variance limits how accurately
we can compare theory with observations.

1.2 Density 2-point autocorrelation function

We define the density perturbation field as

δ(x) ≡ ρ(x)− 〈ρ〉
〈ρ〉 . (1.7)

Since ρ ≥ 0, necessarily δ ≥ −1.
From statistical homogeneity,

〈ρ(x)〉 = 〈ρ〉 ⇒ 〈δ〉 = 0 . (1.8)

4Liddle & Lyth [7] make this statement on p. 73, but do not give a reference to an actual proof.
5The 〈·〉 notation is more convenient than ·̄ for complicated expressions, so we may sometimes use 〈·〉V for

volume average.
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Thus we cannot use 〈δ〉 as a measure of the inhomogeneity. Instead we can use the square of δ,
which is necessarily nonnegative everywhere, so it cannot average out like δ did. Its expectation
value 〈δ2〉 is the variance of the density perturbation, and the square root of the variance,

δrms ≡
√
〈δ2〉 (1.9)

the root-mean-square (rms) density perturbation, is a typical expected absolute value of δ at an
arbitrary location.6 It tells us about how strong the inhomogeneity is, but nothing about the
shapes or sizes of the inhomogeneities. To get more information, we introduce the correlation
function ξ.

We define the density 2-point autocorrelation function (often called just correlation function)
as

ξ(x1,x2) ≡ 〈δ(x1)δ(x2)〉 . (1.10)

It is positive if the density perturbation is expected to have the same sign at both x1 and x2,
and negative for an overdensity at one and underdensity at the other. Thus it probes how
density perturbations at different locations are correlated with each other. Due to statistical
homogeneity, ξ(x1,x2) can only depend on the difference (separation) r ≡ x2−x1, so we redefine
ξ as

ξ(r) ≡ 〈δ(x)δ(x + r)〉 . (1.11)

From statistical isotropy, ξ(r) is independent of direction, i.e., spherically symmetric (we use this
as a generic term for arbitrary d – we might also say ‘isotropic’ – i.e., for d = 2, read ‘circularly
symmetric’, and for d = 1, read ‘even’),

ξ(r) = ξ(r) . (1.12)

The correlation function is large and positive for r smaller than the size of a typical over- or
underdense region, and becomes small for larger separations.

The correlation function at zero separation gives the variance of the density perturbation,

〈δ2〉 ≡ 〈δ(x)δ(x)〉 ≡ ξ(0) . (1.13)

We define the volume average of ξ up to a distance R as

ξ̄(R) ≡ 1

V (R)

∫ R

0
ξ(r)Cdr

d−1dr . (1.14)

For d = 3 this becomes

ξ̄(R) ≡ 3

R3

∫ R

0
ξ(r)r2dr ≡ 3

R3
J3(R) , (1.15)

where

J3(R) ≡
∫ R

0
ξ(r)r2dr (1.16)

is called the “J3 integral” (not a Bessel function; see Sec. 7.3.1 for more on J` and K` integrals).

6In other words, δrms is the standard deviation of ρ/〈ρ〉.
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1.3 Finite surveys and integral constraint

Overdensities must be balanced by underdensities and positive correlations are (usually) bal-
anced by negative correlations. We show in Sec. 1.6 that under certain assumptions the integral
constraint ∫

ddr ξ(r) = 0 , (1.17)

where the integral goes to infinity, holds. At small separations r the correlations are positive,
so if the integral is extended to only some moderate finite maximum separation, the integral
typically is positive, as more of the negative correlations, which occur at large separations, are
missed.

Consider then a single realization and a finite volume V , so that (probably) ρ̄ 6= 〈ρ〉. We
define

δ̂(x) ≡ ρ(x)− ρ̄
ρ̄

and ξ̂(r) ≡ 1

V (r)

∫
V (r)

ddx δ̂(x)δ̂(x + r) , (1.18)

where V (r) ⊂ V is that subvolume of V where also x+r is in V (r). If we were able to determine
the density field ρ(r) in V , we could calculate δ̂(x) and ξ̂(r), and ξ̂(r) would serve as an estimate
of ξ(r) from survey volume V . We would get an estimate for all values of r, where the separation
r fits in V . Denote this set of r values Vr. One can easily show (exercise) that∫

Vr

ddr ξ̂(r) = 0 , (1.19)

the integral constraint for finite survey. The key to showing this is to note that the double
integral over r and x goes exactly over all pairs (x,x′) in V (where x′ = x + r), i.e.,∫

Vr

ddr

∫
V (r)

ddx =

∫
V
ddx

∫
V
ddx′ . (1.20)

We just argued that if we had the true correlation function ξ(r) in (1.19) instead of the
observed correlation function ξ̂(r), we would expect the integral to be positive. Thus 〈ξ̂(r)〉 6=
ξ(r), meaning that our estimator is biased. This is not unexpected, since, if ρ̄ 6= 〈ρ〉, then
δ̂(x) 6= δ(x); there is both a scaling and an offset:

δ̂(x) =
〈ρ〉
ρ̄
δ(x) +

〈ρ〉 − ρ̄
ρ̄

. (1.21)

Because of the offset, for small perturbations δ̂(x) and δ(x) may even have opposite signs.
We would like to figure out the bias, i.e, the difference between 〈ξ̂(r)〉 and ξ(r). Consider a

subensemble with a fixed ρ̄, whose expectation values we denote by 〈·〉′: ρ(x) = ρ̄
[
1 + δ̂(x)

]
and

〈ρ(x)ρ(x + r)〉′ = ρ̄2
〈[

1 + δ̂(x)
] [

1 + δ̂(x + r)
]〉′

= ρ̄2 + 〈δ̂(x)〉′ + 〈δ̂(x + r)〉′ + ρ̄2〈δ̂(x)δ̂(x + r)〉′

≡ ρ̄2
[
1 + 0 + 0 + ξ̃(r)

]
≡ ρ̄2CV [1 + ξ(r)] , (1.22)

where
ξ̃(r) ≡ 〈δ̂(x)δ̂(x + r)〉′ (1.23)

so that ξ̃(r) = 〈ξ̂(r)〉′and we have made the assumption that 1 + ξ̃(r) and 1 + ξ(r) are related
by a constant bias factor that we denoted by CV .
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We can now calculate the double integral of 〈ρ(x)ρ(x + r)〉′ in two different ways:∫
Vr

ddr

∫
V (r)

ddx〈ρ(x)ρ(x + r)〉′ =

∫
V
ddx

∫
V
ddx′ 〈ρ(x)ρ(x′)〉′ (1.24)

=

〈∫
V
ddx ρ(x)

∫
V
ddx′ ρ(x′)

〉′
= 〈V ρ̄V ρ̄〉′ = V 2ρ̄2

and ∫
Vr

ddr

∫
V (r)

ddx 〈ρ(x)ρ(x + r)〉′ = ρ̄2CV

∫
Vr

ddr

∫
V (r)

ddx [1 + ξ(r)]

≡ ρ̄2CV V
2(1 + ξV ) , (1.25)

where we defined

1 + ξV ≡
1

V 2

∫
Vr

ddr

∫
V (r)

ddx [1 + ξ(r)] =
1

V 2

∫
V
ddx

∫
V
ddx′

[
1 + ξ(x′ − x)

]
, (1.26)

i.e., ξV is the average true correlation over all pairs of points in the survey volume. Comparing
(1.24) to (1.25) we find CV = 1/(1 + ξV ), i.e.,

1 + 〈ξ̂(r)〉 =
1 + ξ(r)

1 + ξV
. (1.27)

The result is independent of ρ̄, so therefore I wrote 〈·〉 instead of 〈·〉′.
Usually ξV is positive, since the finite survey volume is likely to miss more negative than

positive correlations, since the former occur at large separations. For sufficiently large survey
volumes ξV � 1, so we can approximate

1 + 〈ξ̂(r)〉 ≈ (1− ξV )[1 + ξ(r)] = 1 + ξ(r)− ξV − ξV ξ(r) . (1.28)

For large separations, where |ξ(r)| � 1, we can further approximate

〈ξ̂(r)〉 ≈ ξ(r)− ξV , (1.29)

i.e., we expect a constant shift downwards.
This bias is known as the integral constraint effect. It comes because the integral constraint

forces the estimated correlation factor to average to zero within the survey volume, although
the true correlation probably does not yet average to zero in this volume. The effect appears
to be related to defining the density perturbation with respect to the survey mean density ρ̄
instead of the “true” mean density 〈ρ〉, i.e., the ensemble average, which by ergodicity is the
mean density for an infinite volume. However, the situation is more subtle, since the derived
result, CV = 1/(1 + ξV ) is independent of ρ̄, i.e., we get the same bias whether ρ̄ < 〈ρ〉 or
ρ̄ > 〈ρ〉, and even if, by accident, ρ̄ = 〈ρ〉.

Note that 〈ρ̄〉 = 〈ρ〉, but 〈ρ̄2〉 6= 〈ρ〉2:

ρ̄2 =

[
1

V

∫
ddx ρ(x)

]2

=
〈ρ〉2
V 2

∫
ddx [1 + δ(x)]

∫
ddx′

[
1 + δ(x′)

]
= 〈ρ〉2 +

〈ρ〉2
V

[∫
ddxδ(x) +

∫
ddxδ(x′)

]
+
〈ρ〉2
V 2

∫
ddxddx′ δ(x)δ(x′) (1.30)

so that

〈ρ̄2〉 = 〈ρ〉2 +
〈ρ〉2
V 2

∫
ddxddx′ ξ(x′ − x) = 〈ρ〉2 [1 + ξV ] . (1.31)
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This bias can be seen in simulations, where many realizations are produced (from a single
realization the result may be too noisy to see it well). If either all realizations are produced
with the same ρ̄, or ρ̄ is allowed to vary between the realizations but the δ̂(x) is defined for each
realization with respect to the ρ̄ of that realization, the 1/(1 + ξV ) bias is seen. However, if ρ̄ is
allowed to vary between the realizations and the δ(x) is defined for each realization with respect
to the average ρ̄ of all realization, the bias is not seen, since this case models the ensemble of
universes and δ(x) the deviation from the ensemble average. (The actual simulations I refer
to here are for a discrete set of points (representing galaxies) rather than a continuous density
field. We introduce the discrete point (galaxy) distribution in Sec. 2 and the integral constraint
in that case is discussed in Sec. 8.)

Another derivation of the integral constant bias. The above derivation parallels the standard
derivation in the literature [39, 15]. However, I was not satisfied with it, since no justification for the
assumption of a constant (independent of r) bias factor CV was given. Therefore I present another
derivation:

Consider the full ensemble, i.e., ρ̄ not restricted to a fixed value. Now

〈ρ(x)ρ(x + r)〉 = 〈ρ〉2 〈[1 + δ(x)] [1 + δ(x + r)]〉 = 〈ρ〉2 [1 + ξ(r)] . (1.32)

But, defining δ̂(x) ≡ [ρ(x)− ρ̄]/ρ̄ for each realization, this is also

〈ρ(x)ρ(x + r)〉 =
〈
ρ̄2
[
1 + δ̂(x)

] [
1 + δ̂(x + r)

]〉
= 〈ρ̄2〉+

〈
ρ̄2δ̂(x)

〉
+
〈
ρ̄2δ̂(x + r)

〉
+
〈
ρ̄2δ̂(x)δ̂(x + r)

〉
. (1.33)

The two middle terms vanish, since for a subensemble with fixed ρ̄, 〈ρ̄2δ̂(x)〉′ = ρ̄2〈δ̂(x)〉′ = 0, so

averaging these zeros over the ρ̄ distribution gives also zero. If we now assume that ρ̄2 and δ̂(x)δ̂(x + r)
are uncorrelated so that〈

ρ̄2δ̂(x)δ̂(x + r)
〉

= 〈ρ̄2〉〈δ̂(x)δ̂(x + r)〉 = 〈ρ〉2 [1 + ξV ] 〈ξ̂(r)〉 , (1.34)

we get

〈ρ(x)ρ(x + r)〉 = 〈ρ〉2 [1 + ξ(r)] = 〈ρ〉2 [1 + ξV ]
[
1 + 〈ξ̂(r)〉

]
. (1.35)

Thus we get the same result when the assumption is replaced by another assumption.

Exercise: Integral constraint for a single realization. For a single realization and finite volume
(so that ρ̄ 6= 〈ρ〉) we can define

δ̂(x) ≡ ρ(x)− ρ̄
ρ̄

and ξ̂(r) ≡ 1

V

∫
V

ddx δ̂(x)δ̂(x + r) . (1.36)

1. Theoretical approach: assume periodic boundary conditions. This makes also ξ̂(r) periodic. All
integrals, also (1.37), are to be taken over the volume V . Show that∫

V

ddr ξ̂(r) = 0 (1.37)

(the integral constraint). Thus the positive values of ξ̂ at small separations must be compensated
by negative values at larger r. Note that here we do not need any statistical assumptions (like

statistical homogeneity or ergodicity). If ξ̂(r) → 0 for large r fast enough, for large volumes the
boundary conditions do not matter.

2. Practical approach: To avoid using boundary conditions and going outside the volume, redefine

ξ̂(r) ≡ 1

V (r)

∫
V (r)

ddx δ̂(x)δ̂(x + r) (1.38)
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Figure 2: The 2-point correlation function ξ(r) from galaxy surveys. Left: Small scales shown in a
log-log plot. The circles with error bars show the observational determination from the APM galaxy
survey [4]. The different lines are theoretical predictions by [5] (this is Fig. 9 from [5]). Right: Large
scales shown in a linear plot. Red circles with error bars show the observational determination from the
CMASS Data Release 9 (DR9) sample of the Baryonic Oscillation Spectroscopic Survey (BOSS). The
dashed line is a theoretical prediction from the ΛCDM model. The bump near 100h−1Mpc is the baryon
acoustic oscillation (BAO) peak that will be discussed in Sec. 10. This is Fig. 2a from [6].

so that the integral for each r goes over only those values of x, for which both x and x + v are
within the volume. This is what one does with real galaxy surveys. Show that∫

Vr

ddr ξ̂(r) = 0 , (1.39)

where the integral goes over those values of r, for which ξ̂(r) is defined by (1.38), i.e., r separates
two points inside the volume.

1.4 Fourier expansion

Fourier analysis is a method for separating out the different distance scales, so that the depen-
dence of the physics on distance scale becomes clear and easy to handle.

For a Fourier analysis of the density field we consider a cubic volume V = Ld and assume
periodic boundary conditions. This does not imply that the density field should be periodic in
reality; we are just interested only in the density field within the volume, and so we can replace
the part outside the volume with a periodic replication of the volume. This will introduce
discontinuities at the volume boundary. The expansion (1.40) itself does not assume anything
about f(x) outside V (the expansion will be correct inside V and outside V it will represent such
a periodic extension; the discontinuities imply that the expansion will contain high-k modes);
but some of the discussion below, like convolution with a window function (Sec. 1.10), makes use
of this periodicity. Near the boundary of the volume the window function will extend outside the
volume; and thus in reality this will introduce edge effects as the real universe is not periodic.
This will have to be treated (Sec. 9.2) together with the fact that an actual survey does not
cover exactly a cubic volume. For theoretical work one can also take V to be much larger than
the observable universe so that the boundaries are so far away that they do not matter.
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We can now expand any function of space f(x) as a Fourier series

f(x) =
∑
k

fke
ik·x , (1.40)

where the wave vectors k = (k1, . . . , kd) take values

ki = ni
2π

L
, ni = 0,±1,±2, . . . (1.41)

(Note that we use the Fourier conventions of [2], not those of [1].)
The Fourier coefficients fk are obtained as

fk =
1

V

∫
V
f(x)e−ik·xddx . (1.42)

The term k = 0 gives the mean value,
f0 = f̄ . (1.43)

The Fourier coefficients are complex numbers even though we are dealing with real quantities7

f(x). From the reality f(x)∗ = f(x) follows that

f−k = f∗k . (1.44)

Thus Fourier modes comes in pairs

fke
ik·x + f∗ke

−ik·x = 2 ∗ Refk cos k · x− 2 ∗ Imfk sin k · x , (1.45)

and only the real part of each, Refk cos k · x− Imfk sin k · x, survives; so to visualize a Fourier
mode, just visualize this real part, which is a sinusoidal plane wave. The size of the Fourier
coefficients depends on the volume V – increasing V tends to make the fk smaller to compensate
for the denser sampling of k in Fourier space.

The Fourier expansion is an expansion in terms of plane waves eik·x, which form an orthogonal
and complete (closed) set of functions in the Euclidean volume V . (We will later encounter other
such expansions in terms of other functions.) Thus they satisfy the orthogonality relation∫

dV
(
eik·x

)∗ (
eik
′·x
)

=

∫
dV ei(k

′−k)·x = V δkk′ , (1.46)

where δkk′ is the Kronecker delta (δkk′ = 1 for k = k′, and δkk′ = 0 otherwise), and the closure
(completeness) relation

1

V

∑
k

(
eik·x

)∗ (
eik·x

′
)

=
1

V

∑
k

eik·(x
′−x) = δdD(x′ − x) , (1.47)

where δdD(x′ − x) is the d-dimensional Dirac delta function.8 Do not confuse the Dirac and
Kronecker deltas with the density perturbation δ(x) or its Fourier coefficient δk! Thus the
functions {

1√
V
eik·x

}
(1.49)

7In Gravitational Lensing, one introduces the complex shear, so these reality conditions do not apply to its
Fourier coefficients/transform.

8The Dirac delta function is not a true function but rather an operator (the correct mathematical term is
‘distribution’) defined by its action on a function f(x) under an integral:

∫

V

δdD(x′ − x)f(x′)ddx ≡ f(x) . (1.48)

It can be thought of as a limit of a set of functions that have large values very near 0, are close to zero elsewhere,
and are normalized so that their integral gives 1.
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form an orthonormal set.
The point of a completeness relation9 for orthogonal functions is that any function can indeed

be expanded in them. Here∑
k

fke
ik·x =

1

V

∑
k

∫
V
ddx′f(x′)e−ik·x

′
eik·x =

∫
ddx′f(x′)δdD(x− x′) = f(x) . (1.50)

The convolution theorem states that convolution in coordinate space becomes just multipli-
cation in Fourier space (exercise):

(f ∗ g)(x) ≡
∫
V
ddx′f(x′)g(x− x′) =

∫
V
ddx′f(x− x′)g(x′) = V

∑
k

fkgke
ik·x , (1.51)

and multiplication in coordinate space becomes convolution in Fourier space (exercise):

1

V

∫
V
f(x)g(x)e−ik·xddx =

∑
q

fqgk−q . (1.52)

The Plancherel formula states (exercise):

1

V

∫
V
ddxf(x)g(x) =

∑
k

f∗kgk . (1.53)

With g = f this becomes the Parseval formula:

1

V

∫
V
ddxf(x)2 =

∑
k

|fk|2 . (1.54)

A great benefit of Fourier analysis is that derivation is replaced by multiplication:

g(x) ≡ ∇f(x) = ∇
∑
k

fke
ik·x =

∑
k

ikfke
ik·x ⇒ gk = ikfk . (1.55)

1.5 Fourier transform

The separation of neighboring ki values is ∆ki = 2π/L, so we can write

f(x) =
∑
k

fke
ik·x

(
L

2π

)d
∆k1 . . .∆kd ≈

1

(2π)d

∫
f(k)eik·xddk , (1.56)

where
f(k) ≡ Ldfk . (1.57)

replacing the Fourier series with the Fourier integral.
In the limit V → ∞, the approximation in (1.56) becomes exact, and we have the Fourier

transform pair

f(x) =
1

(2π)d

∫
f(k)eik·xddk

f(k) =

∫
f(x)e−ik·xddx . (1.58)

9For some reason these closure relations are rarely given in standard sources for mathematical methods.
(Mathematicians do not like the Dirac delta function?) For example, I could not find Eq. (1.47) anywhere.
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Note that this assumes that the integrals converge, which requires that f(x)→ 0 for |x| → ∞.10

Thus we don’t use this for, e.g., δ(x), but for, e.g., the correlation function ξ(x) the Fourier
transform is appropriate.

A special case is f = 1 (which does not satisfy f(x) → 0, so it does not lead to a true
function), whose Fourier transform is the Dirac delta function:∫

ddxe−ik·x = (2π)dδdD(k) . (1.59)

Writing k− k′ in place of k we get∫
ddxei(k

′−k)·x = (2π)dδdD(k− k′) , (1.60)

the orthogonality relation of plane waves for the infinite volume. The orthonormal set is thus{
1

(2π)d/2
eik·x

}
. (1.61)

The closure relation is the same except x and k change places:∫
ddkeik·(x

′−x) = (2π)dδdD(x′ − x) . (1.62)

The convolution theorem becomes (exercise):

(f ∗ g)(x) ≡
∫
ddx′f(x′)g(x− x′) =

1

(2π)d

∫
ddk f(k)g(k)eik·x

(f ∗ g)(k) ≡
∫
ddk′f(k′)g(k− k′) = (2π)d

∫
ddx f(x)g(x)e−ik·x , (1.63)

so that the Fourier transform of (f ∗ g)(x) is f(k)g(k) and the Fourier transform of (f ∗ g)(k)
is (2π)df(x)g(x).

The Plancherel theorem (exercise) is∫
ddx f(x)g(x) =

1

(2π)d

∫
ddk f∗(k)g(k) (1.64)

and the Parseval theorem is ∫
ddx f(x)2 =

1

(2π)d

∫
ddk |f(k)|2 . (1.65)

Even with a finite V we can use the Fourier integral as an approximation. Often it is
conceptually simpler to work first with the Fourier series (so that one can, e.g., use the Kronecker
delta δkk′ instead of the Dirac delta function δdD(k − k′)), replacing it with the integral in the
end, when it needs to be calculated. The recipe for going from the series to the integral is(

2π

L

)d∑
k

→
∫
ddk

Ldfk → f(k)(
L

2π

)d
δkk′ → δdD(k− k′)

(1.66)

10The condition is tighter than this, but the condition that
∫
|f(x)|ddx over the infinite volume is finite, assumed

sometimes in literature (for 1D), seems too tight, as it is not satisfied by any power law, and yet we transform
power laws successfully in Sec. 1.9.
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Exercise: CMB lensing. For a small part of the sky we can use the flat-sky approximation, treating
it as a 2D plane. As is common in this context, denote the 2D coordinate by θ and the corresponding
2D wave vector by l (the letter ell). Gravitational lensing deflects the CMB photons so that a photon
originating from θ is seen coming from θ+∇ψ(θ), where ψ(θ) is the lensing potential. Thus the observed
(Tobs) and unlensed (T ) CMB temperatures are related

Tobs(θ) = T [θ +∇ψ(θ)] ≈ T (θ) +∇ψ(θ) · ∇T (θ) . (1.67)

Express Tobs(l) in terms of T (l) and ψ(l).

1.6 Power spectrum

We now expand the density perturbation as a Fourier series (assuming a large cubic box V = Ld

with periodic boundary conditions)

δ(x) =
∑
k

δke
ik·x , (1.68)

with

δk =
1

V

∫
V
δ(x)e−ik·xddx (1.69)

and δ−k = δ∗k. Note that
〈δ(x)〉 = 0 ⇒ 〈δk〉 = 0 . (1.70)

The Fourier coefficients of the density field ρ(x) and the density perturbation δ(x) are related
by

ρk = 〈ρ〉δk for k 6= 0 , (1.71)

since the k 6= 0 coefficients vanish for the homogeneous part, and

ρ0 = ρ̄ = 〈ρ〉(1 + δ0) = 〈ρ〉(1 + δ̄) , (1.72)

where

δ̄ =
ρ̄− 〈ρ〉
〈ρ〉 (1.73)

(see Eq. 1.7) is the mean density perturbation within the volume V indicating whether the
volume is over- or underdense.

In analogy with the correlation function ξ(x,x′) = 〈δ(x)δ(x′)〉, we may ask what is the
corresponding correlation in Fourier space, 〈δ∗kδk′〉. Note that due to the mathematics of complex
numbers, correlations of Fourier coefficients are defined with the complex conjugate ∗. This
way the correlation of δk with itself, 〈δ∗kδk〉 = 〈|δk|2〉 is a real (and nonnegative) quantity,
the expectation value of the absolute value (modulus) of δk squared, i.e., the variance of δk.
Calculating

〈δ∗kδk′〉 =
1

V 2

∫
ddxeik·x

∫
ddx′e−ik

′·x′〈δ(x)δ(x′)〉

=
1

V 2

∫
ddxeik·x

∫
ddre−ik

′·(x+r)〈δ(x)δ(x + r)〉

=
1

V 2

∫
ddre−ik

′·rξ(r)

∫
ddxei(k−k

′)·x

=
1

V
δkk′

∫
ddre−ik·rξ(r) ≡ 1

V
δkk′P (k) , (1.74)
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where we used 〈δ(x)δ(x + r)〉 = ξ(r), which results from statistical homogeneity. Note that
here δkk′ is the Kronecker delta, not a density perturbation! Thus, from statistical homogeneity
follows that the Fourier coefficients δk are uncorrelated. The quantity

P (k) ≡ V 〈|δk|2〉 =

∫
ddr e−ik·rξ(r) , (1.75)

which gives the variance of δk, is called the power spectrum of δ(x). For a finite volume V , the
values of ξ(r) for large r are missed in (1.75). So we define the true, theoretical, power spectrum
P (k) to be the limit of (1.75) as V → ∞. In this limit also ρ̄ = 〈ρ〉, from the ergodicity
assumption. Thus the power spectrum and correlation function form a d-dimensional Fourier
transform pair, so that

ξ(r) =
1

(2π)d

∫
ddk eik·rP (k) . (1.76)

(The correlation function → 0 for large separations, so Fourier transform is appropriate for it.)
Unlike the correlation function, the power spectrum P (k) is positive everywhere. We discuss
estimation of P (k) from a finite survey in Sec. 9.

The correlation function is a dimensionless quantity, whereas the power spectrum P (k) has
the dimension of volume (δ(x) and δk are dimensionless). We noted earlier that the magnitude
of Fourier coefficients depends on the volume V . From (1.75) we see that the typical magnitude
of δk goes down with volume as ∝

√
V . Although the density of k-modes increases ∝ V ,

neighboring δk are uncorrelated, so they add up incoherently, so that, e.g., 4 times as many
k modes bring only a factor of 2 increase in

∑
k δke

ik·x, to be compensated by the δk being a
factor of 2 smaller.

From statistical isotropy

ξ(r) = ξ(r) ⇒ P (k) = P (k) (1.77)

(the Fourier transform of a spherically symmetric function is also spherically symmetric), so
that the variance of δk depends only on the magnitude k of the wave vector k, i.e., on the
corresponding distance scale. Since small distance scales correspond to large k and vice versa,
to avoid confusion it is better to use the words high and low instead of “large” and “small” for
k, i.e., small scales correspond to high k, and large scales to low k.

Using the recipe (1.66) for going from Fourier coefficients to Fourier transform, (1.74) gives

〈δ(k)∗δ(k′)〉 ≡ (2π)dδdD(k− k′)P (k) . (1.78)

Notice that with δk we can write P (k) ≡ V 〈δ∗kδk〉 (without having to use δkk′ in the equation),
but with δ(k) we need to use the δD-function in the definition of P (k).

The correlation function is more closely connected to observations, whereas theoretical pre-
dictions come more naturally in terms of P (k), especially at large distance scales, where the
density perturbations are small and closer to their primordial state. In principle, when we have
determined one of ξ(r) and P (k) from observations, we get the other by Fourier transform. In
practice, observational errors make this inaccurate, and it is better to determine each one sep-
arately with a method optimized for it. Especially for large separations, where ξ(r) is small, it
is difficult to determine it accurately, if at all. For these reasons, density perturbations at large
distance scales (low k) are more commonly discussed in terms of P (k) and for small distance
scales (small r) in terms of ξ(r).

For the density variance we get

〈δ2〉 ≡ ξ(0) =
1

(2π)d

∫
ddk P (k) =

Cd
(2π)d

∫ ∞
0

P (k)kd−1dk

=
Cd

(2π)2

∫ ∞
0

kdP (k)
dk

k
≡
∫ ∞
−∞
P(k)d ln k . (1.79)
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where we have defined

P(k) ≡ Cdk
d

(2π)d
P (k) =

k

π
P (k) ,

k2

2π
P (k) ,

k3

2π2
P (k) for d = 1, 2, 3 . (1.80)

Another common notation for P(k) is ∆2(k).11 The word “power spectrum” is used to refer to
both P (k) and P(k). Of these two, P(k) has the more obvious physical meaning: it gives the
contribution of a logarithmic interval of scales, i.e., from k to ek, to the density variance. P(k)
is dimensionless, whereas P (k) has the dimension of (d-dimensional) volume.

See Fig. 3 for the observed power spectrum from the Sloan Digital Sky Survey.
The pair of (1.79) is

P (0) = lim
k→0

P (k) =

∫
ddr ξ(r) . (1.81)

If 12 P (k)→ 0 as k → 0 we get the integral constraint∫
ddr ξ(r) = 0 . (1.82)

Therefore ξ(r) must become negative for some r, so that at such a separation from an overdense
region we are more likely to find an underdense region. (Going to ever larger separations, ξ as
a function of r may oscillate around zero, the oscillation becoming ever smaller in amplitude.
Most of the interest in ξ(r) is for the smaller r within the initial positive region.) The present
understanding is that indeed P (k)→ 0 as k → 0, meaning that structure gets weaker at larger
scales at a sufficient rate. Of course, we have information only about a finite part of the universe,
so this represents an extrapolation from the observable universe. In principle, there could be
weird behavior outside the horizon, but since the observable universe does not contain evidence
of such, it is fine to work with such an extrapolation.

For isotropic ξ(r) and P (k) we can switch to polar, spherical, etc. coordinates and do the
angular integrals to rewrite (1.75) and (1.76) as 1-dimensional integrals (exercise):

P (k) =

∫ ∞
0

ξ(r) cos kr 2dr or P(k) =
2k

π

∫ ∞
0

ξ(r) cos krdr (1D)

P (k) =

∫ ∞
0

ξ(r)J0(kr) 2πrdr or P(k) = k2

∫ ∞
0

ξ(r)J0(kr)rdr (2D)

P (k) =

∫ ∞
0

ξ(r)
sin kr

kr
4πr2dr or P(k) =

2k3

π

∫ ∞
0

ξ(r)
sin kr

kr
r2dr (3D) (1.83)

and

ξ(r) =
1

π

∫ ∞
0

P (k) cos krdk =

∫ ∞
0
P(k) cos kr

dk

k
(1D)

ξ(r) =
1

2π

∫ ∞
0

P (k)J0(kr)kdk =

∫ ∞
0
P(k)J0(kr)

dk

k
(2D)

ξ(r) =
1

(2π)3

∫ ∞
0

P (k)
sin kr

kr
4πk2dk =

∫ ∞
0
P(k)

sin kr

kr

dk

k
(3D) , (1.84)

where J0 is a Bessel function and the sin kr/kr = j0(kr) is a spherical Bessel function. In 3D,
for the volume-averaged ξ̄(R) defined in (1.15) we get (exercise):

ξ̄(R) =

∫ ∞
0
P(k)

[
3(sin kR− kR cos kR)

(kR)3

]
dk

k
=

∫ ∞
0
P(k)

[
3

kR
j1(kR)

]
dk

k
. (1.85)

11The notation P(k) and calling it “power spectrum” is common among cosmologists. Astronomers seem to
use the notation ∆2(k) for it, and reserve the word “power spectrum” for P (k).

12From (1.75), P (0) = V 〈(δ0)2〉, where δ0 = δ̄ = (ρ̄−〈ρ〉)/〈ρ〉. While 〈δ̄〉 = 0, 〈δ̄2〉 = (〈ρ̄2〉−〈ρ〉2)/〈ρ〉2 = ξV 6= 0
for a finite V .
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Figure 3: The matter power spectrum from the SDSS obtained using luminous red galaxies [13]. The
top figure shows P(k) and the bottom figure P (k). A Hubble constant value H0 = 71.4 km/s/Mpc has
been assumed for this figure. (These galaxy surveys only obtain the scales up to the Hubble constant,
and therefore the observed P (k) is usually shown in units of h Mpc−1 for k and h−3 Mpc3 for P (k), so
that no value for H0 need to be assumed.) The black bars are the observations and the red curve is a
theoretical fit, from linear perturbation theory, to the data. The bend in P (k) at keq ∼ 0.01 Mpc−1 is
clearly visible in the bottom figure. Linear perturbation theory fails when P(k) & 1, and therefore the
data points do not follow the theoretical curve to the right of the dashed line (representing an estimate
on how far linear theory can be trusted). Figure by R. Keskitalo.
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“The factor in brackets dies off faster with increasing k than the (sin kr/kr) in (1.84), so ξ̄(R)
gives a cleaner measure of the power spectrum at k ∼ 1/R than does ξ(R).” (MBW[2], p. 263.)
(This is a comparison between j0(x) and (3/x)j1(x), where the jn(x) are spherical Bessel func-
tions. These are elementary functions, so we do not discuss them more at this stage, but we will
meet them later.)

Example: We do the 2D case of (1.83), since it involves the non-elementary function J0:

P (k) =

∫
d2r e−ik·rξ(r) =

∫ ∞
0

rdr ξ(r)

∫ 2π

0

dϕ e−ikr cosϕ , (1.86)

where the angular integral gives∫ 2π

0

dϕ e−ikr cosϕ = 2

∫ π

0

dϕ cos(kr cosϕ) = 2πJ0(kr) , (1.87)

where we used the integral representation of the Bessel function ([8], p. 680)

J0(x) =
2

π

∫ π/2

0

cos(x sinϕ)dϕ =
2

π

∫ π/2

0

cos(x cosϕ)dϕ . (1.88)

These two integrals are equal since cosϕ and sinϕ go over the same values at the same rate. Since (the
outer) cos is an even function, the integrals give the same result over each quadrant, i.e, we could as well
integrate from π/2 to π.

1.6.1 Power spectrum from a finite survey

Continuing from Sec. 1.3, we define

δ̂k ≡
1

V

∫
V
δ̂(x)e−ik·xddx , (1.89)

where

δ̂(x) ≡ ρ(x)− ρ̄
ρ̄

according to (1.36). The constant term affects only the k = 0 coefficient and we easily see that

δ̂0 = 0 (1.90)

and for k 6= 0

δ̂k =
ρk
ρ̄

=
〈ρ〉
ρ̄
δk . (1.91)

Defining an “estimate for the power spectrum from the survey volume V ” (real power spectrum
estimation is discussed in Sec. 9),

P̂ (k) ≡ V |δ̂k|2 , (1.92)

we have
P̂ (0) = 0 (1.93)

and for k 6= 0

P̂ (k) = V

(〈ρ〉
ρ̄

)2

|δk|2 ⇒ 〈P̂ (k)〉 =

(〈ρ〉
ρ̄

)2

P (k) . (1.94)

Thus the finite volume biases power spectrum estimation just by a constant factor, instead of
the more complicated integral constraint effect for correlation function estimation.
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Figure 4: The first three Bessel functions: J0 (blue), J1 (green), and J2 (red).

Exercise: Fourier expand the “observed” δ̂(x) of Eq. (1.36) to get its Fourier coefficients δ̂k. Show
that

ξ̂(r) =
V

(2π)d

∫
ddk |δ̂k|2eik·r , (1.95)

for this single realization. Note that here we do not need any statistical assumptions (like statistical
homogeneity or ergodicity). Contrast this result with (1.76).

1.7 Bessel functions

The 2D Fourier transform brings in Bessel functions Jn(x), with n = 0, 1, 2, . . . They are mostly
used on the positive real axis, where they are oscillating functions, whose amplitude decreases
with increasing x, asymptotically as x−1/2. See Fig. 4. We list some of their properties.

J0(0) = 1 and Jn(0) = 0 for n = 1, 2, . . . (1.96)

Their power series begins

Jn(x) =
xn

2nn!
− xn+2

2n+2(n+ 1)!
+ . . . (1.97)

They have the integral representations

Jn(x) =
1

π

∫ π

0
cos(nϕ− x sinϕ) dϕ =

(−i)n
π

∫ π

0
eix cosϕ cosnϕdϕ . (1.98)

Both integrals are even in ϕ, and periodic over 2π, so one can replace

1

π

∫ π

0
=

1

2π

∫ π

−π
=

1

2π

∫ a+2π

a
. (1.99)

A number of recursion formulae relate them and their derivatives to each other:

Jn−1(x) + Jn+1(x) =
2n

x
Jn(x)

Jn−1(x)− Jn+1(x) = 2J ′n(x)

Jn−1(x) =
n

x
Jn(x) + J ′n(x)

Jn+1(x) =
n

x
Jn(x)− J ′n(x) . (1.100)
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Figure 5: The first three spherical Bessel functions: j0 (blue), j1 (green), and j2 (red).

Spherical Bessel functions

j0(x) =
sinx

x

j1(x) =
sinx

x2
− cosx

x

j2(x) =

(
3

x3
− 1

x

)
sinx− 3

x2
cosx

Table 1: Spherical Bessel functions.

As a special case of (1.100b),
J ′0(x) = −J1(x) . (1.101)

The Bessel function closure relation applies to Bessel functions with the same n but different
wavelengths: ∫ ∞

0
Jn(αx)Jn(α′x)x dx =

1

α
δD(α− α′) . (1.102)

A somewhat similar (note dx instead of x dx) integral with neighboring (n and n − 1) Bessel
functions gives (Gradshteyn&Ryzhik[9] 6.512.3)

∫ ∞
0

Jn(αx)Jn−1(βx) dx =
βn−1

αn
Θ(α− β) =


0 (α < β)
1

2α (α = β)
βn−1

αn (α > β) ,

(1.103)

1.8 Spherical Bessel functions

The spherical Bessel functions jn(x) (of integer order) are related to ordinary Bessel functions
of half-integer order:

jn(x) =

√
π

2x
Jn+1/2(x) . (1.104)

Like Jn, they are mostly used on the positive real axis, where they are oscillating functions; their
amplitude decreases faster, asymptotically as x−1. See Fig. 5. Unlike Jn, they are elementary
functions (for integer n), see Table 1.

We list some of their properties.

j0(0) = 1 and jn(0) = 0 for n = 1, 2, . . . (1.105)
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Their power series begins

jn(x) =
2nn!xn

(2n+ 1)!
− 2n(n+ 1)!xn+2

(2n+ 3)!
+ . . . (1.106)

They have recursion formulae relating them and their derivatives to each other:

jn−1(x) + jn+1(x) =
2n+ 1

x
jn(x)

njn−1(x)− (n+ 1)jn+1(x) = (2n+ 1) j′n(x) . (1.107)

As a special case of (1.107b),
j′0(x) = −j1(x) . (1.108)

1.9 Power-law spectra

For certain ranges of scales, ξ(r) and P (k) can be approximated by a power-law form,

ξ(r) ∝ r−γ or P (k) ∝ kn . (1.109)

Note the minus sign for ξ – we expect correlations to decrease with increasing separation, so
this makes γ positive. When plotted on a log-log scale, such functions appear as straight lines
with slope −γ and n:

log ξ = −γ log r + const and logP = n log k + const . (1.110)

The proportionality constant can be given in terms of a reference scale. For ξ(r) we usually
choose the scale r0 where ξ(r0) = 1, so that

ξ(r) =

(
r

r0

)−γ
. (1.111)

See Fig. 6. For P (k) we may write

P (k) = A2

(
k

kp

)n
or P(k) = A2

(
k

kp

)n+d

, (1.112)

where kp is called a pivot scale (whose choice depends on the application) and A ≡
√
P (kp) or√

P(kp) is the amplitude of the power spectrum at the pivot scale.13

We define the spectral index n(k) as

n(k) ≡ d lnP

d ln k
. (1.113)

It gives the slope of P (k) on a log-log plot. For a power-law P (k), n(k) = const = n. We can
study power-law ξ(r) and P (k) as a playground to get a feeling what different values of the
spectral index mean, and, e.g., how γ and n are related.

The Fourier transform of a power law is a power law. For the correlation function of (1.111)
we get (exercise)

1D: P (k) =
2

k
Γ(1− γ) sin(1

2γπ)(kr0)γ (0 < γ < 1 ⇒ −1 < n < 0)

2D: P (k) =
2π

k2
21−γ Γ(1− 1

2γ)

Γ(1
2γ)

(kr0)γ (1
2 < γ < 2 ⇒ −3

2 < n < 0)

3D: P (k) =
4π

k3
Γ(2− γ) sin

(2− γ)π

2
(kr0)γ (1 < γ < 3 ⇒ −2 < n < 0) ,(1.114)

13The reason we do not follow the example of (1.111) to define a k0 where the power spectrum would be 1 is
that P (k) is not dimensionless, and that P(k) is usually discussed at scales and times when P(k)� 1, so that a
k0 such that P(k0) = 1 would be outside the region of interest and/or the power-law approximation.
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Figure 6: Top panel: The correlation function from the 2dFGRS galaxy survey in log-log scale. The
dashed line is the best-fit power law (r0 = 5.05h−1Mpc, γ = 1.67). The inset shows the same in linear
scale. Bottom panel: 2dFGRS data (solid circles with error bars) divided by the power-law fit. The solid
line is the result from the APM survey and the dashed line from an N-body simulation. This is Fig. 11
from [10].

so that γ and n are related by
n = γ − d . (1.115)

For P(k) these read

1D: P(k) =
2

π
Γ(1− γ) sin(1

2γπ)(kr0)γ

2D: P(k) = 21−γ Γ(1− 1
2γ)

Γ(1
2γ)

(kr0)γ

3D: P(k) =
2

π
Γ(2− γ) sin

(2− γ)π

2
(kr0)γ , (1.116)

In the 3D case these expressions are undefined for γ = 2, and we have the simpler result

P (k) =
2π2

k3
(kr0)2 and P(k) = (kr0)2 . (1.117)

Observationally, the 3D correlation function has γ ≈ 1.8 for small separations, corresponding
to n ≈ −1.2 for high k. See Fig. 3 for the observed power spectrum from the Sloan Digital Sky
Survey.

Note that a power-law correlation function is everywhere positive. This is possible when
limk→0 P (k) 6= 0, which is indeed the case for the allowed spectral indices, n < 0, above. (In
this case, there is sufficient structure at ever larger scales to maintain positive correlation at
ever larger distances.) In reality, the power spectrum bends at large scales so that its spectral
index becomes positive for low k, and therefore also the correlation function changes shape and
will have also negative values at large enough r.
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Outside these values of spectral indices the Fourier transform integrals diverge in the small-
or large-scale limit (I guess); but this does not prevent ξ(r) or P (k) from having also such
power-law forms over some limited range of scales.

The variance

〈δ2〉 = ξ(0) =

∫ ∞
0
P(k)

dk

k
∝
∫ ∞

0
kn+d−1dk =

1

n+ d

[
kn+d

]∞
0

for n 6= −d (1.118)

diverges at large scales (low k) for n ≤ −d and at small scales (high k) for n ≥ −d. Thus we
should have n > −d for k → 0 and n < −d for k →∞. The large scales are not an issue (since
indeed n > −d) in cosmology. At small scales, (1.111) forces ξ(r)→∞ as r → 0 for any positive
γ. The solution of this issue is that arbitrarily small scales are not relevant; in practice we
have a finite resolution that cuts off the smallest scales. This can be implemented with window
functions, discussed in Sec. 1.10.

The case n = −d (γ = 0) is a scale-invariant spectrum, P(k) = const . Such a spectrum
would mean that the universe would appear equally inhomogeneous at arbitrarily large scales –
no asymptotic homogeneity. Note that here we discuss the spectrum of density. References to
a scale-invariant or nearly scale-invariant spectrum in cosmology refer usually to the spectrum
of gravitational potential (Newtonian treatment) or spacetime curvature perturbations (GR
treatment). Their spectral index is lower by 4 so that such a scale-invariant spectrum will have
a density spectral index n = 1 (in 3D).

The boundary case n = 0 has the same 〈|δk|2〉 at all scales. From (1.115) γ → d as n → 0.
For γ < d, the integration from 0 to R in (1.14) for ξ̄(R) smooths over the small-scale divergence
of ξ(r); but for γ ≥ d the integral (1.14) diverges. Actually, also (1.114c) and (1.116c) diverge
(Γ(−1) =∞) so that a finite ξ would give infinite P (k). Instead, n = 0 corresponds to the case
of no correlations, ξ = 0. This is called white noise or a Poisson distribution (to be discussed
in Sec. 2.3).

The larger n is, the more is the structure concentrated at small scales. Peacock comments
that n ≥ 0 spectra would seem to indicate that any large-scale structure is ‘accidental’, “re-
flecting the low-k Fourier coefficients of some small-scale process”, whereas n < 0 means that
large-scale structure is ‘real’ ” ([1], p. 499).

Example: To do the 1D and 3D cases in (1.114) is standard FYMM I stuff, but for the 2D case I
had to resort to integral tables:

P (k) =

∫ ∞
0

ξ(r)J0(kr) 2πrdr = 2πrγ0

∫ ∞
0

r1−γJ0(kr)dr =
2π(kr0)γ

k2

∫ ∞
0

x1−γJ0(x)dx . (1.119)

From Gradshteyn & Ryzhik ([9], formula 6.561.14) we find that∫ ∞
0

xµJν(x)dx = 2µ
Γ( 1

2 + 1
2ν + 1

2µ)

Γ( 1
2 + 1

2ν − 1
2µ)

for −ν − 1 < µ < 1
2 . (1.120)

We have ν = 0 and µ = 1− γ, so the condition becomes 1
2 < γ < 2 and the result∫ ∞

0

x1−γJ0(x)dx = 21−γ Γ(1− 1
2γ)

Γ( 1
2γ)

. (1.121)

1.10 Scales of interest and window functions

In (1.79) we integrated over all scales, from the infinitely large (k = 0 and ln k = −∞) to the
infinitely small (k = ∞ and ln k = ∞) to get the density variance. Perhaps this is not really
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what we want. The average matter density today is 3× 10−27 kg/m3. The density of the Earth
is 5.5× 103 kg/m3 and that of an atomic nucleus 2× 1017 kg/m3, corresponding to δ ≈ 2× 1030

and δ ≈ 1044. Probing the density of the universe at such small scales finds a huge variance in
it, but this is no longer the topic of cosmology – we are not interested here in planetary science
or nuclear physics.

Even the study of the structure of individual galaxies is not considered to belong to cos-
mology, so the smallest (comoving) scale of cosmological interest, at least when we discuss the
present universe, is that of a typical separation between neighboring galaxies, of the order 1 Mpc.

To exclude scales smaller than R (r < R or k > R−1) we can filter the density field with a
window function (sometimes called a filter function). This can be done in k-space or x-space.

The filtering in x-space is done by convolution. We introduce a (usually spherically sym-
metric) window function W (r;R) such that∫

ddrW (r;R) = 1 (1.122)

(normalization) and W ∼ 0 for |r| � R and define the filtered density field

δ(x;R) ≡ (δ ∗W )(x) ≡
∫
ddx′ δ(x′)W (x− x′) . (1.123)

Here δ(x;R) and W (x;R) are considered as functions of x and R denotes the chosen resolution.
To simplify notation, we write hereafter W (x;R) as W (x), leaving the scale R implicit. We now
also assume W is spherically symmetric, so we can write just W (r).

Denote the Fourier coefficients of δ(x;R) by δk(R). We use the Fourier series for δ(x) and
δ(x;R), but since W (r) vanishes for large r we can use the Fourier transform W (k) for it. Thus
we need a mixed form of the convolution theorem. Let’s do it explicitly:

δk(R) =
1

V

∫
V
ddx δ(x;R)e−ik·x =

1

V

∫
V
ddxddx′ δ(x′)W (x− x′)e−ik·x

=
1

V

∫
V
ddx′ δ(x′)e−ik·x

′
∫
ddrW (r)e−ik·r = W (k)δk , (1.124)

where

W (k) =

∫
ddrW (r)e−ik·r (1.125)

is the Fourier transform of W (r).14 With our normalization, W (r) has dimension 1/V and
W (k) is dimensionless with W (k = 0) = 1. Since W (r) = W (r) is spherically symmetric, so is
W (k) = W (k). Since W (−r) = W (r), W (k) is real.

For the correlations of these filtered Fourier coefficients we get

〈δ∗k(R)δk′(R)〉 = W (k)∗W (k′)〈δ∗kδk′〉 =
1

V
δkk′W (k)2P (k) (1.126)

so the filtered power spectra are

W (k)2P (k) and W (k)2P(k) . (1.127)

The filtered correlation function is

ξ(r;R) ≡ 〈δ(x;R)δ(x− r;R)〉 =
1

(2π)d

∫
ddk eik·rW (k)2P (k) . (1.128)

14When x is closer than R to the edge of the volume V , the window function collects a contribution outside
V . In this convolution theorem we used periodic boundary conditions. In real applications one needs to consider
edge effects.
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and the variance of the filtered density field is

σ2(R) ≡ 〈δ(x;R)2〉 = ξ(0;R) =

∫ ∞
0

W (k)2P(k)
dk

k
. (1.129)

Considered as a function of R, it provides another measure of structure at different scales.
Writing W (k) and P (k) in terms of their Fourier transforms, we get (exercise)

σ2(R) =
1

(2π)d

∫
ddkW (k)2P (k) =

∫
ddxddx′ ξ(|x′ − x|)W (x)W (x′) . (1.130)

Spectral moments. More generally, we define the spectral moments

σ2
` (R) ≡

∫ ∞
0

k2`P(k)W (k)2 dk

k
, (1.131)

so that σ2(R) = σ2
0(R) is the zeroth moment. The relation σ2(R) = ξ(0;R) can be generalized to higher

moments and derivatives of ξ(0;R) at r = 0, since, e.g.,

∇2ξ(r;R) =
1

(2π)d

∫
ddk (−k2)eik·rW (k)2P (k)

⇒ ∇2ξ(0;R) =
1

(2π)d

∫
ddk (−k2)W (k)2P (k) = −σ2

1(R) . (1.132)

(The unfiltered ξ(r) and its derivatives may diverge at r = 0, but ξ(0;R) has been smoothed by the
window function.) Peacock[1], p. 500 has

ξ(2`)(0;R) = (−1)`
σ2
` (R)

2`+ 1
(1.133)

which probably holds as such only for d = 3, since I get

ξ′′(0, R) = −σ
2
1(R)

d
(1.134)

(I did not try to do the higher moments).

To get (1.134) from (1.132) we need to relate ∇2ξ(r;R) to ξ′′(r,R) at r = 0. Expand

ξ(r,R) =

∞∑
n=0

anr
n , (1.135)

where a1 = 0 so that ξ(r;R) is smooth at r = 0. Now

∂ir
n = nrn−1∂ir = nrn−2xi ⇒ ∂iξ(r;R) =

∞∑
n=2

annr
n−2xi (1.136)

and

∂j∂iξ(r,R) =

∞∑
n=2

ann
[
(n− 2)rn−4xixj + rn−2∂jxi

]
(1.137)

where ∂jxi = δij . Thus

∇2ξ(r,R) ≡
∑
i

∂i∂iξ(r) =

∞∑
n=2

ann
[
(n− 2)rn−2 + d rn−2

]
→ 2d a2 (1.138)

as r → 0, whereas

ξ′′(r,R) =

∞∑
n=2

ann(n− 1)rn−2 → 2a2 , (1.139)
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so that
∇2ξ(0;R) = d · ξ′′(0;R) . (1.140)

The simplest window function is the top-hat window function

WT (r) ≡ 1

V (R)
for |r| ≤ R (1.141)

and WT (r) = 0 elsewhere, i.e., δ(x) is filtered by replacing it with its mean value within the
distance R. It’s Fourier transform15 is (exercise):

1D: WT (k) =
1

kR
sin kR

2D: WT (k) =
2

kR
J1(kR)

3D: WT (k) =
3

(kR)3
(sin kR− kR cos kR) =

3

kR
j1(kR) (1.142)

Mathematically more convenient is the Gaussian window function

WG(r) ≡ 1

VG(R)
e−

1
2 r

2/R2

, (1.143)

where

VG(R) ≡
∫
ddre−

1
2 |r|

2/R2

(1.144)

is the volume of WG. The volume of a window function is defined as what
∫
ddrW (r) would be

if W were normalized so that W (0) = 1, instead of the normalization we chose in (1.122). For
the top hat, this is the volume over which the filter averages; for others, a generalization of this.

The volume of WG is (exercise)

VG(R) = (2π)d/2Rd , (1.145)

and its Fourier transform is, for all d, (exercise)

WG(k) = e−
1
2 (kR)2

. (1.146)

(The 1D case was done in FYMM Ib. From that it’s easy to generalize to arbitrary d.)
We can also define the k-space top-hat window function

Wk(k) ≡ 1 for k ≤ 1/R (1.147)

and Wk(k) = 0 elsewhere. In x-space this becomes (exercise)

3D: Wk(r) =
1

2π2R3

sin y − y cos y

y3
=

1

6π2R3

3j1(y)

y
, where y ≡ |r|/R . (1.148)

The integral
∫
d3rWk(r) = 4π

∫
r2drWk(r) diverges: the integrand oscillates as a function of r

with constant amplitude. The first zeros of the integrand are 4.493, 7.725, 10.904, 14.066, and
17.221; and integrated to these values, the integral gives 99.21, 20.645, 97.37, 21.24, and 97.10

15Note the emerging pattern with the Bessel functions: trigonometric functions are “Bessel functions for 1D”,
cos and sin corresponding to J0 and J1; the ordinary Bessel functions Jn are “for 2D”; and the spherical Bessel
functions are “for 3D”. All are oscillating functions; trigonometric functions have constant amplitude; Jn decay
as x−1/2 for large x, and jn(x) decay as x−1.
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times R3. This oscillation is a disadvantage of this window function, but it has other advantages.
In this case we define the volume to be

3D: Vk(R) = 6π2R3 ≈ 59.22R3 , (1.149)

so that Wk(0) = 1/Vk as for the other window functions. This value falls in the middle of the
oscillation of the integral. Despite these oscillations, we expect (1.123) to converge, since for
large |x− x′| positive and negative δ tend to cancel.

For this window function the density variance is simply

σ2(R) =
1

(2π)d

∫ R−1

0
Cdk

d−1P (k)dk =

∫ − lnR

−∞
P(k)d ln k . (1.150)

Note that the volumes of the different window functions are quite different. See Fig. 7. In
3D:

VT (R) =
4π

3
R3 = 4.189R3 , VG(R) = (2π)3/2R3 = 15.75R3 , Vk(R) = 6π2R3 = 59.22R3 .

(1.151)
The values of R that make the volumes equal are RG = 0.6431RT and Rk = 0.4136RT . Thus a
given R corresponds to a somewhat different effective scale for the different window functions.

The different window functions also give quite different σ2(R). Observationally, the 3D
galaxy distribution has ([1], p. 501, [2], p. 83).

σ2
T (R) ≈ 1.0 for R = 8h−1Mpc. (1.152)

Near these scales the slope of the correlation function is

γ ≈ 1.8 corresponding to n = −1.2. (1.153)

This slope does not hold at larger scales, and at R = 30h−1Mpc, σ2
T (R) is already down to 10−2

(σ ∼ 0.1 [2], p. 83). See also Fig. 3.
One may also ask, whether scales larger than the observed universe (i.e., the lower limit

k = 0 or ln k = −∞ in the k integrals) are relevant, since we cannot observe the inhomogeneity
at such scales. Due to such very-large-scale inhomogeneities, the average density in the observed
universe may deviate from the average density of the entire universe. Inhomogeneities at scales
somewhat larger than the observed universe could appear as an anisotropy in the observed
universe. The importance of such large scales depends on how strong the inhomogeneities at
these scales are, i.e., how the power spectrum behaves as k → 0.

Exercise: We defined σ2(R) as an expectation value over the ensemble. Define σ̂2(R) as the volume
average over a realization and show that

σ̂2(R) ≡ 1

V

∫
V

ddx δ̂(x, R)2 =
V

(2π)d

∫
ddk |δ̂k|2W (k)2 . (1.154)

Exercise: For a power-law spectrum and a Gaussian window function, show that

σ2
G(R) =

1

2
Γ

(
n+ d

2

)
P(R−1) . (1.155)

Exercise: For a power-law spectrum and k-space top-hat window function, show that

σ2
k(R) =

1

n+ d
P(R−1) . (1.156)
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Figure 7: The 3D window functions W (r), top-hat (green), Gaussian (red), and k (blue), for R = 1.
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Figure 8: The ratio of σ2(R) to P(R−1) in the case of a power-law spectrum P(k) ∝ kn+d for the three
different window functions: Gaussian (red), k (blue), 1D top-hat (green dashed), 2D top-hat (green), and
3D top-hat (green with dots). They all diverge in the limit n→ −d (γ → 0) due to the contributions of
ever larger scales (ln k → −∞). The divergence at n → 1 for the top-hat window functions is a trickier
thing. It has to do with their Fourier transform not dying off at high k fast enough.
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Example: I wanted to do the same also for the top-hat window function, especially since (1.152).
The cases seem different for different d, so try first the 3D:

σ2
T (R) =

∫ ∞
0

P(k)WT (k)2 dk

k
= A2k−(n+3)

p

∫ ∞
0

kn+3

(
3

kR

)2

j2
1(kR)

dk

k

= 9A2(kpR)−(n+3)

∫ ∞
0

xnj2
1(x)dx = 9InP(R−1) , (1.157)

where

In =

∫ ∞
0

xnj2
1(x)dx . (1.158)

I couldn’t integrate In and didn’t find it in integral tables. Wolfram Alpha said “computation time
exceeded” for both In and I−n, but for n = −1.2 it gave the remarkable result

I−1.2 =
125
√

5 +
√

5Γ(4/5)

1386× 23/10
≈ 0.229418 . (1.159)

This would give σ2
T (R) = 2.0648P(R−1) for n = −1.2 (γ = 1.8), which appears surprisingly large, since

the other two window functions give σ2
G(R) = 0.5343P(R−1) and σ2

k(R) = 0.5556P(R−1). Actually, I
was equally surprised that σ2

G and σ2
k came so close to each other although the volumes of the two window

functions are quite different. I would have been content, if σ2
G had been intermediate between σ2

k and σ2
T .

I think the explanation lies in the Fourier transform WT (k) not dying off fast enough for high k, so for
large n + d, where there is lots of power at small scales, scales � R keep contributing to σ2

T (R). When
this is applied to galaxy number density, there will be another cut-off due to the finite distances between
galaxies, so the effect of this high-k tail may not be fully realized. . .

The solution for doing the 3D case with Wolfram Alpha turned out to be to restrict the range of n
to n < 0 and n < −1. This gives

In =

∫ ∞
0

xnj2
1(x)dx = 2−n

(n+ 1)Γ(n− 1)

n− 3
sin

nπ

2
for −3 < n < 0 . (1.160)

(I just assume that this result holds also for 0 < n < 1; it diverges at n→ 1, see Fig. 8.) This expression
is not defined for integer n. Instead we have (obtained easily with WolframAlpha)

I−2 =
π

15
, I−1 =

1

4
, I0 =

π

6
. (1.161)

Then the 1D case:

σ2
T (R) = A2(kpR)−(n+1)

∫ ∞
0

xn−2 sin2 x dx = InP(R−1) , (1.162)

where

In =

∫ ∞
0

xn−2 sin2 x dx , (1.163)

which diverges at x → 0 for n ≤ −1 and at x → ∞ for n ≥ +1. Gradshteyn&Ryzhik[9] 3.821.9 gives
I0 = π/2. Wolfram Alpha gives

In = 2−n sin
nπ

2

Γ(n)

1− n (0 < n < 1) and In = 2−n sin

(−nπ
2

)
Γ(n+ 1)

n(n− 1)
(−1 < n < 0) (1.164)

For n+ 1 = 1.8 this gives σ2
T (R) = 3.1797P(R−1), which is even more than I got for the 3D case.

Then the 2D case:

σ2
T (R) = 4InP(R−1) , where In =

∫ ∞
0

xn−1J1(x)2 dx . (1.165)

Wolfram Alpha computation time was exceeded but Gradshteyn&Ryzhik[9] 6.574.2 gives

In =
Γ(1− n)Γ(1 + n/2)

21−nΓ(1− n/2)2Γ(2− n/2)
for n < 1. (1.166)

These results for the different window functions are compared in Fig. 8.
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2 Distribution of galaxies

Instead of a continuous density ρ(x), we now consider a distribution of discrete objects. Their
number density ρ(x) is then only defined with a finite resolution.16 The resolution depends on
the application: the counts-in-cells approach of Secs. 2.3 and 2.4 has lower and the microcell
approach of Sec. 2.5 has higher resolution, but anyway we stay far from infinite resolution (which
for point-like objects, what galaxies in reality are not, would lead to delta functions). To make
the discussion sound less abstract we call these objects galaxies, although they could also be
other cosmological objects (e.g., clusters of galaxies), and another application is in numerical
methods where a continuous density field is represented by a distribution of point masses.

2.1 The average number density of galaxies

It is often said that the observable universe contains about 200 billion (2 × 1011) galaxies.
If the observable universe is taken to mean everything until the last scattering surface (the
origin of the cosmic microwave background) at z = 1090, which lies at comoving distance
r ≈ 3.1H−1

0 = 9300h−1Mpc, then its comoving volume is

V =
4π

3
r3 ≈ 3400h−3 Gpc3 = 3.4× 1012h−3 Mpc3 . (2.1)

However, in this context the observable universe is taken to mean up to what distance we
can actually observe galaxies. If we take this to mean z = 8, which lies at r ≈ 2.05H−1

0 =
6100h−1Mpc, the observable volume is

Vobs ≈ 970h−3 Gpc3 = 9.7× 1011h−3 Mpc3 . (2.2)

With Ng = 2× 1011 galaxies this gives comoving mean galaxy number density

ρ̄g =
Ng

Vobs
≈ 0.21

h−3 Mpc3 . (2.3)

Our past light cone. In (2.2) and (2.3), I restricted the observable universe to z ≤ 8, and ignored
evolution effects (higher redshifts corresponds to earlier times) to get a homogeneous galaxy mean number
density to correspond to some recent t = const , but more appropriate would be to define the observable
universe to correspond to our past light cone, all the way to z = 1090. The galaxies it contains are
then those, whose world lines intersect this light cone. Recently I read that the number of galaxies in
the observable universe (defined this way) is 10 times larger, since in the early universe galaxies were
much smaller, and later they merged to form larger galaxies so the comoving galaxy number density went
down. Thus (2.3) applies to the late universe, but in the early universe the density was more than 10
times larger. The page17 links to a draft of an article by Conselice et al.[18]. Fig. 9 is from that article.
The comoving galaxy number density increases towards higher z at first, because of the above evolution
effect, but then begins to fall (probably near z ∼ 8, but we do not have good data at such high redshifts)
when we get to times when most galaxies had not yet formed.

The baryon density is ρ̄b = Ωbρcrit0 = ωbh
−2ρcrit0, where ωb = 0.022 [19], giving

ρ̄b = 6.1× 109m�/Mpc3 (2.4)

16MBW[2], Sec. 6.1.2 takes a heavier approach here. They consider a two-step random process, where the first
random process generates a continuous density field ρ(x) and a second random process generates a point mass
representation of it. The advantage of this is that there is no worry about dV being smaller than the resolution
of ρ(x). They also invoke ergodicity, but this does not seem necessary, if one refers to 〈ρ〉 instead of ρ̄.

17https://www.nasa.gov/feature/goddard/2016/hubble-reveals-observable-universe-contains-10-

times-more-galaxies-than-previously-thought
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Figure 9: Evolution of the comoving total galaxy number density φT as a function of redshift and time
[18]. The symbols with error bars are results from different surveys. The solid line on the right panel is
a fit to the data points, and the dashed line is a fit of a galaxy merger model to them. The plot assumes
h = 0.7, so to convert into units of h3 Mpc−3, multiply the vertical scale numbers (which are for φT , not
log φT ) by h−3 = 2.9.

With h = 0.7 this gives

ρ̄b
ρ̄g

= 8.6× 1010m� = 1.7× 1041 kg baryonic matter per galaxy (2.5)

in the late universe. The total matter density parameter is ωm = 0.14 [19], so this gives
5.5× 1011m� total matter (baryonic + cold dark matter) per galaxy.

From [2], p.62 (Table 2.6) there are about 10 times as many dwarf galaxies in the local part
of the universe as there are spiral galaxies; and the number of other types of galaxies is about
half of that of spiral galaxies. The dwarf galaxies (defined as those with absolute magnitude
MB & −18) thus make up most of the number of galaxies although they contain a relatively
small fraction of all stars ([2], p. 57). The further out we look the larger the absolute luminosity
(the smaller the absolute magnitude) of the galaxy has to be for us to be able to observe it.
Thus the number density of observable galaxies is smaller than (2.3) and falls with distance.

For the 2D galaxy number density on the sky I can give a more definite number: The Euclid
wide survey will cover Ω = 15000 square degrees (= 36.36% of the sky) and is expected to observe
1.5 billion (Ng = 1.5 × 109) galaxies (with apparent magnitude m < 24.5, observed sufficently
well for their observed shapes to be used for weak lensing statistics)[20]. This corresponds to a
2D density of

ρ̄g,Euclid =
Ng

Ω
≈ 30

arcmin2 . (2.6)

Most of these galaxies are at z . 2, corresponding to r . 2H−1
0 or V ≈ 190h−3 Gpc3, 1/5 of the

volume to z = 8. Defining the “Euclid volume” as 15 000 square degrees of sky up to z = 2, we
have

VEuclid ≈ 70h−3 Gpc3 , (2.7)

which should contain about 14 billion galaxies, so Euclid will miss most of them.
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Let’s check if these numbers from the three sources[18, 2, 20] appear consistent with each other:
Comparing the absolute magnitude of the brightest dwarf galaxies, M = −18, to the Euclid wide survey
depth, m = 24.5, we conclude that even the brightest dwarf galaxies will be missed beyond distance
modulus m − M = 42.5 = −5 + 5 lg dL[pc] ⇒ dL = 109.5pc ≈ 3.16 Gpc. With h = 0.7 this is
dL = 2.2h−1Gpc = 0.74H−1

0 corresponding to z ≈ 0.55. (In a flat universe the luminosity distance and
comoving distance are related by dL = (1 + z)r, so this corresponds to r ≈ 0.48H−1

0 .) Thus the Euclid
wide survey should see some dwarf galaxies at z < 0.55 and none at z > 0.55, beyond which it will miss
also some of the larger galaxies. This seems consistent with Euclid observing 1.5 billion out of a total of
14 billion galaxies in VEuclid.

2.2 Galaxy 2-point correlation function

We treat individual galaxies as mathematical points, so that each galaxy has a coordinate value
x. We define the galaxy 2-point correlation function ξ(r) as the excess probability of finding a
galaxy at separation r from another galaxy:

dP ≡ 〈ρ〉 [1 + ξ(r)] dV (2.8)

where 〈ρ〉 is the mean (ensemble average) galaxy number density, dV is a volume element that
is a separation r away from a chosen reference galaxy, and dP is the probability that there is a
galaxy within dV .

The probability of finding a galaxy in volume dV1 at a random location x is

dP1 = 〈ρ(x)〉dV1 = 〈ρ〉〈1 + δ(x)〉dV1 = 〈ρ〉dV1 . (2.9)

The probability of finding a galaxy pair at x and x + r is

dP12 = 〈ρ(x)ρ(x + r)〉dV1dV2 = 〈ρ〉2〈[1 + δ(x)][1 + δ(x + r)]〉dV1dV2

= 〈ρ〉2 [1 + 〈δ(x)〉+ 〈δ(x + r)〉+ 〈δ(x)δ(x + r)〉] dV1dV2

= 〈ρ〉2 [1 + 〈δ(x)δ(x + r)〉] dV1dV2 , (2.10)

since 〈δ(x)〉 = 〈δ(x + r)〉 = 0. Dividing dP12 with dP1 we get the probability dP2 of finding the
second galaxy once we have found the first one

dP2 = 〈ρ〉 [1 + 〈δ(x)δ(x + r)〉] dV2 . (2.11)

Comparing (2.11) to (2.8) we see that our new definition of ξ agrees with the old one

ξ(r) = 〈δ(x)δ(x + r)〉 . (2.12)

Thus, for any galaxy, 〈ρ〉[1 + ξ(r)]dV is the expectation number of galaxies in a volume
element dV at separation r and the mean number of neighbors within a spherical shell is

dN(r) = 〈ρ〉 [1 + ξ(r)]Cdr
d−1dr (2.13)

and the mean number of neighbors within distance R is

N(R) = 〈ρ〉V (R) + 〈ρ〉
∫ R

0
ξ(r)Cdr

d−1dr = 〈ρ〉V (R)
[
1 + ξ̄(R)

]
. (2.14)

Thus 1 + ξ(r) can be interpreted as the mean (expected) density profile around each galaxy.
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Figure 10: Poisson distribution of N = 250 galaxies. The 2D volume is divided into M = 25 cells, so
that on average a cell should contain 10 galaxies. There are two cells with just 5 galaxies.

2.3 Poisson distribution

A Poisson distribution is an uncorrelated distribution of galaxies, which we get when we assign
each galaxy i a random location xi (with uniform probability density within V ) independently.
(This process is called a Poisson process.) Then

dP12 = 〈ρ〉2dV1dV2 ⇒ ξ(r) = 0 . (2.15)

Divide the volume V into M subvolumes (cells) ∆V . Assign now N galaxies into V with a
Poisson process. See Fig. 10. Each galaxy lands in a particular cell with probability p = 1/M ,
and somewhere else with probability 1 − p = 1 − 1/M . The probability of the n first galaxies
landing in this cell and the remaining N−n elsewhere is thus (1/M)n(1−1/M)N−n. Since there
are (

N

n

)
≡ N !

n!(N − n)!
(2.16)

ways of choosing n galaxies out of N , the probability of getting exactly n galaxies in a particular
cell is

P(n) =

(
N

n

)(
1

M

)n(
1− 1

M

)N−n
. (2.17)

This is the nth term of the binomial expansion

(a+ b)N =

N∑
n=0

(
N

n

)
anbN−n (2.18)

so we can easily check that the total probability is

N∑
n=0

P(n) =
N∑
n=0

(
N

n

)(
1

M

)n(
1− 1

M

)N−n
=

[
1

M
+

(
1− 1

M

)]N
= 1N = 1 . (2.19)
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This probability distribution (2.17) of integers is called the binomial distribution B(N, p),
where p = 1/M . The Poisson limit theorem states that: if N → ∞ and p → 0 (M → ∞) so
that Np = N/M → λ (keep cells at fixed sized and increase the survey volume), then

P(n) =

(
N

n

)
pn(1− p)N−n → λne−λ

n!
=

(
N

M

)n e−N/M
n!

(2.20)

This probability distribution of integers is called the Poisson distribution.
For the Poisson distribution we have the expectation values (exercise)

〈n〉 =
∞∑
n=0

nP(n) = e−λ
∞∑
n=1

λn

(n− 1)!
= λe−λ

∞∑
n=0

λn

n!
= λ = N/M

〈n2〉 =
∞∑
n=0

n2P(n) = . . . = λ+ λ2

〈(∆n)2〉 ≡ 〈(n− 〈n〉)2〉 = 〈n2〉 − 〈n〉2 = λ . (2.21)

The galaxy density in a cell is ρ(x) = n/∆V and the density perturbation is δ(x) = (n−〈n〉)/〈n〉,
so that

〈δ2〉 =
〈(n− 〈n〉)2〉
〈n〉2 =

1

λ
=

1

〈n〉 . (2.22)

(We will later, in Sec. 8, refer to this as Poisson variance: the relative variance is 1/expected
number of points.) Thus, although for a Poisson distribution ξ(r) = 0 for r 6= 0, we have

ξ(0) = 〈δ2〉 =
M

N
=

1

〈n〉 (2.23)

(in the limit of very large N and M). This density variance depends on the resolution, since
increasing the number of cells M with fixed volume V and fixed number of galaxies N (decreasing
∆V ) makes its larger.

(Note: This discussion was done with fixed N , corresponding to the subensemble ρ̄ = 〈ρ〉; we
should also consider allowing N to vary, presumably also with a Poisson distribution P(N) =
λNe−λ/N !, where now λ = 〈N〉 = 〈ρ〉V (TBD).)

We could continue with this approach to specify that the volume V is cubic and the division into M
cells forms a rectangular grid, replacing M with Md and doing a discrete Fourier transform to find the
power spectrum of the Poisson distribution, finding that

P (k) = const , (2.24)

but since this seems not to be the usual approach in literature, I skip this, avoiding the discussion of
discrete Fourier transforms. (Update: I have now added this below.) However, we make some comments
on the result: The Poisson distribution has the power spectrum of white noise, n = 0, the amplitude
depending on the resolution. We noted in Sec. 1.9 that as n→ 0, γ → d. Now we have that ξ(r) = 0 for
r 6= 0, but ξ(0) ∝ (∆r)−d (for fixed V and N), where ∆r is the side of the cell, i.e., ∆V = (∆r)d.

Discrete Fourier transform. For simplicity, we do this here in 1D only, and I have put this in
small print, since we introduce another way to do a Fourier transform for a discrete set of objects in
Sec. 2.5. In spite of being in 1D, I use the vector notation for the (1D) vectors x and k before switching
to the discrete notation, where they get replaced by the integers j and k. We denote the 1D volume with
L (length), and divide it into M cells with size ∆, so that L = M∆. For convenience, let M be even.
Let j = 0, . . . ,M − 1 index the cells, so that the location of cell j is xj = j∆ (we may assume that this
refers to the center of the cell, so that we have chosen to put the coordinate origin at the center of the
first cell, so that the “survey” extends from − 1

2∆ to L− 1
2∆). The density perturbation in cell j is

δ(xj) = δ(j∆) ≡ δj =
nj − 〈n〉
〈n〉 , (2.25)
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where nj is the number of galaxies in cell j.
In place of the Fourier coefficient of a continuous function

δk =
1

L

∫
δ(x)e−ik·xdx , (2.26)

where the allowed values for the wave vector (wave number) k are k(2π/L) where k is an integer, we have
now the sum

δk =
1

L

M−1∑
j=0

δje
−ij∆k(2π/L)∆ =

∆

L

M−1∑
j=0

δje
−i2πjk/M , (2.27)

where ∆/L = 1/M .
The discretization imposes an upper limit to what Fourier modes can be resolved: the maximum

value of k is such that the wavelength is equal to 2∆:

kmax
2π

L
=

2π

2∆
=
π

∆
⇒ kmax =

L

2∆
=
M

2
, (2.28)

and the allowed values are
k = − 1

2M, − 1
2M + 1, . . . , 1

2M . (2.29)

Since exp(−i2πjk/M) is periodic in k, i.e., k + M gives the same values as k, we can always replace k
with k +M or k −M . Also modes k = − 1

2M and k = 1
2M look the same, so we only have M different

modes. We can thus use the more convenient range

k = 0, 1, . . .M − 1 (2.30)

instead of (2.29).
The different Fourier modes are orthogonal (exercise)

M−1∑
k=0

ei2π(j−j′)k/M = Mδjj′ . (2.31)

Using this, one can easily show (exercise) that

δj =

M−1∑
k=0

δke
i2πjk/M . (2.32)

Equations (2.27) and (2.32) form the discrete Fourier transform pair.
We can now calculate

〈δ∗kδk′〉 =
∆2

L2

M−1∑
j=0

M−1∑
j′=0

〈δjδj′〉ei2π(jk−j′k′)/M

=
∆2

L2

M−1∑
j=0

M−1∑
r=0

〈δjδj+r〉e−i2πjk/Mei2π(j+r)k′/M

=
∆2

L2

M−1∑
r=0

ξre
−i2πrk′/M

M−1∑
j=0

ei2πj(k−k
′)/M

=
∆

L

M−1∑
r=0

ξre
−i2πrk/Mδkk′ ≡

1

L
δkk′Pk , (2.33)

where we have 1) written j′ = j + r, where we can let also the integer r range from 0 to M − 1, since
everything wraps over in M ; 2) defined ξr ≡ 〈δjδj+r〉 (invoking statistical homogeneity); 3) used (2.31);
and 4) defined the power spectrum Pk as the discrete Fourier transform of ξr:

Pk ≡ ∆

M−1∑
r=0

ξre
−i2πrk/M . (2.34)
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(The difference in the forms of (2.27) and (2.34), i.e., the missing L, is just the difference in (1.57). I
could have made other choices in the definitions about where to place L and ∆.)

For a Poisson distribution, ξr = 0, except

ξ0 = M/L〈ρ〉 =
1

∆〈ρ〉 =
1

〈n〉 , (2.35)

so that

Pk =
1

〈ρ〉 for all k . (2.36)

Exercise: Cox process. A Cox process refers to a combination of two Poisson processes. Consider
the following examples:

1. Infinitely long lines are placed randomly (the first Poisson process) into an infinite volume. Galaxies
are then assigned randomly (the second Poisson process) on these lines, so that the mean (expec-
tation value of) linear number density on these lines is λ. What is ξ(r), given in terms of λ and
the resulting mean (expectation value of) 3D galaxy number density 〈ρ〉?

2. Like the previous case, but now the line segments have finite length L (all have the same length).
What is ξ(r), in terms of λ, L, and the number density ns of line segments?

Answer:

1.

ξ(r) =
λ

2π〈ρ〉r
−2 (2.37)

2.

ξ(r) =
1

2πnsLr2

(
1− r

L

)
for r ≤ L ; ξ(r) = 0 for r > L (2.38)

Note that this does not depend on λ (〈ρ〉 = nsLλ, so it cancels in the ratio λ/〈ρ〉).
Note: The Cox process has been used to generate “mock” catalogs for testing computer codes to

estimate ξ(r). It is actually not easy to generate test catalogs which have exactly some known, but
non-zero, correlation function ξ(r) that the estimate could be compared to. Cox is one way to do this.

Exercise: Cox process with binning. Continuation of previous exercise: When measuring the
correlation function ξ(r) from data, one has to count it for bins of finite width ∆r. So instead of asking
what is the excess probability ξ(r)〈ρ〉dV for another galaxy at separation r (so that dV = 4πr2dr), for
comparing data with theory we ask what is the excess probability ξ(r1, r2)〈ρ〉∆V for a separation between
r1 and r2 (i.e., here ∆r = r2 − r1). Find ξ(r1, r2) for r1 < r2 ≤ L. (ξ = 0 for r1 ≥ L, and the answer for
r1 < L < r2 is more complicated but rarely needed.)

Answer:

1.

ξ(r1, r2) =
λ

2π〈ρ〉
3(r2 − r1)

r3
2 − r3

1

=
λ

2π〈ρ〉
3

r2
1 + r1r2 + r2

2

(2.39)

2.

ξ(r1, r2) =
1

2πnsL

3(r2 − r1)

r3
2 − r3

1

(
1− r1 + r2

2L

)
=

1

2πnsL

3

r2
1 + r1r2 + r2

2

(
1− r1 + r2

2L

)
(2.40)
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Table 2: The Cox process correlation function for L = 500, ns = 8× 10−7, and ∆r = 1 binning. On the
left: a log-log plot of ξ(r). On the right: lin-lin plot of r2ξ(r).

2.4 Counts in cells

One of the first methods to measure the clustering properties of galaxies was dividing the survey
volume V into cells (subvolumes) of equal size ∆V and shape, and count the number n of galaxies
in each cell. Defining

∆n ≡ n− 〈n〉 (2.41)

the variance
µ2 ≡ 〈(∆n)2〉 (2.42)

and skewness
µ3 ≡ 〈(∆n)3〉 , (2.43)

we have that for a completely random (i.e., Poisson) distribution of galaxies

µ2 = µ3 = 〈n〉 . (2.44)

A clustered distribution will have a larger variance. We define

y ≡ µ2 − 〈n〉
〈n〉2 (2.45)

as a measure of clustering. It can be shown that

〈y〉 =

∫
∆V

∫
∆V ξ(x1 − x2)ddx1d

dx2

∆V 2
(2.46)

Likewise we define

z ≡ µ3 − 3µ2 + 2〈n〉
〈n〉3 (2.47)

as a measure of excess skewness of the clustering. It measures nonlinear effects in structure
growth and non-Gaussianity of primordial perturbations.
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For an actual survey we define corresponding quantities µ̂2, µ̂3, ŷ, and ẑ, by replacing
expectation values with survey averages. Note that these are biased estimators, 〈ŷ 〉 6= y, 〈ẑ 〉 6= z,
since taking expectation values does not commute with raising to second or third power and
division. One can study scale dependence of structure by using larger or smaller cells. This
method is better than correlation function estimation for detecting structure at large scales,
where the correlation function is small.

An important improvement of this method is to, instead of using disjoint cells, assign a much
larger number of cells of the same size ∆V to random locations within the survey, allowing them
to overlap. This oversampling does not change the expected variance, which is determined by
(2.46), but the measured variance will be closer to this expectation value. [14, 15]

2.5 Fourier transform for a discrete set of objects

When we replaced the continuous density field with a set of discrete objects, the resolution of
our description was reduced. The standard approach of a discrete Fourier transform, where
one introduces a rectangular grid with finite resolution, introduces another, independent, loss
of resolution, which is unnecessary. We would lose the information on the exact locations of the
galaxies if we just assigned them into finite cells. The only discreteness we need to introduce
is that inherent in the problem, that of the discrete point set. This is done by introducing
microcells. We start as if we were going to do a normal discrete Fourier transform, dividing the
volume into cells. But now we make the cells small compared to the scales of galaxy distribution,
so that the probability of there being more than one galaxy in a cell becomes zero, and specifying
in which cell a galaxy i is, specifies its “exact” location xi. Denote the volume of such a microcell
with δV . Most microcells will be empty. The galaxy number density in microcell j is nj/δV ,
where nj = 0 or 1. This means that n2

j = nj , which will be very helpful later.
The Fourier coefficients of the density field become

ρk =
1

V

∫
V
ρ(x)e−ik·xddx =

1

V

∑
j

(nj/δV )e−ik·xjδV =
1

V

∑
j

nje
−ik·xj , (2.48)

where the sum is over microcells, and xj is the location of the microcell. But since nj = 0 for all
the empty microcells (nj = 0), only those terms survive, where the microcell contains a galaxy,
nj = 1, and the sum becomes a sum over galaxies

ρk =
1

V

∑
i

e−ik·xi , (2.49)

where xi is the location of galaxy i. Thus

δk =
ρk
〈ρ〉 =

1

〈ρ〉V
∑
i

e−ik·xi =
1

〈N〉
N∑
i=1

e−ik·xi for k 6= 0

δ0 = δ̄ =
ρ̄

〈ρ〉 − 1 =
N − 〈N〉
〈N〉 , (2.50)

where N is the total number of galaxies in the volume V , and 〈N〉 = 〈ρ〉V is its expectation
value.

2.5.1 Poisson distribution again

We apply now our new Fourier method to the Poisson distribution, where the locations xi are
independent random numbers, so that the complex numbers e−ik·xi in (2.50) are distributed
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randomly on the unit circle of the complex plane. Doing the sum
∑N

i=1 e
−ik·xi thus executes a

random walk on the complex plane, with step length 1.
To get the power spectrum,

|δk|2 = δ∗kδk =
1

〈N〉2
∑
ij

eik·(xi−xj) =
1

〈N〉2

∑
i 6=j

eik·(xi−xj) +
∑
i

1


=

1

〈N〉2

2
∑
pairs

cos(k · (xi − xj)) +N

 . (2.51)

There is an equal probability for the cos(k·(xi−xj)) to be positive or negative, so the expectation
value of the first term vanishes, and we get

P (k) = V 〈|δk|2〉 = V
〈N〉
〈N〉2 =

V

〈N〉 =
1

〈ρ〉 , (2.52)

which is independent of k, i.e., the spectral index is n = 0.
In Sec. 9.1 we redo this for a correlated distribution, where we see that the effect of having

a discrete set of galaxies instead of a continuous density adds this V/〈N〉 = 1/〈ρ〉 term to the
power spectrum. This added term is called shot noise. The higher the density of points (galaxies
included in the survey) the smaller is this shot noise. For an estimate of the power spectrum of
the underlying mass distribution we subtract this shot noise.

Probability distribution of P̂ (k): We will later discuss estimation of power spectrum from galaxy
surveys in more detail, but let us already consider how individual realizations differ from the expectation
value, i.e., how is

P̂ (k) ≡ V |δ̂k|2 (2.53)

distributed around the expectation value P (k). We assume a fixed N (which may be different from 〈N〉),
i.e., we do not here fold in the probability distribution of N . Consider the complex number δ̂k as a 2D
vector

δ̂k =
1

N

N∑
i=1

e−ik·xi =
1

N

(∑
i

cos k · xi , −
∑
i

sin k · xi
)
, (2.54)

which points to the endpoint of the random walk (or Nδ̂k does). Consider

the real part of δ̂k:
1

N

∑
i

cos k · xi . (2.55)

Here the terms in the sum are independent random variables with a nonuni-
form probability distribution (k·xi has a uniform probability distribution18).

We apply the central limit theorem: The sum (or mean) of independent
random variables approaches the normal (Gaussian) distribution,

P(x) =
1√

2πσ2
e−

1
2 (x−µ)2/σ2

, (2.56)

where µ is the expectation value and σ2 the variance, as N →∞, regardless
of the probability distribution of the individual variables. If each variable
has the same probability distribution, with expectation value µ and variance σ2, then their mean will
have expectation value µ and variance σ2/N .

18Comment by Elina Keihänen: I do not think k ·x has uniform distribution, except in 1D. It is a sum of three
terms, k1x1 + k2x2 + k3x3, each of which separately is uniformly distributed, but their sum is not. Suprisingly,
(2.57) still seems to hold. I checked this numerically.
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The expectation value of cos k · xi is zero and the variance is 1
2π

∫ 2π

0
cos2 xdx = 1

2 . Thus Re δ̂k has
the probability distribution

P
(
Re δ̂k = x

)
=

√
N

π
e−Nx

2

. (2.57)

The imaginary part has the same probability distribution. Now clearly the real and imaginary parts are
correlated. The individual terms are fully correlated since sin =

√
1− cos2. Some of this correlation

remains for the sums, especially in the large-|δ̂k| tail of the probability distribution. Clearly, if the real
part is close to its possible maximum value (cos k ·xi has mostly landed near 1), then the imaginary part
has to be small, and vice versa. However, far from the tail we can expect the correlation between the
sums (the two components of the random walk) be negligible. Making this approximation,19 we get the
2D probability distribution

P
(
δ̂k
)

=
N

π
e−N |δ̂k|

2

. (2.58)

To convert this into a probability distribution for |δ̂k|2, we need to integrate. Do first

P
(
|δ̂k| = r

)
dr = Ne−Nr

2

2rdr . (2.59)

This is known as the Rayleigh distribution. For s = |δ̂k|2 = r2, ds = dr2 = 2rdr, so

P
(
|δ̂k|2 = s

)
ds = Ne−Nsds , (2.60)

and

P
(
|δ̂k|2 > s

)
= N

∫ ∞
s

e−Nsds = e−Ns . (2.61)

The mean of this distribution is 1/N and the variance is 2/N2, i.e,

〈P̂ (k)〉 =
V

N
=

1

ρ̄
and

〈(
P̂ (k)− 〈P̂ (k)〉

)2
〉

= 2

(
V

N

)2

=
2

ρ̄2
. (2.62)

Thus, although the expectation value of P̂ (k) agrees with P (k), the variance around it is large and

the most probable value is actually P̂ (k) = 0 ! Note, however, that this is for an individual Fourier mode
k, and to estimate P (k) from a survey one would take the mean over a large number of Fourier modes
for which |k| falls between k and k + dk, and the variance of this mean is then much lower.

We get the probability distribution of N by just applying (2.20) but considering the full volume V
as one subvolume of an infinite universe, i.e., replacing n by N ,

P(N) = 〈N〉N exp−〈N〉

N !
. (2.63)

19Peacock[1] does not mention any such approximation (maybe it comes as part of the N � 1 limit), but I need
to make it to get his Eq. (16.115), i.e., our (2.61).
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3 Subspaces of lower dimension

Consider now how the statistics of a 1D or 2D subspace are related to the statistics in the full 3D
space. A key starting point here is that because of statistical isotropy, the correlation function

ξ(r) = 〈δ(x)δ(x + r)〉 (3.1)

is the same, whether x and x + r are restricted on a 1D line or 2D plane, or not.

3.1 Skewers

Consider the power spectrum P1D(k) along a straight line (‘skewer’) going through 3D space.
Since

P1D(k) =
2k

π

∫ ∞
0

ξ(r) cos krdr and ξ(r) =

∫ ∞
0
P3D(k)

sin kr

kr

dk

k
, (3.2)

we have

P1D(k) =
k

π

∫ ∞
0

dq

q2
P3D(q)

∫ ∞
0

dr
2 cos kr sin qr

r
= k

∫ ∞
k

dq

q2
P3D(q) , (3.3)

since (exercise) ∫ ∞
0

dr
2 cos kr sin qr

r
= πΘ(q − k) , (3.4)

where Θ(q − k) is the step function, 1 for q > k, 0 for q <
k. Shorter wavelength q > k modes in 3D contribute to the
observed power in 1D at k, since when q is not parallel to the
line, the intersection of the 3D plane wave with the line has
a longer wavelength. In terms of P1D(k) = (π/k)P1D(k) and
P3D(k) = (2π2/k3)P3D(k) this reads

P1D(k) =
1

2π

∫ ∞
k

dq

q
q2P3D(q) . (3.5)

This means that if P3D has a spectral index n ≥ −2 (P3D(q) ∝ q or steeper), P1D(k) at a
given scale k will be dominated by much smaller-scale (higher-k) 3D structure, and the true
larger-scale 3D structure cannot be seen in a 1D survey.

From (3.5) we see that
dP1D(k)

dk
= − 1

2π
kP3D(k) , (3.6)

so that P1D(k) is necessarily monotonously decreasing. Thus we always have n1D < 0, even if
n3D > 0.

Example: Let’s redo the calculation of (3.5) in a way that is maybe easier to generalize to other
cases: Start from the d-dimensional integrals

P1D(k) =

∫ ∞
−∞

dr e−ik·rξ(r) and ξ(r) =
1

(2π)3

∫
d3q eiq·rP3D(q) , (3.7)

so that

P1D(k) =
1

(2π)3

∫
drd3qe−ik·reiq·rP3D(q) , (3.8)

where the vectors r and k lie along the 1D line (which we can take as the x axis). Thus in the exponentials
(q− k) · r = (qx − k)r and the r integral gives

1

2π

∫
dr ei(qx−k)r = δD1 (k − qx) , (3.9)
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forcing qx = k. Write now q = (k,h) where h is 2-dimensional. Now

P1D(k) =
1

(2π)2

∫
d2hP3D(q) =

1

2π

∫
hdhP3D(q) . (3.10)

Since (q)2 = k2 + h2, hdh = qdq and q ≥ k and we have (3.5).

For the case of discrete objects (‘galaxies’) we have to allow a
finite thickness for the skewer (an infinitely thin line will catch
zero galaxies, if they are treated as points). Consider thus a
narrow cylinder20 with radius R. The 1D density field δ(x,R)
is then related to the 3D density field δ(x,y) by

δ(x,R) =

∫
d2y δ(x,y)W (y) , (3.11)

where W (y) is the 2D top-hat window function (we take the line as the x axis and y = (y, z)).
Thus

ξ(r) = 〈δ(x,R)δ(x+ r,R)〉 =

∫
d2yd2y′ 〈δ(x,y)δ(x+ r,y′)〉W (y)W (y′)

=
∑
kk′

∫
d2yd2y′W (y)W (y′)〈δ∗kδk′〉e−ikxxeik

′
x(x+r)e−iky ·yeik

′
y ·y′

=
1

V

∑
k

eikxrP3D(k)

∫
d2yW (y)e−iky ·y

∫
d2y′W (y′)eiky ·y′

=
1

V

∑
k

eikxrP3D(k)|W (ky)|2 . (3.12)

We now replace the sum with an integral to get

ξ(r) =
1

2π

∫ ∞
−∞

dkx e
ikxr 1

(2π)2

∫
d2ky P3D(k)|W (ky)|2 . (3.13)

0 1 2 3 4 5 6

0.0

0.1

0.2

0.3

0.4

0.5

Figure 11: 2J2
1 (x)/x2

From here we can read the P1D(k) as the Fourier transform
of ξ(r):

P1D(k) =
1

(2π)2

∫
d2ky P3D(q)|W (ky)|2 , (3.14)

where q = (k,ky). Comparing to (3.10), we see that P3D(q) was
replaced by P3D(q)|W (ky)|2, where k2

y = q2 − k2. The result is
thus

P1D(k) =
1

2π

∫ ∞
k

dq

q
q2P3D(q)

∣∣∣W (√
q2 − k2

)∣∣∣2 . (3.15)

Inserting the Fourier transform of the 2D top-hat window
function and writing in terms of P3D not P3D, this is

P1D(k) = π

∫ ∞
k

dq

q2
P3D(q)

2J2
1 (
√
q2 − k2R)

(q2 − k2)R2
. (3.16)

20Concerning the observational situation a narrow cone would be a more appropriate geometry, but it ruins the
homogeneity along the line (we won’t get rid of x as we do now when going from the second to the third line of
Eq. 3.12) and the problem gets complicated.
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The Bessel function J1(x) is much like sinx except for the x−1/2 damping. For small x,
J1(x) ≈ x/2; it reaches its maximum at x ≈ 2, where J1(x) ≈ 0.2, becomes zero again at x ≈ 3.8
and then keeps oscillating with a damped amplitude. Thus the window function is roughly
constant at first (the factor multiplying P3D(q) in (3.16) is ≈ 1/2) , and then falls rapidly after
q2 − k2 > (2/R)2.

Example: Peacock ([1], p. 518) mentions the 2000h−1Mpc long pencil-beam survey of Broadhurst
et al.[16], which generated a lot of excitement[17], since it found a periodic structure of wavelength
128h−1Mpc, i.e., the 1D power spectrum was strongly peaked at k = 2π/128h−1Mpc = 0.05hMpc−1.
This seemed to contradict the standard view of large-scale structure, according to which, σ2(R) and
P3D(k) should be � 1 at these scales. However, considering the above, large 1D power at such a large
scale is not unexpected. The standard view is that at smaller scales γ = 1.8, so that n = −1.2 and
P3D ∝ kγ , reaching unity near k = 0.1hMpc−1 (see Fig. 3). The representative transverse radius of the
pencil beam was R = 3h−1Mpc. Thus the observed 1D power at all scales larger than this is dominated
by 3D structure at this scale. Approximating the window function with a step function that cuts off at
q2 − k2 = 4/R, i.e., at q =

√
k2 + 4/R2 (3.16) becomes

P1D(k) ≈ π

2

∫ √k2+4/R2

k

dq

q2

(
q

0.1hMpc−1

)1.8

=
[(
k2 + 4/R2

)0.4 − k0.8
]

124h−1Mpc , (3.17)

where in the last step k and 1/R are in units of hMpc−1. The expression in brackets is ≈ const
for large scales k � 2/R = 0.7hMpc−1 (it is 0.72 for k = 0 and 0.63 at k = 0.05hMpc−1) and
then becomes smaller as k → 2/R and beyond. At k = 2π/128h−1Mpc = 0.05hMpc−1 this gives
P1D(k) = k

πP1D(k) ≈ (0.05/π)× 0.63× 124 ≈ 1.3.

3.2 Slices

Left as an exercise.

Exercise: Consider a 2-dimensional slice of a 3-dimensional density field. Show that

P2D(k) = k2

∫ ∞
k

dk′√
(k′)2 − k2

1

(k′)2
P3D(k′) . (3.18)

Exercise: Consider instead a slice with thickness 2R, i.e, we have a 1D top-hat window function
WT (z;R) in the orthogonal direction. Show that

P2D(k) = k2

∫ ∞
k

dk′

(k′)2
√

(k′)2 − k2
P3D(k′)

∣∣∣W (√
(k′)2 − k2

)∣∣∣2 . (3.19)

The result (3.18) diverges at high k′ for P3D(k′) ∝ (k′)2 or steeper, i.e, for n ≥ −1. In (3.19)
the finite thickness of the slice cuts off the contribution from the smallest scales, so that for
n ≥ −1 the large-scale 2D power is dominated by the structure near the scale R.
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4 Angular correlation function for small angles

Suppose we have a galaxy survey with no distance (or redshift) information. For every galaxy
we then have only the direction to it, which we denote by a unit vector r̂. We define the angular
correlation function w(ϑ) as the excess probability of finding another galaxy at a separation
angle ϑ from a given galaxy. In analogy with (2.10) we have

〈n(r̂1)n(r̂2)〉dΩ1dΩ2 ≡ 〈n〉2 [1 + w(ϑ)] dΩ1dΩ2 , (4.1)

where n(r̂) is the number density of galaxies per unit solid angle (dΩ) in the direction r̂ on the
sky, and ϑ is the angle between directions r̂1 and r̂2.

4.1 Relation to the 3D correlation function

How is this related to the 3D distribution of galaxies? It is essential here that a galaxy survey
does not see all galaxies that lie in a given direction. The further out a galaxy is the larger its
absolute luminosity has to be for it to be observed. This is represented by the selection function
S(r) of the survey, which gives the probability for a galaxy at distance r to be observed by the
survey.

Since the volume element is given by dV = r2drdΩ, n(r̂) is related to the 3D galaxy number
density by

n(r̂) =

∫ ∞
0

ρ(r)S(r)r2 dr (4.2)

and

〈n〉 = 〈ρ〉
∫ ∞

0
S(r)r2 dr ≡ 〈ρ〉VS , (4.3)

where

VS ≡
∫ ∞

0
S(r)r2 dr , (4.4)

is the selection function volume per unit solid angle,21 For a survey covering a solid angle Ω, the
expected number of observed galaxies is thus

〈N〉 = 〈n〉Ω = 〈ρ〉VSΩ . (4.5)

For density perturbations, the relation between δn(r̂) ≡ (n(r̂)− 〈n〉) /〈n〉 and the 3D δ(r) ≡
(ρ(r)− 〈ρ〉) /〈ρ〉 is

δn

〈n〉 =
1

VS

∫ ∞
0

δ(r)S(r)r2dr . (4.6)

Thus

〈n(r̂1)n(r̂2)〉dΩ1dΩ2 =

∫ ∞
0

dr1

∫ ∞
0

dr2 〈ρ(r1)ρ(r2)〉S(r1)S(r2)r2
1r

2
2 dΩ1dΩ2

= 〈ρ〉2
∫ ∞

0
dr1

∫ ∞
0

dr2 [1 + ξ(r12)] S(r1)S(r2)r2
1r

2
2 dΩ1dΩ2

= 〈ρ〉2
∫ ∞

0
dr1S(r1)r2

1dΩ1

∫ ∞
0

dr2S(r2)r2
2dΩ2

+ 〈ρ〉2
∫ ∞

0
dr1

∫ ∞
0

dr2 ξ(r12)S(r1)S(r2)r2
1r

2
2 dΩ1dΩ2

≡ 〈n〉2dΩ1dΩ2 + 〈n〉2w(ϑ) dΩ1dΩ2 , (4.7)

21This VS is my own definition (MBW[2] keeps writing the integral without calling it anything) and there are
different normalizations of S(r) (Peacock[1] normalizes it so that VS = 1.)
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Fig. 3. Galaxy map for the Lick data with bn > 40°. The map is an array of picture elements, each about the size of one KL by 10' 
Shane-Wirtanen cell, in which the grey tone represents the galaxy count in the nearest cell. The grey scale shows the steps for successive 

increases of one galaxy commencing with black for zero. 
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Figure 12: Shane-Wirtanen map of the galaxy distribution on the northern galactic hemisphere [21, 22].
The sky is divided into cells of 10′×10′ (arcminutes) and each cell is colored in greyscale according to the
number of galaxies in it, white signifying ≥ 8 galaxies. The galaxies were counted from the Lick survey
[21], which has a limiting magnitude of about m∗ = 19. The Lick survey, begun in 1950 and completed
in 1967, was the largest galaxy survey of its time, containing about a million galaxies, and a major step
in the study of the large-scale structure of the universe. It covered the northern galactic hemisphere and
about half of the southern galactic hemisphere. The survey used 6◦ × 6◦ photographic plates obtained
with the 0.5 m refractor (lens telescope) at Lick Observatory (on a mountain top in the San Francisco
Bay area). At center, near the north galactic pole: Coma Cluster. This is Fig. 3 from [23].
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so that we have the relation between the angular and 3D correlation functions

w(ϑ) =
〈ρ〉2
〈n〉2

∫ ∞
0

dr1

∫ ∞
0

dr2 ξ(r12)S(r1)S(r2)r2
1r

2
2 , (4.8)

where

r12 =
√

(r1 − r2)2 =
√
r2

1 + r2
2 − 2r1r2 cosϑ . (4.9)

4.1.1 Selection function

For simplicity, we now ignore all cosmological effects, like the difference between the luminosity
distance and comoving distance, and the time evolution of galaxies and their clustering, and
assume that the survey is magnitude limited, i.e., within the survey area it observes all galax-
ies whose (apparent) magnitude is < m∗, where m∗ is the limiting magnitude. The absolute
magnitude M and apparent magnitude m are defined as logarithmic scales

m ≡ −2.5 lg
l

l0
, M ≡ −2.5 lg

L

L0
, (4.10)

where l is the apparent luminosity (flux density, received power per unit area), L is the absolute
luminosity (radiated power), and l0, L0 are reference luminosities chosen so that m = M for
an object 10 pc away. There are actually different magnitude scales for different bands of the
electromagnetic spectrum, with different reference luminosities. The bolometric scale refers to
the entire spectrum, and for it L0 = 3.0× 1028 W. Thus L and M are related by

L = L0 × 10−0.4M . (4.11)

The magnitudes m and M and the distance r of a galaxy22 are related by

m−M = −5 + 5 lg r(pc) ⇒ r = 10(m−M)/5 × 10 pc . (4.12)

Thus the galaxy can be observed if

M < m∗ + 5− 5 lg r(pc) . (4.13)

Exercise: Find the value of l0 in W/m2 in the bolometric scale.

For example, if all galaxies had M = −20 (the Andromeda galaxy has M = −20.3 [24],
so this is typical for a spiral galaxy), then all galaxies closer than d∗ = 10(m∗/5)+4 × 10 pc =
10m∗/5 × 0.1 Mpc would be observed and none beyond, so that the selection function would be
a step function

S(r) = Θ(d∗ − r) = Θ(1− r/d∗) , (4.14)

where d∗ is the survey depth. For m∗ = 20, this gives d∗ = 1 Gpc (the cosmological effects
are already becoming significant at this distance). The volume of this selection function is
VS = d3

∗/3. (For a full-sky survey, Ω = 4π, so VSΩ is the familiar 4πd3
∗/3.)

In reality, different galaxies have different M , and the selection function is related to the
galaxy luminosity function φ(L) (the probability distribution of galaxy luminosities L), as

S(r) =

∫ ∞
L∗(r)

φ(L)dL

/∫ ∞
0

φ(L)dL , (4.15)

22Actually, the luminosity distance.
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The SDSS DR6 luminosity functions of galaxies 1111

Figure 7. The 0.1r-band SDSS DR6 LF. The SWML LF estimate is shown
in diamonds. The dashed line represents the best-fitting Schechter function
and the solid line, the 0.1r-band LF from Blanton et al. (2003a). Best-fitting
values of Schechter parameters α, M∗ and "∗ are also shown in the figure.
Shaded regions represent the 1σ uncertainty calculated using a bootstrapping
technique.

Table 2. Values of Schechter parameters α, M∗ and "∗ of the best-fitting
Schechter function in all SDSS bands for this work and for Blanton et al.
(2003a). Note that it is not convenient to compare LFs by just looking at
their best-fitting Schechter parameters. Also bear in mind that both estimates
are not strictly comparable, due to differences in the sample selection, the
treatment of galaxy evolution and, especially, the size of the samples. In
Sections 3.2.1 and 4 we discuss the importance of these inconsistencies.

This work

Band "∗(10−2 h3 Mpc−3) M∗ − 5 log10 h α

0.1u 4.95 ± 0.27 −17.72 ± 0.07 −1.05 ± 0.05
0.1g 1.25 ± 0.10 −19.53 ± 0.04 −1.10 ± 0.03
0.1r 0.93 ± 0.07 −20.71 ± 0.04 −1.26 ± 0.02
0.1i 1.14 ± 0.11 −20.93 ± 0.05 −1.14 ± 0.03
0.1z 0.93 ± 0.09 −21.40 ± 0.05 −1.26 ± 0.03

Blanton et al. (2003)

Band "∗(10−2 h3 Mpc−3) M∗ − 5 log10 h α

0.1u 3.05 ± 0.33 −17.93 ± 0.03 −0.92 ± 0.07
0.1g 2.18 ± 0.08 −19.39 ± 0.02 −0.89 ± 0.03
0.1r 1.49 ± 0.04 −20.44 ± 0.01 −1.05 ± 0.01
0.1i 1.47 ± 0.04 −20.82 ± 0.02 −1.00 ± 0.02
0.1z 1.35 ± 0.04 −21.18 ± 0.02 −1.08 ± 0.02

shape:

"(M) = 0.4 log(10)"∗10−0.4(M−M∗)(α+1)

× exp[−10−0.4(M−M∗)], (4)

where α, M∗ and "∗ are the three parameters to fit. Values of
these parameters for the best-fitting Schechter function are given in
Table 2. For comparison, we also show in Fig. 7 the LF of Blanton
et al. (2003a) with a solid line. This comparison will be addressed in
the Discussion section. To calculate errors in the SWML estimates
of the LF we perform a bootstrapping analysis using 1000 random
subsamples of 1/3 of the number of objects in each sample. In
Fig. 7, shaded regions represent the 1σ uncertainty obtained from
this method.

Because of the big number statistics that we have, with about
450 000 galaxies in the 0.1r band, errors are only significant at
the very bright end of the LF. At the faint end, we can go down

to M0.1r ∼ −16.5, which means that we can build the LF with
unprecedented precision within a very large range of magnitudes.
As we will see below, the above statements hold for all SDSS bands.
Our 0.1r-band LF is reasonably well fitted by a Schechter LF with
a faint-end slope α = −1.26. It is only at the very bright end where
this best-fitting Schechter LF starts to underestimate our LF. At
M0.1r ! −23.5, statistics are poor and errors become increasingly
large.

In Fig. 8 we present, in the same way as in Fig. 7, SWML esti-
mates of the LF in bands 0.1u,0.1g,0.1i and 0.1z, as well as their corre-
sponding best-fitting Schechter LF. Values of best-fitting Schechter
parameters are also given in Table 2. As in the 0.1r band, errors are
only significant at the very bright end of the 0.1u,0.1g,0.1i and 0.1z

band LFs. In addition, we can go down to very faint magnitudes
without losing precision.

In the very blue 0.1u band, the shape of our SDSS DR6 LF is
consistent with a Schechter LF with a slightly positive faint-end
slope (corresponding to α = −1.05). However, at the bright end, we
find a remarkable luminosity excess with respect to the best-fitting
Schechter LF. This excess, of ∼1.7 dex at M0.1u % −20.5, is very
significant within the magnitude range −20.5 < M0.1u ! −22. In
the 0.1g band, this bright-end bump (BEB) weakens considerably,
but it is probably still significant, even though errors are large ac-
cording to our bootstrapping analysis. In this band, our SDSS LF is
very well fitted by a Schechter LF with a positive faint-end slope,
corresponding to α = −1.10. Only at the very bright end, where the
excess is still noticeable, do we find some discrepancy. Below, we
provide a preliminary analysis and discussion on the nature of this
bump at the bright end of the 0.1u-band LF, that may have important
implications in terms of galaxy formation and evolution.

In the redder bands we find a positive faint-end slope, correspond-
ing to α = −1.14 in the 0.1i band and α = −1.26 in the 0.1z band.
The BEB has diminished but is still clearly significant in the 0.1i

band and only disappears completely in the very red 0.1z band. It is
interesting to note that, from the 0.1u band to the 0.1z band, the shape
of the SWML estimate of the SDSS LF changes following a clear
pattern. The faint-end slope increases towards the redder bands (see
Table 2), being almost flat in the 0.1u band and remarkably steep in
the 0.1z band. In this sense, the 0.1r-band SDSS LF seems to slightly
deviate from this trend. At the faint end, we find a slope that is a bit
larger than we could expect (α = −1.26), but this could be just a
consequence of the fact that the entire SDSS spectroscopic sample
was selected in this band.

The BEB that shows up clearly in the 0.1u-band LF, and partially
in the 0.1g-band and 0.1i-band LFs, is an interesting discovery that
may have implications for our understanding of galaxy formation
and evolution. In order to investigate the nature of the objects that
populate it, we have selected all galaxies brighter than −20.5 in the
0.1u-band sample. We will hereafter refer to this population as BEB
galaxies and to their corresponding sample, which is composed of
252 objects, as the bright-end bump sample (BEBS). It is convenient
to remind that, although here we focus on the 0.1u band, significant
bright-end excesses have been found in both the 0.1g band and the 0.1i

band. It is in the very blue 0.1u band, however, were this population
stands out more prominently.

We have visually inspected the spectra of all galaxies in the
BEBS. In addition, we have taken the spectral classification of
each individual galaxy, based on emission line ratios, from the
NYU-VAGC. According to this analysis, about 60 per cent of ob-
jects have a typical quasi-stellar object (QSO) or type 1 Seyfert
spectrum, ∼8 per cent of sources are classified as starburst
galaxies (SBs), ∼12 per cent as star-forming galaxies (SFs) and

C© 2009 The Authors. Journal compilation C© 2009 RAS, MNRAS 399, 1106–1118
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Figure 13: Luminosity function φ from the SDSS survey r band (“red” light, about 550–680 nm) for
galaxies with redshift z = 0.02–0.22.. g The SDSS luminosity functions are significantly differ for different
wavelength bands: typically the galaxies have fainter magnitudes (larger M value) for longer wavelengths
(i, “near infrared”, and z, “infrared” bands) and brighter magnitudes (more negative M value) for shorter
wavelengths (g, “green”, and u, “ultraviolet”). For h = 0.7, −5 lg h = 0.775. This is Fig. 7 from [25].

where
L∗(r) = L0 × 10−0.4m∗−2+2 lg r(pc) (4.16)

is the smallest luminosity observable at distance r. The denominator can be omitted if φ(L) is
normalized so that this integral equals 1, but apparently this is not necessarily the case.

We can still define a survey depth d∗ ∝ 10m∗/5 as the maximum distance to which some
reference magnitude M is observed. Within the approximation of ignoring cosmological effects
(so the luminosity function does not evolve in time), the shape of the selection function is
independent of m∗, except it is stretched proportional to d∗, so we can write it as

S(r) ≡ f(r/d∗) (4.17)

where f is a function determined by φ(L) and independent of the survey. In general, VS ∝ d3
∗.

In the above we ignored the difference between different cosmological distance concepts. The distance
in (4.12) is really the luminosity distance dL, which in a flat cosmology is related to the comoving distance
dC by dL = (1 + z)dC . Using a reference magnitude M = −22 (most galaxies are less luminous than
this, but there are enough galaxies with this magnitude to be used for statistics) we find for the Lick
survey, with limiting magnitude m∗ = 19, the depth dL∗ = 1.58 Gpc and for the Euclid survey, with
limiting magnitude m∗ = 24.5, the depth dL∗ = 19.95 Gpc. Conversion to comoving distance requires the
knowledge of the corresponding redshift, which depends on assumed cosmology and is a bit complicated.
Assuming a flat cosmology with Ωm = 0.3 and h = 0.7 and interpolating the redshift from Table 2 given
at end of Sec. 3 of Cosmology II we get Table 3.

4.1.2 Small-angle limit

Assume now that the survey depth d∗ is large compared to the separations r12 over which
there are significant correlations ξ(r12), so that in the double integral (4.8) we get a significant
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survey m∗ dL∗ z∗ dC∗

Lick 19 1.58 Gpc 0.30 1.2 Gpc
Euclid 24.5 19.95 Gpc 2.45 5.8 Gpc

Table 3: Depths of the Lick and Euclid surveys for reference magnitude M = −22 assuming flat
cosmology with Ωm = 0.3 and h = 0.7. For comparison, the comoving distance to the last scattering
surface, from which the CMB originates, is 13.6 Gpc in this cosmology.

contribution only when r12 � d∗). This then means that w(ϑ) is negligible except for small angles
ϑ� 1. (Clearly “significant”, “negligible”, and “small” here are relative terms. The larger and
better the survey, the higher accuracy we can aim at.) We can then do the integral (4.8).
Note that it is a two-dimensional integral over two distances r1, r2. The ξ(r12) in the integral
depends also on the angle ϑ via (4.9) but we are doing the integral for a fixed ϑ. Define now

y ≡ 1
2(r1 + r2) and x ≡ r2 − r1 (4.18)

(the mean distance and distance difference for a pair of coordi-
nate vectors r1, r2), and do a coordinate transformation from
(r1, r2) to (x, y). The Jacobian determinant of this coordinate
transformation is −1 (exercise), so that dr1dr2 = dxdy.

Since x ≤ r12, the preceding assumption means that we get a
significant contribution to (4.8) only when x is small, otherwise
ξ ∼ 0. Thus the integration limits on x do not matter and we
can replace∫ ∞

0
dr1

∫ ∞
0

dr2 by

∫ ∞
0

dy

∫ ∞
−∞

dx (4.19)

The selection function will change slowly over distances � d∗, so we can approximate

S(r1)S(r2) = S(y + 1
2x)S(y − 1

2x) ≈ S(y)2 . (4.20)

Making further appropriate small angle approximations for cosϑ where it occurs, we get (exer-
cise)

w(ϑ) ≈ 1

V 2
S

∫ ∞
0

dy y4S2(y)

∫ ∞
−∞

dx ξ
(√

x2 + y2ϑ2
)
. (4.21)

This is known as Limber’s equation (it is Eq. 16.100 in [1] and Eq. 6.166 in [2]; note that my
notation is a compromise between these two).

What is the effect of the depth of the survey on w(ϑ)? Define a scaled distance s ≡ y/d∗ so
that y = d∗s. Then (4.21) becomes

w(ϑ) ≈ 1

V 2
S

d5
∗

∫ ∞
0

ds s4f2(s)

∫ ∞
−∞

dx ξ
(√

x2 + d2
∗s

2ϑ2
)

=
1

d∗
× F(d∗ϑ) , (4.22)

where the function F is independent of d∗. Thus increasing the depth of the survey shifts the
correlations to smaller angles and reduces their amplitude. The first effect is because at larger
distances the same physical scales (at which there are correlations) are seen in a smaller angle.
The second effect is because the structures at different distances that we see on top of each other
are uncorrelated and thus tend to cancel each other in w(ϑ).

Peacock ([1], p. 521) makes the comment that observing this effect of increasing the depth of
the survey was important in demonstrating that the observed structure in such surveys without
distance information (e.g., The Lick survey, Fig. 12) was real. Such surveys suffer from effects
like anisotropy of the selection function due to, e.g., foreground extinction, that would show as
fake structure if not corrected for (which might not be possible).
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4.1.3 Power law

Assume now that the 3D correlation function has a power-law form

ξ(r) =

(
r

r0

)−γ
. (4.23)

We expect that w(ϑ) should have a shallower slope, since for smaller scales we have more layers
of structure piled on top of each other, so the canceling effect should be bigger.

Limber’s equation (4.21) becomes (exercise)

w(ϑ) ≈ rγ0
V 2
S

∫ ∞
0

dy y4S2(y)

∫ ∞
−∞

dx
(
x2 + y2ϑ2

)−γ/2
=

2rγ0ϑ
1−γ

V 2
S

∫ ∞
0

dx (1 + x2)−γ/2
∫ ∞

0
dy y5−γS2(y)

= rγ0ϑ
1−γ
√
π Γ(1

2(γ − 1))

Γ(1
2γ)

1

V 2
S

∫ ∞
0

dy y5−γS2(y) . (4.24)

Thus we get a power-law form, but with a shallower slope, γ−1, also for the angular correlation
function:

w(ϑ) =

(
ϑ

ϑ0

)1−γ
. (4.25)

For γ = 1.8 the slope of w(ϑ) is thus 0.8. The angle ϑ0 where w(ϑ) = 1 depends on the survey
depth via the selection function S(y).

Exercise: Find how ϑ0 changes as a function of survey depth d∗, i.e., by what factor does ϑ0 change
if d∗ is increased by a factor D.

Exercise: For a step-function selection function and power-law correlation function with γ = 9/5,
find ϑ0 in terms of r0 and d∗. Give the numerical value in arcmin for r0 = 5h−1Mpc and d∗ =
1000h−1Mpc.

4.2 Power spectrum for flat sky

If the survey area is small enough (i.e., the maximum ϑ within the area is � 1)23 we can treat
the sky in that area as a flat 2D Euclidean space. To specify coordinates on that space we can
then use a 2D vector θ = (θx, θy) instead of a 3D unit vector r̂. Thus θ = 0 at the center of the
survey (or whatever we choose as origin), and we choose two orthogonal directions (e.g., west
and north, or east and south) to specify the components θx and θy. They are given in units of
degrees or radians, or rather arcminutes or milliradians. We can then define a 2D correlation
function w(θ), which is the same quantity as the w(ϑ) defined earlier, with ϑ = |θ| � 1.

If the survey area on this flat sky is a square, we can import the earlier results (1.83b and
1.84b) for the 2D correlation function and power spectrum from Sec. 1.6:

Pϑ(K) =

∫ ∞
0

w(ϑ)J0(Kϑ) 2πϑdϑ or Pϑ(K) = K2

∫ ∞
0

w(ϑ)J0(Kϑ)ϑdϑ

w(ϑ) =
1

2π

∫ ∞
0

Pϑ(K)J0(Kϑ)KdK =

∫ ∞
0
Pϑ(K)J0(Kϑ)

dK

K
(4.26)

23This can also be applied to larger survey areas, as long as we are only interested in measuring the correlation
function at small scales and the power spectrum at high K. We can, e.g., divide the larger survey area into several
small squares and apply the methods of this section to each of them separately and taking in the end the average
of all the Pϑ(K) from the different squares.
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with some change in notation.
For a power-law correlation function,

w(ϑ) =

(
ϑ

ϑ0

)−ε
(4.27)

we thus get a power-law power spectrum, using the result (1.114),

Pϑ(K) =
2π

K2
21−εΓ(1− 1

2ε)

Γ(1
2ε)

(Kϑ0)ε =
2π

K2
22−γ Γ(3

2 − 1
2γ)

Γ(1
2γ − 1

2)
(Kϑ0)γ−1 (1

2 < ε < 2)

Pϑ(K) = 21−εΓ(1− 1
2ε)

Γ(1
2ε)

(Kϑ0)ε = 22−γ Γ(3
2 − 1

2γ)

Γ(1
2γ − 1

2)
(Kϑ0)γ−1 , (4.28)

where the second forms assume ε = γ − 1. For ε = 0.8,

Pϑ(K) = 0.7712(Kϑ0)0.8 . (4.29)

4.2.1 Relation to the 3D power spectrum

Write the ξ(
√
x2 + y2ϑ2) in Limber’s equation (4.21) in terms of the 3D power spectrum,∫ ∞
−∞

dx ξ
(√

x2 + y2ϑ2
)

=

∫ ∞
0

dk

k
P(k)

∫ ∞
−∞

dx
sin k

√
x2 + y2ϑ2

k
√
x2 + y2ϑ2

. (4.30)

The x integral can be written as

2

k

∫ ∞
0

dx
sin
√
x2 + a2

√
x2 + a2

, (4.31)

where a = kyϑ. Wolfram Alpha couldn’t do this. Gradshteyn&Ryzhik [9] 3.876.1 says∫ ∞
0

sin(p
√
x2 + a2) cos bx√
x2 + a2

dx =
π

2
J0

(
a
√
p2 − b2

)
for 0 < b < p , (4.32)

but here we have b = 0 (so that cos bx = 1). There’s no reason to think that the result would
not hold also for b = 0, since the behavior of the integrand or the result is not problematic as
b→ 0. Thus we take the x integral to give (π/k)J0(kyϑ), so that Limber’s equation becomes

w(ϑ) ≈ 1

V 2
S

∫ ∞
0

dy y4S2(y)

∫ ∞
0

dk

k2
πP(k)J0(kyϑ) . (4.33)

Writing k = K/y this becomes

w(ϑ) ≈ 1

V 2
S

∫ ∞
0

dy y5S2(y)

∫ ∞
0

dK

K2
πP(K/y)J0(Kϑ) . (4.34)

Comparing (4.33) to (4.26) we can read off

Pϑ(K) =
1

V 2
S

π

K

∫ ∞
0

dy y5S2(y)P(K/y) , (4.35)

the power version of Limber’s equation.
Peacock[1], p. 520, comments: “This is just a convolution in log space, and is considerably

simpler to evaluate and interpret than the w–ξ version (4.21)”. That is, we consider S and P as
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functions of ln y and ln k (mathematically, these are different functions, S ◦ exp and P ◦ exp, but
as is common in physics, we use the same symbol for the same quantity, even when we consider
it as a function of a different variable), so that

Pϑ(lnK) =
1

V 2
S

π

K

∫ ∞
−∞

e6 ln yS2(ln y)P(lnK − ln y)d ln y . (4.36)

Exercise: Show that if we increase the depth of the survey by a factor D, the angular power spectrum
P̃ϑ(K) of the deeper survey is related to the Pϑ(K) of the shallower survey by

P̃ϑ(K) =
1

D
Pϑ(K/D) . (4.37)

When we apply (4.35) to a power spectrum P(k) from cosmological theory, which may evolve
in time, i.e., P(k, t), the for each y we just use P(K/y, t(y)), where t(y) is the local time at
distance y.
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5 Spherical sky

For correlations over larger angles on the sky we have to take into account that the geometry
of the sky is a sphere. So now our 2D space is not Euclidian; it is a sphere. This makes the
math more difficult but there’s one benefit: when considering the full sky we do not have to
worry about boundary conditions or edge effects. In practice this benefit is lost, since there are
no truly full-sky surveys of galaxies; at least the galactic plane region is obscured by the Milky
Way. However, we begin by considering the full sky.

To specify a point on the sphere, we can use unit vectors

r̂ = (x, y, z) = (sin θ cosφ, sin θ sinφ, cos θ) (5.1)

or spherical coordinates θ, φ. The spherical coordinate system is singular at θ = 0 (‘North
Pole’) and θ = π (‘South Pole’), so that φ is unspecified there. Note that the ‘latitude’ (alti-
tude/elevation a, declination δ, ecliptic latitude β, galactic latitude b) of traditional astronomical
coordinate systems (horizontal, equatorial, ecliptic, galactic) is π/2− θ, so that it is zero at the
equator/ecliptic etc.; θ is sometimes called ‘colatitude’. (In these systems φ is called azimuth
A24, right ascension α, ecliptic longitude λ, galactic longitude l.)

5.1 Angular correlation function and angular power spectrum

Instead of a Fourier expansion in plane waves, we now expand the density perturbation on the
sky in spherical harmonics:

δ(r̂) = δ(θ, φ) =
∑
`m

a`mY`m(θ, ϕ) , (5.2)

where the sum goes over ` = 0, 1, 2, . . . ,∞ and m = 0,±1,±2, . . . ,±`, and the Y`m are spherical
harmonics, functions that form an orthonormal and complete set on the sphere. The spherical
harmonic coefficients

a`m =

∫
dΩY ∗`m(r̂)δ(r̂) (5.3)

take now the role the Fourier coefficients δk had for Euclidean space. They are complex numbers,
but from the reality of δ follows that

a`,−m = (−1)ma∗`m , (5.4)

so that for each ` there are 2`+ 1 real degrees of freedom.
From statistical homogeneity and isotropy25 follows that the “theoretical” (i.e., ensemble

average) correlation function

w(r̂1, r̂2) ≡ 〈δ(r̂1)δ(r̂2)〉 = w(ϑ) (5.5)

may depend only on the angle ϑ between the directions r̂1 and r̂2.
Analogous to our proof (1.74), we can show (done at end of Sec. 5.5) that from statistical

homogeneity and isotropy follows that

〈a∗`ma`′m′〉 = δ``′δmm′2π

∫ 1

−1
d cosϑL`(cosϑ)w(ϑ) ≡ δ``′δmm′C` (5.6)

24Often the azimuth is defined as A = −φ.
25In this context one usually talks only about “isotropy”, since the role of locations r is now taken by directions

r̂, but we still have two different aspects here: one is that all directions r̂ from us to the sky are equal, and the
other is that all directions “along” the sky, i.e., how the angle between r̂1 and r̂2 is oriented, are equal.
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where the

C` = 〈|a`m|2〉 = 2π

∫ 1

−1
d cosϑL`(cosϑ)w(ϑ) (5.7)

is the angular power spectrum and the L` are Legendre polynomials.26 Note that the expectation
value 〈|a`m|2〉 is independent of m. The index ` is called the multipole number and it corresponds
to angular scale, whereas the index m corresponds to different orientations and patterns with
the same angular scale; i.e, ` corresponds to k and m corresponds to the direction k̂ in a Fourier
expansion.

Thus

w(ϑ) ≡ 〈δ(r̂1)δ(r̂2)〉 =
∑
`m

∑
`′m′

〈a∗`ma`′m′〉Y ∗`m(r̂1)Y`′m′(r̂2)

=
∑
`

C`
∑
m

Y ∗`m(r̂1)Y`m(r̂2) =
1

4π

∑
`

(2`+ 1)C`L`(cosϑ) . (5.8)

using (5.6) and (5.28). (One can show this also by using (5.7) and the completeness of Legendre
polynomials (exercise).)

For a single realization we can define an “observed correlation function” ŵ(ϑ) as the sky
average27

ŵ(ϑ) ≡ 〈δ(r̂)δ(r̂′)〉sky (5.9)

where the 〈·〉sky refers to average over all pairs r̂,r̂′ separated by angle ϑ.
Pick first a reference direction r̂ and integrate over the circle of direc-
tions r̂′ that are ϑ away from r̂:

ŵ(r̂, ϑ) ≡ 1

2π

∫
dϕ′ δ(r̂)δ(r̂′) . (5.10)

Then integrate this over the whole sky (the dΩ integration is over r̂):

ŵ(ϑ) ≡ 1

4π

∫
dΩ ŵ(r̂, ϑ) =

1

8π2

∫
dΩ

∫
dϕ′δ(r̂)δ(r̂′) . (5.11)

While the expectation value of |a`m|2 is the same for all m, the actual
realized values are different. Define the “observed” angular power
spectrum Ĉ` as their average:

Ĉ` ≡
1

2`+ 1

∑
m

|a`m|2 . (5.12)

We want to relate ŵ and Ĉ` the same way we did for the theoretical w and C` in (5.7) and
(5.8). Starting from (5.12),

Ĉ` ≡
1

2`+ 1

∑
m

|a`m|2 =

∫
dΩdΩ′ δ(r)δ(r′)

1

2`+ 1

∑
m

Y ∗`m(r̂)Y`m(r̂′)

=
1

4π

∫
dΩ

∫
dΩ′ δ(r)δ(r′)L`(cosϑ′) =

∫
d cosϑ′ L`(cosϑ′)

1

4π

∫
dΩdϕ′ δ(r̂)δ(r̂′)

= 2π

∫
ŵ(ϑ)L`(cosϑ)d cosϑ , (5.13)

26The usual notation for Legendre polynomials is P`, but we will later need this notation for multipoles of the
power spectrum.

27In principle we should write here δ̂ instead of δ, i.e., perturbation with respect to mean density on the sky,
not the expectation value, but this looked too messy.
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and therefore also

ŵ(ϑ) =
1

4π

∑
`

(2`+ 1)Ĉ`L`(cosϑ) . (5.14)

For ϑ = 0 we get

w(0) ≡ 〈δ2〉 =
∑
`

2`+ 1

4π
C` and ŵ(0) ≡ 〈δ2〉sky =

∑
`

2`+ 1

4π
Ĉ` . (5.15)

5.2 Legendre polynomials

The Legendre polynomials L`(x) ([8], Chapter 12) form a complete and orthogonal set of func-
tions over the interval [−1, 1]. L`(x) is a polynomial of order `. The orthogonality relation
is ∫ 1

−1
L`(x)L`′(x)dx =

2

2`+ 1
δ``′ (5.16)

and the completeness relation28 is

∞∑
`=0

2`+ 1

2
L`(x)L`(y) = δD(x− y) . (5.17)

The orthonormal set is thus {√
2`+ 1

2
L`(x)

}
. (5.18)

The Legendre polynomials usually occur as L`(cosϑ), the range [−1, 1] mapping into [0, π]
for ϑ. At the two boundaries they have the values

L`(−1) = (−1)` and L`(1) = 1 . (5.19)

Their parity is determined by `:

L`(−x) = (−1)`L`(x) . (5.20)

Legendre polynomials

L0(x) = 1

L1(x) = x

L2(x) = 1
2 (3x2 − 1)

L3(x) = 1
2 (5x3 − 3x)

L4(x) = 1
8 (35x4 − 30x2 + 3)

−1.0 −0.5 0.0 0.5 1.0
−1.0

−0.5

0.0

0.5

1.0

Table 4: Legendre polynomials: L0 (blue), L1 (green), L2 (red), L3 (cyan), L4 (magenta).
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Associated Legendre functions Pm` (z) = Pm` (cos θ)

P 1
1 (z) =

√
1− z2 = sin θ

P 1
2 (z) = 3z

√
1− z2 = 3 cos θ sin θ

P 2
2 (z) = 3(1− z2) = 3 sin2 θ

Spherical harmonics

Y 0
0 (θ, φ) = 1√

4π

Y 1
1 (θ, φ) = −

√
3

8π sin θeiφ = −
√

3
4π · 1√

2
(x+ iy)

Y 0
1 (θ, φ) =

√
3

4π cos θ =
√

3
4π · z

Y 2
2 (θ, φ) =

√
5

96π 3 sin2 θei2φ = 1
4

√
15
2π · (x+ iy)2

Y 1
2 (θ, φ) = −

√
5

24π3 sin θ cos θeiφ = − 1
2

√
15
2π · z(x+ iy)

Y 0
2 (θ, φ) =

√
5

4π

(
3
2 cos2 θ − 1

2

)
= 1

4

√
5
π · (3z2 − 1)

Table 5: Spherical harmonics.

5.3 Spherical harmonics

The spherical harmonics ([8], Chapter 12) form a complete and orthonormal set of functions
over the sphere. The orthonormality relation is∫

dΩY ∗`m(r̂)Y`′m′(r̂) = δ``′δmm′ (5.21)

and the completeness relation is

∞∑
`=0

∑̀
m=−`

Y ∗`m(θ, φ)Y`m(θ′, φ′) = δD(φ− φ′)δD(cos θ − cos θ′) . (5.22)

They are elementary functions and have the explicit form29

Y`m(θ, φ) = (−1)m
√

2`+ 1

4π

√
(`−m)!

(`+m)!
Pm` (cos θ)eimφ . (5.23)

where

Pm` (z) = (1− z2)m/2
dm

dzm
L`(z) (for m ≥ 0)

P−m` (z) = (−1)m
(`−m)!

(`+m)!
Pm` (z) (5.24)

are associated Legendre functions so that

P 0
` (z) = L`(z) . (5.25)

28Again, it is difficult to find this in literature. It is in Wikipedia.
29There are different phase conventions for the Y`m. We follow the Condon-Shortley phase convention of [8].

[26] uses the same phase convention for Y`m, but they put the (−1)m already in the definition of Pm
` , so it is

missing in their version of Eq. (5.23).
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Note that for z = cos θ, (1 − z2)1/2 = sin θ. Thus the θ-dependence is in Pm` (cos θ) and the
φ-dependence is in eimφ. The functions Pm` are real and

Y`,−m = (−1)mY ∗`m , (5.26)

so that

Y`0(θ, φ) =

√
2`+ 1

4π
L`(cos θ) is real. (5.27)

Summing over the m corresponding to the same multipole number ` gives the addition
theorem ∑

m

Y ∗`m(θ′, φ′)Y`m(θ, φ) =
2`+ 1

4π
L`(cosϑ) , (5.28)

where ϑ is the angle between n̂ = (θ, φ) and n̂′ = (θ′, φ′), i.e., n̂ · n̂′ = cosϑ. For n̂ = n̂′ this
becomes ∑

m

|Y`m(θ, φ)|2 =
2`+ 1

4π
(5.29)

(since L`(1) = 1 always).
We shall also need the expansion of a plane wave in terms of spherical harmonics,

eik·x = 4π
∑
`m

i`j`(kx)Y`m(x̂)Y ∗`m(k̂) . (5.30)

Here x̂ and k̂ are the unit vectors in the directions of x and k, and j` is the spherical Bessel
function.

5.4 Euler angles

[Note: Euler angles and Wigner functions are needed here only for the proof of Eq. (5.6). If you
like, you can skip to Sec. 5.6. Whether they are needed later in the course, I don’t yet know.
The Wigner functions would appear in the treatment of weak lensing in spherical geometry, but
we may not get that deep.]

Figure 14: Constructing a rotation of the coordinate system from the Euler angles: 1) Rotate the
coordinate system around the original z axis by an angle α (0 ≤ α < π). Call the new coordinates x1,
y1, z1. 2) Rotate around the new y1 axis by an angle β (0 ≤ β ≤ π). Call the new coordinates x2, y2, z2.
3) Rotate around the z2 axis by an angle γ (0 ≤ γ < π). Call the new coordinates x′, y′, z′.
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To specify the orientation of a coordinate system, or in general,
the orientation of a rigid object, in 3D, requires three angles: two to
specify the direction where the z axis points to, and a third angle
to fix the degree of freedom of rotating the x and y axes around it.
These are called Euler angles, commonly denoted α, β, γ. (Depending
on application, they may also be denoted φ, θ, ψ/χ.) There are two
ways to specify them, i.e., how to construct a rotation from an original
coordinate system to the new one in terms of them ([26], Sec. 1.4);
both ways lead to the same final orientation. I present just the first
one, see Fig. 14. (The side figure relates to where I first needed Euler
angles, the orientation of the Planck satellite beams. One can think
of rotating a radio telescope, which was initially pointing upward: the
angles (β, α) are the spherical coordinates (θ, φ) of the ẑ′ unit vector
(the final pointing direction n̂0) in the original coordinate system, and
γ (ψ) rotates around it.)

5.5 Wigner D-functions

Wigner functions ([26], Chapter 4) are related to rotation of spherical coordinates. For a given
sky (realization) its spherical harmonic coefficients a`m depend on the chosen spherical coordi-
nate system (e.g., equatorial, ecliptic, galactic). Write

δ(r̂) =
∑
`m

a`mY`m(θ, φ) =
∑
`m

ã`mY`m(θ̃, φ̃) , (5.31)

where (θ, φ) are the coordinates of r̂ in the first coordinate system and (θ̃, φ̃) in the second
coordinate system. The relation between the a`m of different coordinate systems is given by

a`m =
∑
m′

D`
mm′(α, β, γ)ã`m′ (5.32)

where the D`
mm′ are Wigner functions and the α, β, γ are the Euler angles of the rotation from

the first to the second coordinate system. This means that the spherical harmonics are related

Y`m′(θ̃, φ̃) =
∑
m

Y`m(θ, φ)D`
mm′(α, β, γ) . (5.33)

The Euler angles have the ranges30

0 ≤ α < 2π , 0 ≤ β ≤ π , 0 ≤ γ < 2π . (5.34)

In calculations one may want to use angles outside these ranges. Any value of α or γ is equivalent
to the same value mod 2π, and the Wigner functions are periodic in them (just like sin and cos).
Negative values of β cover the same rotations again, since rotation (α+ π, β, γ − π) is the same
rotation as (α,−β, γ).

We can think of the set of a`m for a fixed ` as a 2`+ 1 component vector, and the (2`+ 1)×
(2` + 1) matrix D`(α, β, γ) as the matrix for rotating these components to a new basis. The
set of matrices D`(α, β, γ) (i.e., for all values of the Euler angles) form a representation of the
rotation group SO(3). These matrices are unitary

D`(α, β, γ)† = D`(α, β, γ)−1 , (5.35)

30We consider only Wigner functions with integer values of `, m, and m′. In quantum mechanics one introduces
also Wigner functions with half-integer `, which have periods of 4π instead of 2π. Some of the equations given
here do not apply to them as such.
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so that the inverse relations to (5.32) and (5.33) are

ã`m =
∑
m′

a`m′D
`
m′m(α, β, γ)∗

Y`m(θ, φ) =
∑
m′

D`
mm′(α, β, γ)∗Y`m′(θ̃, φ̃) . (5.36)

The Wigner functions are orthogonal and complete[27] in this 3D space of rotations:∫ 2π

0
dα

∫ π

0
d cosβ

∫ 2π

0
dγ D`

mn(α, β, γ)∗D`′
m′n′(α, β, γ) =

8π2

2`+ 1
δ``′δmm′δnn′ (5.37)

∞∑
`=0

∑̀
m=−`

∑̀
m′=−`

2`+ 1

8π2
D`
mm′(α, β, γ)∗D`

mm′(α
′, β′, γ′) = δD(α− α′)δD(cosβ − cosβ′)δD(γ − γ′) .

The orthonormal set is thus {√
2`+ 1

8π2
D`
mm′(α, β, γ)

}
. (5.38)

The Wigner functions are elementary functions and they can be given in terms of the real
functions d`mn(β) as

D`
mn(α, β, γ) = e−imαd`mn(β)e−inγ , (5.39)

where [27]

d`mn(β) =

min(`+m,`−n)∑
t=max(0,m−n)

(−1)`
√

(`+m)!(`−m)!(`+ n)!(`− n)!

(`+m− t)!(`− n− t)!t!(t+ n−m)!

(
cosβ

2

)2`+m−n−2t(sinβ

2

)2t+n−m
.

(5.40)
(the summation limits are equivalent to avoiding factorials of negative numbers).

These d-matrices have a number of symmetries that relate different components:

d`mm′(β) = (−1)m−m
′
d`−m,−m′(β) = (−1)m−m

′
d`m′m(β) = d`−m′,−m(β)

d`mm′(−β) = d`m′m(β) . (5.41)

The spherical harmonics can be expressed (are special cases of) the Wigner functions:

Y`m(θ, φ) = (−1)m
√

2`+ 1

4π
D`
−m,0(φ, θ, χ) =

√
2`+ 1

4π
D`
m,0(φ, θ, χ)∗ (5.42)

(which is independent of the third angle χ as m′ = 0).

Proof of Eq. (5.6): The proof parallels (1.74), which we repeat here:

〈δ∗kδk′〉 =
1

V 2

∫
ddxeik·x

∫
ddx′e−ik

′·x′〈δ(x)δ(x′)〉

=
1

V 2

∫
ddxeik·x

∫
ddre−ik

′·(x+r)〈δ(x)δ(x + r)〉

=
1

V 2

∫
ddre−ik

′·rξ(r)

∫
ddxei(k−k

′)·x

=
1

V
δkk′

∫
ddre−ik·rξ(r) ≡ 1

V
δkk′P (k) , (5.43)

but is more complicated, since instead of the simple translation of the coordinate system x′ = x+r which
replaces the plane wave e−ik

′·x′ by e−ik
′·(x+r) we now have to introduce a rotation of the coordinate system

by an angle ϑ.
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So let’s start along the same lines:

〈a∗`ma`′m′〉 ≡
∫
dΩY`m(θ, φ)

∫
dΩ′ Y ∗`′m′(θ

′, φ′)〈δ(r̂)δ(r̂′)〉 . (5.44)

Now 〈δ(r̂)δ(r̂′)〉 = w(ϑ), but to continue, we would need to rewrite Y ∗`′m′(θ
′, φ′) in terms of θ, φ, and ϑ. In

the preceding, (θ, φ) and (θ′, φ′) are the coordinates of two different points in the same coordinate system.
Now we introduce another coordinate system (θ̃, φ̃), which is a spherical coordinate system relative to
the first point r̂, i.e., r̂ is the “North Pole” of this coordinate system, with θ̃ = 0, so that now θ̃′ = ϑ.
The rotation to the new coordinate system is given by Euler angles α = φ, β = θ, γ can be anything.

Figure 15: On the left: r̂ and r̂′ in the new coordinate system. On the right: r̂ in the old one.

The new coordinates of r̂′ are (ϑ, φ̃′) and

Y ∗`′m′(θ
′, φ′) =

∑
m′′

D`′

m′m′′(φ, θ, γ)Y ∗`′m′′(ϑ, φ̃
′) . (5.45)

Now we can continue:

〈a∗`ma`′m′〉 =

∫
dΩY`m(θ, φ)

∫
dΩ̃′

∑
m′′

D`′

m′m′′(φ, θ, γ)Y ∗`′m′′(ϑ, φ̃
′)w(ϑ) (5.46)

=

√
2`+ 1

4π

∑
m′′

∫
dΩ̃′ Y ∗`′m′′(ϑ, φ̃

′)w(ϑ)

∫
dΩD`

m0(φ, θ, χ)∗D`′

m′m′′(φ, θ, γ)

We then use the fact that D`
m0(φ, θ, χ) does not depend on χ to set χ = γ, and since γ was allowed to

be anything, integrate over it, so that

〈a∗`ma`′m′〉 =

√
2`+ 1

4π

∑
m′′

∫
dΩ̃′ Y ∗`′m′′(ϑ, φ̃

′)w(ϑ)× 1

2π

∫
dγ

∫
dΩD`

m0(φ, θ, γ)∗D`′

m′m′′(φ, θ, γ)

=

√
2`+ 1

4π

∑
m′′

∫
dΩ̃′ Y ∗`′m′′(ϑ, φ̃

′)w(ϑ)× 4π

2`+ 1
δ``′δmm′δ0m′′

= δ``′δmm′

√
4π

2`+ 1

∫
dΩ̃′ Y ∗`′0(ϑ, φ̃′)w(ϑ) = δ``′δmm′

∫
dΩ̃′ L`(cosϑ)w(ϑ)

= δ``′δmm′2π

∫
d cosϑL`(cosϑ)w(ϑ) = δ``′δmm′C` . (5.47)
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5.6 Relation to the 3D power spectrum

Relate now the angular power spectrum C` to the 3D power spectrum P(k). From (4.2) follows

δ(r̂) ≡ n(r̂)− 〈n〉
〈n〉 =

1

VS

∫ ∞
0

δ(r)S(r)r2 dr . (5.48)

Expand

δ(r) =
∑
k

δke
ik·r = 4π

∑
k`m

δki
`j`(kr)Y`m(r̂)Y ∗`m(k̂) , (5.49)

and insert these into

a`m =

∫
dΩY ∗`m(r̂)δ(r̂) (5.50)

to obtain (exercise)

a`m =
∑
k

δk
4πi`

Vs

∫ ∞
0

dr S(r)r2j`(kr)Y
∗
`m(k̂) ,

〈|a`m|2〉 =
16π2

V

∑
k

P (k)
∣∣∣Y`m(k̂)

∣∣∣2 [ 1

VS

∫ ∞
0

dr S(r)r2j`(kr)

]2

, and

C` =
1

2`+ 1

∑
m

〈|a`m|2〉 =
4π

V

∑
k

P (k)

[
1

VS

∫ ∞
0

dr S(r)r2j`(kr)

]2

. (5.51)

We replace the sum (1/V )
∑

k with the integral 1/(2π)3
∫
d3k and k2/(2π2)P (k) with P(k)/k

to get the final exact result31

C` =
2

π

∫
dk k2P (k)

[
1

VS

∫ ∞
0

dr S(r)r2j`(kr)

]2

= 4π

∫
dk

k
P(k)

[
1

VS

∫ ∞
0

dr S(r)r2j`(kr)

]2

. (5.52)

31MBW[2] (6.177) has an extra factor 1/(2`+ 1) here, but this seems an error. Peacock[1] (16.98) agrees with
(5.52).
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6 Dynamics

6.1 Linear perturbation theory

In Cosmology II we derived the linear perturbation equations for subhorizon scalar perturbations
in the flat universe. For pressureless matter they are

δ̇k +
ikvk
a

= 0 (6.1)

d

dt
(avk) + ikΦk = 0 (6.2)

−k2Φk = 4πGa2ρ̄mδk , (6.3)

in Fourier space, and

δ̇ +
1

a
∇ · v = 0 (6.4)

∂

∂t
(av) = −∇Φ (6.5)

∇2Φ = 4πGa2ρ̄mδ , (6.6)

in coordinate space (we use the normalization a0 = 1 for the scale factor). Here δ = δm is the
matter density perturbation, v is the matter flow velocity (with respect to the homogeneously
expanding background universe), and Φ is the gravitational potential due to the perturbations.
Note that since we assumed scalar perturbations,

∇× v = 0 ⇒ vk||k ⇒ vk = vkk̂ ⇒ k · vk = kvk ⇒ (∇ · v)k = ikvk . (6.7)

As discussed in Cosmology II, vector perturbations decay, so we can ignore them.
In addition to the matter-dominated flat universe (Einstein–de Sitter) and the flat universe

with matter and a cosmological constant (ΛCDM), these equations can be applied to the closed
and open matter-dominated universe at scales much smaller than the curvature radius, and
for other dark energy models than cosmological constant (vacuum energy) in an approximation
where the effect of dark energy perturbations are ignored.

Inserting (6.1) and (6.3) into (6.2) we get the pressureless Jeans equation

δ̈k + 2Hδ̇k − 4πGρ̄mδk = 0

δ̈(x) + 2Hδ̇(x)− 4πGρ̄mδ(x) = 0 . (6.8)

Since the Fourier-space equation has no k-dependence, the equation holds also in coordinate
space. The coefficients in these differential equations depend only on time, i.e., on the back-
ground solution. The perturbations δ(x) in different locations evolve independently; differing
only due to their different initial conditions δ and δ̇.

The equation has two independent solutions, the growing mode δ+ and the decaying mode
δ−. The solutions depend on cosmology via the Hubble parameter H(t). For the flat matter-
dominated universe they are

δ+ ∝ a , δ− ∝ a−3/2 (Ωm = Ω = 1) . (6.9)

We derived them also for ΛCDM in Cosmology II, Sec. 9.3.6:

δ+ ∝ H

∫ a da

H3a3
∝
√

Ωma−3 + ΩΛ

∫ a a3/2da

[1 + (ΩΛ/Ωm)a3]3/2

δ− ∝ H ∝
√

Ωma−3 + ΩΛ (Ωm + ΩΛ = Ω = 1) . (6.10)



6 DYNAMICS 60

(The freedom of the lower limit of the integral for δ+, i.e., the integration constant, corresponds
to the decaying mode.)

The decaying mode dies out in a while, eliminating one of the two degrees of freedom in the
initial conditions. We can then ignore the decaying mode and keep just the growing mode. At
all locations and for all Fourier components the time evolution is then the same, δ(a) ∝ D(a)
where D(a) is the growth function (we leave the normalization of D unspecified here)32; i.e.,

δ(x, a) = D(a)δ(x, aref) and δk(a) = D(a)δk(aref) , (6.11)

where aref is the scale factor at some chosen reference time, the choice of which fixes the nor-
malization of D so that D(aref) = 1. The growth function D is a growing-mode solution of
(6.8). After the decaying mode has died out, the density perturbation field does not change in
any other way except that it is scaled by this time-dependent factor. The potential Φ is related
to δ by (6.3), where a2ρ̄m ∝ a−1. Therefore the potential has the time evolution

Φ ∝ D(a)

a
⇒ Φ(x, a) =

D(a)

a
arefΦ(x, aref) and Φk(a) =

D(a)

a
arefΦk(aref) . (6.12)

Since a = 1/(1 + z),
d ln(1 + z)

dt
= −d ln a

dt
= −H (6.13)

and

H−1 δ̇

δ
= H−1 Ḋ

D
= H−1d lnD

dt
= − d lnD

d ln(1 + z)
≡ f , (6.14)

where we defined the growth rate (of the growing mode)

f ≡ − d lnD

d ln(1 + z)
=

d ln δ

d ln a
. (6.15)

In the flat matter-dominated universe D ∝ a and f = 1. In cosmologies where the only relevant
independent background cosmology parameters are H0 and Ωm, like the matter-dominated uni-
verse, or ΛCDM, f(z) depends only on Ωm(z),33 so it is often denoted f(Ωm). We define the
growth index

γ ≡ d ln f

d ln Ωm(z)
. (6.16)

The growth index turns out to stay almost constant over a wide range of a or z (at least for
ΛCDM and the open Friedmann model), so that

f(z) ≈ Ωm(z)γ . (6.17)

32MBW[2] normalizes it to 1 at an arbitrary initial time ti, so that δ(x, a) = D(a)δi(x) for the growing mode.
Then in the matter-dominated Friedmann model D(a) = a/ai.

33For the open Friedmann model, Eq. (6.22) shows this. For ΛCDM the math is more difficult because of the
integral in (6.10a), so I was not able to write f in such form. My intuition says that f should depend only on the
(time-dependent) density parameters. The only other background quantity affecting the growth is the Hubble
parameter, which is related to the time scale, but I expect that when the derivative is taken with respect to ln a
the result should become independent of it.
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For the ΛCDM model (from Cosmology II, or (6.10))

D(a) =
√

Ωma−3 + ΩΛ

∫ a x3/2dx

[1 + (ΩΛ/Ωm)x3]3/2

f(a) =
1

1 + ΩΛ
Ωm

a3

 a(
a−3 + ΩΛ

Ωm

)1/2 ∫ a
0

x3/2dx(
1+

ΩΛ
Ωm

x3
)3/2

− 3

2


Ωm(a) =

1

1 + (ΩΛ/Ωm)a3
=

(1 + z)3

(1 + z)3 + ΩΛ/Ωm
(6.18)

and γ ≈ 0.55 (see Fig. 16) so that34

f(z) ≈ Ωm(z)0.55 . (6.19)

For the (Ωm = 0.3, ΩΛ = 0.7) ΛCDM model f(z = 0) ≈ 0.52, and is more for higher redshift
(when Ωm was larger).

Example: For the open Friedmann model

Ωm(a) =
1

1 + x
, where x ≡ 1− Ωm

Ωm
a =

1

Ωm(a)
− 1 , (6.20)

and Dodelson[11] (Exercise 7.8) gives the growth function as

D(a) =
5Ωm

2(1− Ωm)

[
3

√
1 + x

x3/2
ln
(√

1 + x−√x
)

+ 1 +
3

x

]
. (6.21)

Derivating this, I find

f(a) = −
9

2x

[
1+(2x/3)√
x
√

1+x
ln
(√

1 + x−√x
)

+ 1
]

3
√

1+x
x3/2 ln

(√
1 + x−√x

)
+ 1 + 3

x

. (6.22)

This turns out to give γ ≈ 0.59 (in the literature this is given usually as 0.6, but 0.59 seems to be closer,
from trying both for Fig. 17). See Fig. 17. From (6.22) it is clear that f depends on Ωm(a) only, since x
can be written in terms of Ωm(a) .

In General Relativity, the growth rate of linear perturbations of pressureless matter is deter-
mined by the expansion rate. An alternative (to dark energy) explanation to the acceleration of
the expansion of the universe is to modify the theory of gravity. Such modified gravity should
lead to a different relation between the expansion rate and growth rate. Thus we can differ-
entiate between these two explanations by measuring both the expansion rate and growth rate
accurately.

It is one of the goals of the Euclid mission to test gravity by determining the growth index
γ to an accuracy better than ±0.02.

In Sec. 7 we shall discuss how the growth rate can be determined from the redshift space
distortion (RSD) of the galaxy distribution. For that we need a relation between velocity and
density perturbations that we discuss below.

From (6.4) and the definition of the growth rate f (6.14), we have (once the decaying mode
has died out) a relation between the density perturbation and the velocity divergence:

δ(x) =
−∇ · v
aHf

. (6.23)

34In literature, e.g. [33], I have seen this written as γ = 6/11 (which is ≈ 0.5455). I do not know whether this
is supposed to be somehow an exact number.
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Figure 16: The growth function D(a) and growth rate f(a) for the ΛCDM model (with Ωm = 0.3).
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Figure 17: The growth function D(a) and growth rate f(a) for the open Friedmann model (with Ωm =
0.3).
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Likewise, we get a relation between the velocity and the gradient of the gravitational potential
(exercise)

v = − 1

4πGρ̄ma
Hf∇Φ = − 1

4πGρ̄ma

Ḋ

D
∇Φ , (6.24)

so that at any given time the velocity is proportional to the potential gradient. Both of these
properties hold while the perturbations are linear (δ � 1).

In the above δ = δm refers to the matter density field (including dark matter). Galaxy
formation is thought to be more efficient in overdense regions, so that the perturbation in
galaxy number density ρg is enhanced compared to matter density,

δg = bδm , where b > 1 (6.25)

is called bias.35 We treat it as a constant. (This is clearly an approximation, one would expect
it to be somewhat redshift dependent and the relation between δg and δm is not exactly linear.)
It is different for different classes of objects: for ordinary galaxies it is close to 1, for large old
galaxies it is larger, and for clusters of galaxies even larger. The velocity is caused by the gravity
of the total matter perturbation, which affects galaxies likewise. Thus

δg = bδm =
−b∇ · v
aHf

≡ −∇ · v
aHβ

, where β ≡ f/b. (6.27)

Going back to Fourier space, this reads

−ikvk = aHβδgk . (6.28)

6.2 Zeldovich approximation

For this section, let us normalize the growth function D so that D = 1 at some early matter-
dominated time, when a � 1, but we can already ignore the decaying solution. We refer this
time as the “initial time” and denote it with subscript i. Thus

δ(x, a) = D(a)δi(x) and Φ(x, a) =
D(a)

a
aiΦi(x) (6.29)

(where the scale factor a is used in place of the time coordinate).
Consider now the position x of a fluid element as a function of time. Since x is a comoving

coordinate,

ẋ =
v

a
= − 1

4πGρ̄ma2

Ḋ

D
∇Φ = − aiḊ

4πGρ̄ma3
∇Φi . (6.30)

Make the approximation ∇Φi(x) ≈ ∇Φi(xi), where xi is the position of the fluid element at the
initial time, and integrate (note that ρ̄ma

3 is constant)

x(t) = xi −
ai

4πGρ̄ma3
∇Φi(xi)

∫
Ḋdt , (6.31)

35Maybe there should be a separate subsection on bias at some point. Since we can directly observe the
galaxy distribution and the mass distribution is more difficult to infer, we know the amplitude of the galaxy
power spectrum and correlation function much more accurately than the corresponding quantities for the mass
distribution. Assuming a constant bias, these quantities are related by the factor b2. Likewise the variances are
related by σ2

m = b−2σ2
g . Observationally for optically detected galaxies σ2

g,T (8h−1Mpc) = 1 (top-hat window
function, smoothing scale 8h−1Mpc). Therefore one commonly used measure of the amplitude of the mass
distribution inhomogeneity is

σ8 ≡ σm,T (8h−1Mpc) = 1/bg . (6.26)

Since we do not know the value of bg, we do not know the value of σ8. We can try to infer it from cosmological
measurements of quantities that respond to the mass distribution, like weak gravitational lensing or peculiar
velocities; and it is predicted by cosmological models when the values of their parameters are fixed.
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where we can approximate ∫
Ḋdt = D(a)−D(ai) ≈ D(a) (6.32)

at late times, when D(a)� D(ai). Thus we have

x(t) ≈ xi −
aiD(a)

4πGρ̄ma3
∇Φi(xi) , (6.33)

the Zeldovich approximation.
This result was obtained using first-order perturbation theory, but it turns out that this

approach of following the motion of fluid elements does in practice not fail as soon as the
normal approach of integrating the density perturbation at a fixed location, when perturbations
become large. In the Zeldovich approximation we get the evolution of the density perturbation
by following the paths of the neighboring fluid elements as they get closer to each other or move
away from each other. You can consider an initial cube of fluid and follow how its corners move
to change the volume and shape of the cube.

We get the evolution of the density field from the Jacobian determinant of the transformation
xi → x(t), which gives the change of comoving volume of the fluid element, so that the comoving
density changes by its inverse:

1 + δ =

∣∣∣∣ ∂x

∂xi

∣∣∣∣−1

=
1

(1−Dλ1) (1−Dλ2) (1−Dλ3)
, (6.34)

where ∣∣∣∣ ∂x

∂xi

∣∣∣∣ = (1−Dλ1) (1−Dλ2) (1−Dλ3) , (6.35)

where the λi are the eigenvalues of

ai
4πGρ̄ma3

∂j∂kΦi . (6.36)

While λiD � 1, we have 1 + δ ≈ 1 +D(λ1 + λ2 + λ3), so that

δ ≈ D(a)(λ1 + λ2 + λ3) . (6.37)

Rotating the coordinate system so that (6.36) is diagonal, we see that

λ1 + λ2 + λ3 =
ai

4πGρ̄ma3
∇2Φi = δi , (6.38)

so that (6.37) is consistent with (6.29).
Order the eigenvalues so that λ1 > λ2 > λ3. The eigenvalues λi may be positive or negative,

but for an overdensity λi > 0, their sum is positive, so at least λ1 > 0. Following (6.34) as D
grows, we find that δ →∞ as D → 1/λ1. Clearly the Zeldovich approximation must fail before
that. But before it fails, we see that λ1 corresponds to the direction along which the overdensity
compresses the fastest, so that the overdensity flattens towards a planar structure orthogonal to
that direction; the resulting flattened overdensity is called a “Zeldovich pancake”. We see that
overdensities that are not perfectly spherical (the eigenvalues λi are not equal) collapse in such
a way that the deviation from isotropy grows.

As numerical simulations became larger and better the Zeldovich approximation was rele-
gated to a pedagogical tool. However, recently the Zeldovich approximation has again found
use in front-line research as a tool for analyzing observational large-scale structure data, called
reconstruction. In reconstruction, observed galaxies are moved backwards along their inferred
direction of motion to produce a density distribution closer to its primordial state. This helps
in locating the baryon acoustic oscillation (BAO) peak (Sec. 10) more accurately.
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6.3 Nonlinear growth

When δ grows the evolution becomes nonlinear, requiring a more complicated discussion. One
can get further with higher-order perturbation theory, or the Zeldovich approximation; but
eventually one has to resort to numerical simulations. We shall not discuss these in this course.
The spherically symmetric special case can be done analytically; we offer a simple example
below.

The closed Friedmann model. In Cosmology I we derived36 the expansion law for the closed
(Ω > 1) matter-dominated FRW universe. It cannot be given in closed form as a(t), but can be given in
terms of an auxiliary variable, the development angle ψ, as

a(ψ) = ai
Ωi

2(Ωi − 1)
(1− cosψ) = a(ψ)

Ω(ψ)

2[Ω(ψ)− 1]
(1− cosψ)

t(ψ) = H−1
i

Ωi
2(Ωi − 1)3/2

(ψ − sinψ) = H(ψ)−1 Ω(ψ)

2[Ω(ψ)− 1]3/2
(ψ − sinψ) , (6.39)

where ai, Ωi, and Hi are the scale factor, density parameter, and Hubble parameter at some reference
time ti (usually chosen as the present time t0, but below we will instead choose ti to be some early time,
when Ω is still very close to 1). In the second forms we took advantage of the fact that we can choose
ti to be any time during the development and replaced it with the “current” time. See Fig. 18 for the
shape of a(t). This curve is called a cycloid. (It is the path made by a point at the rim of a wheel.) From
(6.39) we solve

Ω(ψ) =
2

1 + cosψ
. (6.40)

Calculating da/dt = da/dψ × dψ/dt we find (exercise)

H(ψ) = 2Hi
(Ωi − 1)3/2

Ωi

sinψ

(1− cosψ)2
. (6.41)

The matter density is given by

ρ(ψ) = ρi

(
ai
a(ψ)

)3

= 8ρi
(Ωi − 1)3

Ω3
i (1− cosψ)3

. (6.42)

The scale factor reaches a maximum amax (and the density a minimum) at tmax, when ψ = π, so that

amax = ai
Ωi

Ωi − 1
, tmax =

π

2
H−1
i

Ωi
(Ωi − 1)3/2

, and ρ(tmax) = ρi
(Ωi − 1)3

Ω3
i

. (6.43)

At this point H = 0 and then the universe begins to shrink. Since

ρi =
3ΩiH

2
i

8πG
we have ρ(tmax) =

3π

32Gt2max

. (6.44)

The universe ends at tend = 2tmax, when ψ = 2π and a = 0 again.

Spherical collapse model. The expansion law (6.39) will hold also for a spherically symmetric
overdense region within a flat (Ω = 1) matter-dominated FRW universe. Denote the quantities for this
flat background universe by ā, H̄, ρ̄. (Time t is the same for both solutions and Ω̄ = 1, so we don’t need
notations for them.) The background universe has

H̄2 =
8πG

3
ρ̄ =

(
2

3t

)2

⇒ ρ̄ =
1

6πGt2
(6.45)

Thus we see that at t = tmax ≡ tta (we call it now the turnaround time), the density of the overdense
region is

ρ(tta) =
9π2

16
ρ̄(tta) ≈ 5.5517ρ̄(tta) , (6.46)

36Or should have done so.
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Figure 18: The expansion law for the flat matter-dominated universe (blue, the top curve) and for closed
matter-dominated universes with different initial values Ωi > 1 for the density parameter. Both axes are
linear, the units are arbitrary.

i.e., at the turnaround time the density contrast has the value

δta =
9π2

16
− 1 ≈ 4.4417 . (6.47)

Until then the overdense region has been expanding, although slower than the surrounding background
universe. At turnaround the overdense region begins to collapse.

The preceding applies both for an overdense region with homogeneous density and for one with a
spherically symmetric density profile. In the latter case, we have to apply it separately for each spherical
shell, and the density ρ refers, not to the density of the shell, but to the mean density within the shell, as it
is the total mass within the shell that is responsible for the gravity affecting the expansion or contraction
of the shell. To avoid shell crossing the density profile has to decrease outward, so that outer shells do
not collapse before inner shells.37

In linear perturbation theory, which applies when δ � 1, density perturbations in the flat matter-
dominated universe grow as

δlin ∝ a ∝ t2/3 . (6.48)

When the density contrast δ becomes large it begins to grow faster. Compare now the linear growth law
to the above result for δ at turnaround.

The initial density contrast δi is given by ρi = (1 + δi)ρ̄i. On the other hand

H̄2
i =

8πG

3
ρ̄i and ΩiH

2
i =

8πG

3
ρi (6.49)

so that

1 + δi = Ωi
H2
i

H̄2
i

or at any time 1 + δ = Ω
H2

H̄2
. (6.50)

Thus the density contrast is not simply given by Ω − Ω̄ = Ω − 1, since also the Hubble parameters are
different for the two solutions. We can sort out the separate contributions from Ωi − 1 and (Hi/H̄i)

2 at

37We should also include in our model an underdense region around our overdense region so that their combined
mean density equals that of the background universe, so as not to affect the evolution of the surroundings.
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an early time when Ω−1� 1 and ψ � 1, by expanding Ω, H and H̄ from (6.40), (6.41) and (6.45&6.39)
in terms of ψ (exercise) to get

Ωi ≈ 1 + 1
4ψ

2
i and

H2
i

H̄2
i

≈ 1− 1
10ψ

2 ⇒ 1 + δi ≈ 1 + 3
20ψ

2 ⇒ δi ≈ 3
5 (Ωi − 1) . (6.51)

We can now give the linear prediction for the density contrast at turnaround time:38

δlin
ta =

āta

āi
δi =

(
tta
ti

)2/3

δi ≈
(

3π

4

)2/3
δi

Ωi − 1
≈ 3

5

(
3π

4

)2/3

≈ 1.0624 , (6.52)

where we approximated

tta ≈
π

2
H̄−1
i

1

(Ωi − 1)3/2
and ti = 2

3H̄
−1
1 . (6.53)

Thus we conclude that density perturbations begin to collapse when the linear prediction is δ ∼ 1, at
which time the true density perturbation is already over 4 times stronger.

The collapse is completed at tcoll = 2tta (corresponding to tend of the closed universe model), when
the linear prediction gives

δlin
coll = 22/3δlin

ta ≈ 1.6865 . (6.54)

The summary from the above small print is that, for a matter-dominated flat background
universe, spherically symmetric overdense regions have collapsed by the time tcoll (each overdense
region has its own collapse time tcoll), when the linear perturbation theory prediction would give
the magnitude of the density perturbation to be

δlin
coll ≈ 1.6865 . (6.55)

The above special case can be extended to the situation where the background universe is a
closed or open Friedmann model (i.e., a matter-dominated FRW universe) [29], and to the
ΛCDM model [30]. See also [2], Sec. 5.1, which gives

δlin
coll ≈ 1.686 [Ω(tcoll)]

0.0185 (Open or closed universe)

δlin
coll ≈ 1.686 [Ωm(tcoll)]

0.0055 (ΛCDM) , (6.56)

so that in both cases the dependence on Ωm is weak, and δlin
coll ≈ 1.68 can be used in general.

I suppose these idealized cases would lead to a black hole at the center. In reality overdensities
are not exactly spherically symmetric. The deviation from spherical symmetry increases as the
collapse progresses. For an ellipsoidal overdensity the flattest direction collapses first leading
first to a “Zeldovich pancake”. In the situation where the density refers to a number density of
galaxies instead of a smooth continuous density, the galaxies will pass the center point at various
distances (instead of colliding at the center as in the perfectly spherically symmetric case), after
which they will move away from the center and will be decelerated, eventually falling back in
and ending up orbiting the center, forming a cluster of galaxies.

6.4 Virialization

In the idealized perfectly spherically symmetric case we ended up with all mass collapsed into
a point. In reality we expect to end up at tcoll with a system where the masses orbit the center
point within half the radius at turnaround (this is called virialization). The density is then 8
times larger than the turnaround density, 9

2π
2ρ̄(tta) ≈ 44.4ρ̄(tta). In the matter-dominated case

the universe has meanwhile expanded by a factor (tcoll/tta)2/3 or the volume by a factor of 4,

38Note that Kolb&Turner[28], p. 328, misses the factor 3/5 .
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so that the density contrast has grown to 1 + δ = 18π2 ≈ 178. Quoting from Lyth&Liddle
[31] Sec. 9.4: “This number is well verified by numerical simulations as dividing the virialized
regions from those where matter is still infalling, but needs some adjustment in the presence of
cosmological constant.”

Often the rounder number 200 is used; defining the boundary of a halo to be at the radius
where the mean density inside the radius is 200 times the mean density of the universe at the
time the halo formed. Halo means a virialized overdensity of cold dark matter, which may
contain one or more galaxies. The common notations r200 and M200 refer to the radius and
mass of a halo defined this way. According to the virial theorem, the kinetic energy of the
system is minus half the gravitational potential energy. This way one can estimate the typical
velocities of the CDM particles from the halo mass. This assumes that the particles have not
lost energy during virialization, which should hold for CDM. Baryonic matter will radiate energy
as a result of particle interactions, which causes the baryonic component to fall deeper into the
system forming the smaller luminous galaxy (or galaxies) inside the halo. At least in the inner
parts of galaxies the density of baryonic matter is expected to exceed that of dark matter.

After virialization the density contrast will keep growing since, while the virialized system
stays at constant density, the background universe keeps expanding. For example, an overdensity
that turned around at z ≈ 3 or 7, would have virialized at z ≈ 1 or 3, and by now the matter
density contrast would have grown by another factor of ≈ 23 = 8 or 43 = 64. The halo has a
density profile, so that the density is higher deeper in.

Let us compare these densities to what we know about the density in the solar neighborhood
of our galaxy. Wikipedia (List of nearest stars and brown dwarfs 13.1.2023) lists 110 stars within
20 light years (r = 6.13 pc) from the Solar System, with a total mass of 45.96M�. In addition
the list contains 20 brown dwarfs and two “sub-brown dwarfs or rogue planets”, with a total
mass of less than 1M�. The volume within 20 light years is V = 965.8 pc3. For stars, I suppose
we can assume the list is complete, giving the local density of baryonic matter in stars

ρstars = 0.048M�/pc3 . (6.57)

Peacock [1] writes in Sec. 12.3 about our neighborhood: “Including contributions from gas
and dust clouds yields a total density in luminous material of ρlum = 0.1M�/pc3, see e.g.
Freedman (1987)” and that dynamical determinations of the density “tend to give more mass
that is seen directly, but the discrepancy is a factor two at most, and may not exist”, which
would be consistent with roughly an equal amount of cold dark matter, or less of it. (I would
like to find a more recent estimate.) Assuming h = 0.7 the present critical density is ρcr0 =
1.36 × 10−7M�/pc3, and further assuming Ωm = 0.3 this gives ρ̄m = 4.08 × 10−8M�/pc3, so
that a local density of 0.1–0.2M�/pc3 would correspond to a density contrast of 2–5× 106.
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7 Redshift space

In galaxy surveys the information about the distance to the galaxy is usually its redshift z,
which we use as proxy for its distance r. The distance-redshift relation depends on cosmology;
in ΛCDM it is

r(z) = H−1
0

∫ z

0

dz′√
Ωm(1 + z′)3 + (1− Ωm)

. (7.1)

(where r is the comoving distance). For simplicity, we assume here the linear Hubble relation

r = H−1
0 z or z = H0r , (7.2)

which is an approximation valid for z � 1. This ignores the peculiar velocities of galaxies. For
an individual galaxy,

z = H0r + vr , where vr ≡ r̂ · v (7.3)

is the radial component of the peculiar velocity v.
(The following formalism and results can be applied to higher redshifts also, as long as they

are applied to a redshift range ∆z � 1 (a galaxy survey is divided into redshift bins [z, z+∆z]),
so that the Hubble parameter can be approximated by a constant for that range, and is used in
place of H0.)

We follow [2], Sec. 6.3, and give distances in this section in velocity units, i.e., we set H0 = 1.
We also use c = 1, so velocity, and now also distance, is dimensionless. Thus

1 = H−1
0 = 2997.92458h−1Mpc = c = 299792.458 km/s . (7.4)

(We may call this system of units Hubble units.) The redshift and distance of a galaxy are thus
related

z = r + vr . (7.5)

We define a redshift vector z for each galaxy,

z ≡ zr̂ = r + vrr̂ =
(

1 +
vr
r

)
r . (7.6)

It gives the position of the galaxy in redshift space.
Because of the contribution vrr̂ the distribution of galaxies looks different in redshift space.

For example, consider a shell of galaxies some distance away from us in the spherical collapse
model: In real space they form a sphere. The more distant part of the sphere has a peculiar
velocity towards us, the near part away from us. Thus the shell appears flattened in redshift
space. At turnaround time, the vr part exactly cancels the difference in r, so in redshift space the
shell is flattened to a flat disk transverse to the line of sight. After turnaround the part that is
further away in real space is closer in redshift space and wise versa; the flat disk swells first into a
flattened sphere, but as v grows we get eventually a redshift-space structure elongated along the
line of sight. A cluster of galaxies also appears similar in redshift space, although the relation
between their locations in real and redshift space is more complicated and mixed; galaxies near
the center can be moving in our out. Their velocities with respect to the center of the cluster
are larger than the radius of the cluster (remember, we are comparing dimensionless quantities
here); thus the cluster appears as an elongated structure pointing towards the observer, “a finger
of God”.

This redshift space distortion (RSD) may at first appear as just a nuisance, preventing us
from measuring accurately the true galaxy number density field. However, since we have a
theoretical understanding how RSD comes about, we can use it as a cosmological tool. While it
has erased some information about the galaxy distribution, it has replaced it with another kind
of information. RSD tells us about the rate of growth of structure and is thus a test of General
Relativity or modified gravity.
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7.1 Redshift space as a distortion of real space

In the following we shall only consider objects which are not part of a larger collapsed system (like
individual galaxies in clusters), and structures that are large enough so that the overdensities
have not yet reached turnaround, so that we avoid the inversion of distance order in redshift
space. Thus the peculiar velocities are usually small, of the order 10−3 or less. They are caused
by the gravity of the density perturbation field (Sec. 6) and form a continuous velocity field
v(r). From (7.5),

dz

dr
= 1 +

∂vr
∂r

. (7.7)

The redshift space {z} is a distorted version of the real space {r}. We denote the number
density and its relative perturbation in redshift space as ρ(z) and δ(z). The mapping r → z(r)
maps the volume elements d3r → d3z. We require the mapping to be one-to-one; the condition
for this is that dz/dr is positive everywhere (i.e., no inversion). These volume elements contain
the same galaxies,

ρ(z)(z)d3z = ρ(r)d3r ⇒ [1 + δ(z)(z)]d3z = [1 + δ(r)]d3r (7.8)

(the mean density is the same in both spaces – in our model where z = r holds for the background
– since the effect of peculiar velocities on the volume cancel for sufficiently large volumes). Since
d3r = r2drdΩ and d3z = z2dzdΩ,

d3r

d3z
=
(r
z

)2 dr

dz
=

1

(1 + vr/r)2

(
1 +

∂vr
∂r

)−1

(7.9)

so that

1 + δ(z)(z) =
r2

(r + vr)2

(
1 +

∂vr
∂r

)−1

[1 + δ(r)] . (7.10)

7.2 Linear perturbations and the power spectrum

We make now the linear perturbation theory approximation, i.e., that the perturbations and
their gradients are small,

|δ| � 1 , |v| � 1 , |∇δ| � 1 , |∇v| � 1 , (7.11)

so that products of these quantities are second-order small and we can drop them. We also
make a separate approximation, assuming that |vr| � r, i.e., that we consider sufficiently large
distances that the peculiar velocities are small compared to the Hubble recession velocity. We
can then approximate (7.10) by

δ(z)(z) ≈ δ(r)− 2
vr
r
− ∂vr

∂r
. (7.12)

Now also the difference between z and r is small, so that the difference between δ(z)(z) and
δ(z)(r) is second-order small, and we can ignore it. Thus

δ(z)(r) ≈ δ(z)(z) . (7.13)

We then make the further assumption that

2
∣∣∣vr
r

∣∣∣ � ∣∣∣∣∂vr∂r
∣∣∣∣ , (7.14)
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so that we can drop the 2vr/r. This says that the structures (e.g., their characteristic wavelength)
that we are looking at are smaller than their distance from us. We have now

δ(z)(r) ≈ δ(r)− ∂vr
∂r

. (7.15)

Next we want to go to Fourier space so that

∇ → ik . (7.16)

How to deal with the ∂vr/∂r? Here

∂

∂r
= r̂ · ∇ and vr = r̂ · v . (7.17)

The direction vector r̂ appears problematic because replacing ∇ with ik leaves this coordinate-
space quantity so that we are not properly in Fourier space. The way out is the plane-parallel
approximation,39 where we assume that we are studying structures that are small compared to
their distance from us, so that we can make the Fourier expansion in a reference box V that is
small and distant so that it appears in a small angle from us, i.e., the direction vectors r̂ to it
are almost parallel. Thus we approximate

r̂ ≈ const for the purpose of taking r̂ · k . (7.18)

We have thus “externalized” the line-of-sight direction r̂ so that it is no longer a coordinate-space
variable. We assume scalar perturbations so that

vk = vkk̂ . (7.19)

Now
∂vr
∂r
→ i(r̂ · k)(r̂ · k̂)vk (7.20)

and (7.15) becomes

δ
(z)
k ≈ δk − i(r̂ · k̂)2kvk . (7.21)

The quantity r̂ · k̂ = cosϑk is the cosine of the angle ϑ the wave vector k makes with the
direction from us to the surveyed region. MBW [2] denotes it by µk and Peacock [1] just by µ.
From here on I denote it by cosϑk. The point in the plane-parallel approximation is that we
consider it as depending just on the direction of k.

Now we assume that the decaying mode has died out so we can use the result (6.28) for the
linear growing mode,

−ikvk = aHβδk ≈ βδk , (7.22)

where we approximated aH ≈ a0H0 = H0 = 1, which is in line with our initial z � 1 approxi-
mation of using a linear Hubble relation. Thus (7.21) becomes

δ
(z)
k ≈ [1 + β(cosϑk)2]δk . (7.23)

Here β = f/b, where f is the growth rate, which we want to determine to constrain cosmology
and theory of gravity; and b is the galaxy bias factor.

We define now the power spectrum P (z)(k) in redshift space and find that, although the
power spectrum in real space is isotropic,

P (z)(k) ≡ V 〈|δ(z)
k |2〉 = (1 + 2β cos2 ϑk + β2 cos4 ϑk)P (k) (7.24)

39I suppose the name comes from approximating the transverse directions as flat planes and the radial directions
as parallel.
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is anisotropic, i.e., depends on the direction of k via ϑk.
We can expand the direction dependence of P (z)(k) = P (z)(k, cosϑk) in Legendre polynomi-

als L`,

P (z)(k, cosϑk) =
∑
`

P
(z)
` (k)L`(cosϑk) , (7.25)

where the

P
(z)
` (k) ≡ 2`+ 1

2

∫ 1

−1
d cosϑkL`(cosϑk)P (z)(k, cosϑk) (7.26)

are the multipoles of P (z)(k). We find (exercise) that only the monopole, quadrupole, and
hexadecapole40 are nonzero:

P
(z)
0 (k) = (1 + 2

3β + 1
5β

2)P (k)

P
(z)
2 (k) = (4

3β + 4
7β

2)P (k)

P
(z)
4 (k) = 8

35β
2P (k) . (7.27)

The monopole is just P (z)(k) averaged over the directions of k,

P
(z)
0 (k) =

1

4π

∫
dΩkP

(z)(k) . (7.28)

We see that redshift-space effects makes the structure look stronger, P
(z)
0 (k) > P (k). This is

because infall towards high density regions make them appear flattened, i.e., smaller in redshift
space. Flattening along the line of sight corresponds to a positive quadrupole, i.e., the structure
appears stronger along the line of sight.

From a galaxy survey we can determine P
(z)
0 (k), P

(z)
2 (k), and P

(z)
4 (k), and then solve from

them, using (7.27), the real-space P (k) and β = f/b.
The plane-parallel approximation is similar in spirit to the flat-sky approximation of Sec. 4.2.

To go beyond it, one would have to take into account the spherical geometry and use spherical
harmonics and spherical Bessel functions.

7.3 Correlation function

Figure 19: Parallel and perpendicular components in redshift space (here s‖, s⊥ are called rπ, rp).

Because of the distortion, the redshift-space correlation function

ξ(z)(z1, z2) ≡ 〈δ(z)(z1)δ(z)(z2)〉 (7.29)

40The naming scheme for multipoles goes according to 2`; they are called “2`-poles” (mono = 20 = 1, quadru
= 22 = 4, hexadeca = 24 = 16).
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Figure 20: Measured redshift-space correlation function ξ(z)(s‖, s⊥) from the 2dFGRS survey (here s‖, s⊥
are called π, σ). Note that s⊥ is positive by definition, since it’s the radial coordinate of a cylindrical
coordinate system. Likewise s‖ is positive, since the separation s of a pair is only defined up to a sign.
Here the plot is just reflected with respect to the middle vertical and horizontal to produce a more
pleasing image and a 3D interpretation. One can imagine a rotation around this vertical to represent
the angular coordinate of which ξ(z) is assumed to be independent. The resulting 3D image gives the
expectation value of the overdensity around a galaxy in redshift space. The observer is looking at this
from the direction of the bottom of the page. From Peacock et al.[32]

is not isotropic. We define

l ≡ 1
2(z1 + z2) line-of-sight vector

s ≡ z1 − z2 separation vector in redshift space

s‖ ≡ l̂ · s parallel component of separation

s⊥ ≡
√
s2 − s2

‖ perpendicular component of separation

µ ≡
s‖

s
= cosϑs direction cosine (7.30)

(s‖, s⊥ may also be called π, σ or rπ, rp). In the plane-parallel approximation (s‖, s⊥ � l) ξ(z)

depends only on s‖ and s⊥, or equivalently on s and µ:

ξ(z)(z1, z2) ≈ ξ(z)(s) = ξ(z)(s‖, s⊥) = ξ(z)(s, µ) . (7.31)

(The point here is that we approximate the redshift distortion happening along the l, i.e., s‖,
direction instead of the z1 and z2 directions; so that the distortion is isolated into s‖.)

7.3.1 Linear growing mode

Linear perturbation theory can be applied to ξ when correlations are relatively weak, i.e., for
large s (but for the plane-parallel approximation to be valid, it still has to be small compared
to the depth of the survey).

For the linear growing mode we can do the expansion of ξ(z)(s, µ) in Legendre polynomials
analogous to (7.25):

ξ(z)(s, µ) =
∑
`

ξ
(z)
` (s)L`(µ) . (7.32)
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BAO and RSD analysis from eBOSS LRG 7

Figure 2. Anisotropic two-point correlation function of eBOSS LRG+CMASS galaxies at 0.6 < z < 1. The left (right) panel shows the

pre-reconstruction (post-reconstruction) two-point correlation function in bins of r? and rk . Bins of size 1.25 h�1 Mpc and a bi-cubic

spline interpolation have been used to produce the contours.

3.1 BAO modelling

We employ the standard approach used in previous SDSS
publications for measuring the baryon acoustic oscillations
scale in configuration space (e.g., Anderson et al. 2014; Ross
et al. 2017; Alam et al. 2017; Bautista et al. 2018). The code
that produces the model and perform the fitting to the data
is publicly available6.

The aim is to model the correlation function multipoles
⇠`(r) as a function of separations r relevant for BAO (30 <
r < 180 h�1Mpc). The starting point is the model for the
redshift-space anisotropic galaxy power-spectrum P(k, µ),

P(k, µ) = b2 ⇥
1 + �(1 � S(k))µ2⇤2

(1 + k2µ2⌃2
s/2)

⇥

⇥
h
Pno peak(k) + Ppeak(k)e�k

2⌃2
nl(µ)/2

i
(4)

where b is the linear bias, � = f /b is the redshift-space
distortions parameter, k is the modulus of the wave-vector
and µ is the cosine of the angle between the wave-vector
and the line of sight. The non-linear broadening of the
BAO peak is modelled by multiplying the“peak-only”power
spectrum Ppeak (see below) by a Gaussian distribution with

⌃2
nl(µ) = ⌃2

k µ
2 + ⌃2?(1 � µ2). The non-linear random motions

on small scales are modeled by a Lorentzian distribution
parametrized by ⌃s. When performing fits to the multipoles
of a single realisation of the survey, the values of (⌃k, ⌃?, ⌃s)
are held fixed to improve convergence. The values chosen

6 https://github.com/julianbautista/eboss_clustering

for these damping terms were obtained from fits to the av-
erage correlation function of the Nseries mocks, which are
full N-body simulations. We show in Section 4.1 that our
results are insensitive to small changes to those values. Fol-
lowing Seo et al. (2016) theoretical considerations, we apply

a term S(k) = e�k2⌃2
r /2 to the post-reconstruction modeling of

the correlation function (S(k) = 0 for the pre-reconstruction
BAO model). This term models the smoothing used in our
reconstruction technique, where ⌃r = 15h�1Mpc (see Sec-
tion 2.3).

We follow the procedure from Kirkby et al. (2013) to
decompose the BAO peak component Ppeak from the linear
power-spectrum Plin. We start by computing the correlation
function by Fourier transforming Plin, then we replace the
correlations over the peak region by a polynomial function
fitted using information outside the peak region (50 < r < 80
and 160 < r < 190h�1Mpc). The resulting correlation func-
tion is then Fourier transformed back to get Pno peak. The lin-

ear power spectrum Plin is computed using the code CAMB7

(Lewis et al. 2000) with cosmological parameters of our fidu-
cial cosmology (Table 1). The analysis in Fourier space uses
the same procedure (see Gil-Maŕın et al. 2020). Previous
BOSS & eBOSS analyses making BAO measurements from
direct tracer galaxies, used the approximate formulae from
Eisenstein et al. (1998) for decomposing the peak. We have
checked that both methods yield only negligibly di↵erent
results.

The correlation function multipoles ⇠`(s) are obtained

7 camb.info

MNRAS 000, 1–29 (2020)

Figure 21: Left panel: Same as Fig. 20, put from the newer and larger eBOSS survey. Based on 377 458
luminous red galaxies (LRG) with redshifts 0.6 < z < 1 from BOSS and eBOSS. Right-panel: after an
attempt to correct the galaxy positions for the redshift-space distortion. Note the ring at r ≈ 100h−1Mpc:
this is the BAO peak discussed in Sec. 10 and visible also in Fig. 2. From Bautista et al. [33].

24 Bautista et al.

Table 13. The full-shape measurements with the DR16 eBOSS+CMASS LRG dataset from our baseline analysis described in Section 3.2
followed by results from other analysis choices. The presented errors are purely statistical and do not include systematic errors.

Model Analysis ↵? ↵k f�8 �2/d.o.f.

CLPT-GS baseline 0.997 ± 0.020 1.013 ± 0.028 0.471 ± 0.045 83.7/(63 � 6) = 1.47
CLPT-GS rmin = 35h�1Mpc for ⇠4 1.017 ± 0.022 0.971 ± 0.031 0.499 ± 0.046 79.3/(61 � 6) = 1.44
CLPT-GS NGC only 1.015 ± 0.025 1.009 ± 0.031 0.464 ± 0.055 81.1/(63 � 6) = 1.40
CLPT-GS SGC only 0.985 ± 0.036 1.041 ± 0.062 0.439 ± 0.078 71.3/(63 � 6) = 1.25
TNS baseline 1.001 ± 0.018 1.013 ± 0.031 0.451 ± 0.040 85.2/(65 � 7) = 1.47
TNS rmin = 35h�1Mpc for ⇠4 1.013 ± 0.016 0.976 ± 0.027 0.458 ± 0.036 73.7/(63 � 7) = 1.32
TNS Without ⇠4 1.019 ± 0.019 0.963 ± 0.035 0.472 ± 0.044 50.1/(44 � 7) = 1.35
TNS NGC only 1.024 ± 0.029 1.013 ± 0.036 0.436 ± 0.053 80.6/(65 � 7) = 1.39
TNS SGC only 0.993 ± 0.034 1.076 ± 0.070 0.423 ± 0.076 69.1/(65 � 7) = 1.19

Figure 14. Best-fits full-shape models to the eBOSS + CMASS multipoles. Left, mid and right panel display mono, quad and hexade-
capole, respectively. The monopole is scaled by r2 while the other two are scaled by r . The CLPT-GS model is shown by the blue dashed
line while the TNS model is shown by the red solid line. Note the baseline ranges used for each model are slightly di↵erent (see Figure 6).

Figure 15. Comparison between the TNS and CLPT-GS final
posterior distributions over the three main parameters using the
DR16 data. The distributions are in good agreement for the two
models. The vertical dashed lines on the 1D distributions refer to
the mean. Dashed line contours show the combined result from
the two models, assumming Gaussian errors. The full posteriors
including nuisance parameters can be found in Appendix C.

Figure 16. Constraints on DM /rd, DH /rd and f�8 ze� = 0.698
from the full-shape RSD analysis of the completed eBOSS LRG
sample pre-reconstruction. Contours show 68 and 95 per cent
confidence regions for the analyses in configuration space (blue),
Fourier space (red) and the combined (grey). The expected values
in a flat ⇤CDM model with best-fit parameters from Planck 2018
results is indicated as a black star.

MNRAS 000, 1–29 (2020)

Figure 22: The multipoles ξ
(z)
` (s) from the eBOSS survey, i.e., of the correlation function plotted in the

left panel of Fig. 21. Note that the plotted quantities are s2ξ
(z)
0 (s) (left), sξ

(z)
2 (s) (middle), and sξ

(z)
4 (s)

(right). The two solid lines in each plot are fits to the data of two theoretical models, which include also
non-linear effects. From Bautista et al. [33].
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This is not as easy as for the power spectrum since the relation between δ(z) and δ, which was
simple in Fourier space, Eq. (7.23),

δ
(z)
k ≈ [1 + β(cosϑk)2]δk =

[
1 + β

(
kz
k

)2
]
δk , (7.33)

becomes

δ(z)(z) ≈
[

1 + β

(
∂

∂z

)2 (
∇2
)−1

]
δ(x) (7.34)

in coordinate space, so that the relation

P (z)(k) =

[
1 + β

(
kz
k

)2
]2

P (k) (7.35)

in Fourier space becomes

ξ(z)(s) ≈
[

1 + β

(
∂

∂z

)2 (
∇2
)−1

]2

ξ(s)

=

[
1 + 2β

(
∂

∂z

)2 (
∇2
)−1

+ β2

(
∂

∂z

)4 (
∇2
)−2

]
ξ(s)

= ξ(s) + 2β

(
∂

∂z

)2

F (s) + β2

(
∂

∂z

)4

G(s) (7.36)

in coordinate space. Here where F (s) and G(s) are the solutions of the Poisson equations

∇2F = ξ and ∇2G = F . (7.37)

The solution of the Poisson equation is given by41

F (s) =
−1

4π

∫
d3r

ξ(r)

|s− r| , (7.41)

where we can expand ([8], Eq. 12.4)

1

|s− r| =
∞∑
`=0

r`<

r`+1
>

L`(cos γ) , (7.42)

41This is common stuff in electrodynamics. It’s been a long time since I studied electrodynamics, but let’s
consider Newtonian gravity, with which I am more familiar and which is closer to the topic of cosmology. The
gravitational potential Φ is given by the Poisson equation

∇2Φ = 4πGρ ⇒ Φ(s) = −G
∫
d3r

ρ(r)

|s− r| , (7.38)

where ρ(r) is the mass density. The result (7.43) below says that for an isotropic (spherically symmetric) mass
distribution

Φ(s) = −G
s

∫ s

0

4πr2ρ(r)dr −G
∫ ∞

s

4πrρ(r)dr = −GM(s)

s
−G

∫ ∞

s

4πrρ(r)dr , (7.39)

where M(s) is the mass inside radius s. The gravitational field is −∇Φ(s) = −Φ′(s)ŝ, so we get for it

−|∇Φ(s)| = −Φ′(s) = −GM(s)

s2
+
G

s
M ′(s)− 4πGsρ(s) = −GM(s)

s2
, (7.40)

the familiar distance-squared law with the familiar property of gravity that the gravitational field of a spherically
symmetric mass distribution depends just on the mass inside, M(s). The second integral from the outside mass
distribution for the potential is needed so that the contributions from the integration limits cancel when taking
the gradient, i.e., we need it to cancel the contribution from M ′(s).
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where r< and r> are the smaller and larger of s and r and γ is the angle between s and r. This
was maybe overkill here, since because of the isotropy of ξ(r) only the ` = 0 term survives in
(7.41):

F (s) =
−1

4π

∞∑
`=0

∫
r2dr

r`<

r`+1
>

ξ(r)

∫
dφ

∫ 1

−1
d cos γL`(cos γ)

= −
∫ ∞

0
r2dr

1

r>
ξ(r) = −1

s

∫ s

0
r2ξ(r)dr −

∫ ∞
s

rξ(r)dr

= −1

s
J3(s)−K2(s) , (7.43)

where we introduced the J` and K` integrals (no relation to Bessel functions although the
notation looks the same)

J`(x) ≡
∫ x

0
ξ(y)y`−1dy , K`(x) ≡

∫ ∞
x

ξ(y)y`−1dy , (7.44)

whose derivatives are

J ′`(x) = x`−1ξ(x) , K ′`(x) = −x`−1ξ(x) . (7.45)

We see that F (s) = F (s) is isotropic. Likewise,

G(s) = −1

s

∫ s

0
r2F (r)dr −

∫ ∞
s

rF (r)dr

=
1

s

∫ s

0
rdr

∫ r

0
y2ξ(y)dy +

1

s

∫ s

0
r2dr

∫ ∞
0

ξ(y)ydy +

∫ ∞
s

[J3(r) + rK2(r)]dr

=
1

s

∫ s

0
dy y2ξ(y)

∫ s

y
rdr +

1

s

∫ ∞
0

dy yξ(y)

∫ min(s,y)

0
r2dr +

∫ ∞
s

[J3(r) + rK2(r)]dr

=
s

2
J3(s)− 1

6s
J5(s) +

s2

3
K2(s) +

∫ ∞
s

[J3(r) + rK2(r)]dr . (7.46)

Next we have to do the ∂/∂z’s. Here z is the line-of-sight direction. Since s2 = x2 + y2 + z2,
2sds = 2xdx+ 2ydy + 2zdz and

∂s

∂z
=

z

s
= cosϑs = µ . (7.47)

We get (exercise)

∂2
zF (s) = . . . = µ2ξ(s) + (1− 3µ2)

J3(s)

s3

∂4
zG(s) = . . . = µ4ξ(s) + (3

2 − 9µ2 + 15
2 µ

4)
J3(s)

s3
+ (−3

2 + 15µ2 − 35
2 µ

4)
J5(s)

s5
(7.48)

and finally

ξ(z)(s) ≈ ξ(s) + 2β∂2
zF (s) + β2∂4

zG(s)

=
[
1 + 2βµ2 + β2µ4

]
ξ(s) +

[
β
(
2− 6µ2

)
+ β2

(
3
2 − 9µ2 + 15

2 µ
4
)] J3(s)

s3

+β2
[
−3

2 + 15µ2 − 35
2 µ

4
] J5(s)

s5

=
[
1 + β

(
4
3L2 + 2

3

)
+ β2

(
8
35L4 + 4

7L2 + 1
5

)]
ξ(s) +

[
β (−4L2) + β2 12

7 (L4 − L2)
] J3(s)

s3

+β2 (−4L4)
J5(s)

s5
, (7.49)
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so that the multipoles of the correlation function are

ξ
(z)
0 (s) =

(
1 + 2

3β + 1
5β

2
)
ξ(s)

ξ
(z)
2 (s) =

(
4
3β + 4

7β
2
)
ξ(s) +

(
−4β − 12

7 β
2
) J3(s)

s3
=
(

4
3β + 4

7β
2
) (
ξ − ξ̄

)
ξ

(z)
4 (s) = 8

35β
2ξ(s) + 12

7 β
2J3(s)

s3
− 4β2J5(s)

s5
, (7.50)

where ξ̄ is the volume average (Eq. 1.15) of ξ .

Since ξ(r) typically decreases with increasing r, ξ(r) < ξ̄(r) and the quadrupole ξ
(z)
2 (s)

is negative. This corresponds to a flattened shape. We see this in Fig. 20 for large scales
(rp > 10h−1Mpc). (At small scales the linear theory does not apply, and we get a positive
quadrupole, i.e., elongation along the line of sight, due to the Finger-of-God effect.)

From the measured ξ(z)(rπ, rp) = ξ(z)(s, µ) one can determine the multipoles

ξ
(z)
` (s) =

2`+ 1

2

∫ 1

−1
dµL`(µ)ξ(z)(s, µ) , (7.51)

the volume average of the redshift-space monopole,

ξ̄
(z)
0 (s) ≡ 3

s3

∫ s

0
ξ

(z)
0 (r)r2dr =

(
1 + 2

3β + 1
5β

2
)
ξ̄(s) , (7.52)

and the quadrupole-to-monopole ratio

q(s) ≡ ξ
(z)
2 (s)

ξ̄
(z)
0 (s)− ξ(z)

0 (s)
=
−4

3β − 4
7β

2

1 + 2
3β + 1

5β
2
, (7.53)

where the second equalities are the linear results, which should apply at large s. The last equality
can be used to determine β from the measured q(s) at large s.

In [33], eBOSS used the range 20h−1Mpc < s < 130h−1Mpc to determine42 β = 0.473±0.044
for the effective redshift of zeff = 0.698 using the redshift bin 0.6 < z < 1.0. The linear
approximation does not hold at smaller separations and at larger separations the correlations
are so small, and thus inaccurate, that they do not add anything useful. The result is consistent
with the ΛCDM model with standard general relativity.

Exercise: Relate the multipoles of the 3D correlation function and power spectrum to
each other. Assuming the correlation function and power spectrum have a directional dependence only
on the angle ϑ with respect to the line-of-sight direction, they can be expanded

ξ(r, ϑ) =
∑
`

ξ`(r)L`(cosϑ) and P (r, ϑ) =
∑
`

P`(r)L`(cosϑ) . (7.54)

Using the fact that ξ and P form a 3D Fourier transform pair, show that

ξ`(r) =
i`

2π2

∫
k2dkj`(kr)P`(k) . (7.55)

Hint: I generalized the expansion to a spherical harmonics expansion and used (5.30),

eik·x = 4π
∑
`m

i`j`(kx)Y`m(x̂)Y ∗`m(k̂) . (7.56)
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Figure 23: Fixed rp corresponds to a cylinder centered on the reference galaxy. Redshift distortions
move the relative positions of the other galaxies in the rπ direction.

7.3.2 Projected correlation function

In the plane-parallel approximation the redshift effects move the galaxies along the s‖ (rπ in
Fig. 23) direction, so that s⊥ = r⊥ (rp in Fig. 23). Thus when we integrate over s‖,

wp(r⊥) ≡
∫ πmax

−πmax

ξ(z)(s‖, s⊥)ds‖ =

∫ πmax

−πmax

ξ(r(r‖, r⊥))dr‖ , (7.57)

where ξ(r(r‖, r⊥)) ≡ ξ(
√
r2
‖ + r2

⊥), these effects cancel and we get the same integral from ξ(z)

and ξ (we catch the same galaxies along the line corresponding to fixed r⊥). The function wp(r⊥)
is called the projected correlation function and πmax should be large enough that correlations
are negligible beyond, so that we can replace πmax with ∞. Since

r =
√
r2
‖ + r2

⊥ , r‖ =
√
r2 − r2

⊥ and dr‖ =
rdr√
r2 − r2

⊥

(7.58)

we have

wp(r⊥) = 2

∫ ∞
r⊥

ξ(r)
rdr√
r2 − r2

⊥

. (7.59)

The factor 2 comes from including both negative and positive rπ.
We can determine wp from the measured ξ(z) according to (7.57) and solve the real-space cor-

relation function ξ(r) from (7.59) (this is based on the assumption that ξ is isotropic). Eq. (7.59)
is a version of Abel’s integral equation ([8], Exercise 16.2.7). Write it as

wp(y) =

∫ ∞
y

ξ(r)
2rdr

(r2 − y2)α
. (7.60)

(Here α = 1
2 , but I felt the solution became more clear from this generalization.) We solve it

(exercise) by multiplying with (y2 − r2
0)α−1 and integrating∫ ∞

r0

ydy (y2 − r2
0)α−1wp(y) =

∫ ∞
r0

ydy (y2 − r2
0)α−1

∫ ∞
y

ξ(r)
2rdr

(r2 − y2)α
. (7.61)

This two-dimensional integral covers a wedge in the (y, r) plane, where r > y > r0, so it
rearranges into ∫ ∞

r0

rdr ξ(r)

∫ r

r0

2ydy
(y2 − r2

0)α−1

(r2 − y2)α
. (7.62)

42This value is actually quoted for fσ8, which is almost the same as β = f/b, since for galaxies b ≈ 1/σ8 as
explained in a footnote in Sec. 6.1.
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The second integral gives the beta function B(α, 1−α) with the substitution x = (y2−r2
0)/(r2−

r2
0). Since B(1

2 ,
1
2) = π, we have∫ ∞

r0

rdr ξ(r) =
1

π

∫ ∞
r0

ydy
wp(y)√
y2 − r2

0

. (7.63)

Partial integration and derivating with respect to r0 gives the final result, the deprojected cor-
relation function (exercise)

ξ(r) = − 1

π

∫ ∞
r

w′p(y)dy√
y2 − r2

. (7.64)

These results apply both at small and large scales, they do not require ξ to be small.

7.4 Small scales

At small scales where structures have collapsed and ξ(r) is large, galaxies are orbiting the centers
of these structures. The radial velocities are more or less random and characterized by their
dispersion σv. Their effect on the redshift-space correlation function becomes a convolution with
the radial velocity distribution. Should add a discussion of this here some time.

7.5 Redshift space in Friedmann–Robertson–Walker universe

We should take into account the metric of the background universe. We review and extend here
some results from Cosmology I.

The metric of a homogeneous and isotropic universe is the Robertson–Walker metric

ds2 = −dt2 + a2(t)

[
dr2

1−Kr2
+ r2dϑ2 + r2 sin2 ϑ dϕ2

]
= −dt2 + a2(t)

[
dχ2 + f2

K(χ)
(
dϑ2 + sin2 ϑ dϕ2

)]
, (7.65)

where

fK(χ) ≡


K−1/2 sin(K1/2χ) , (K > 0)

χ , (K = 0)

|K|−1/2 sinh(|K|1/2χ) , (K < 0)

(7.66)

K is a constant determining the spatial curvature of the universe, a(t) is the scale factor de-
scribing the expansion of the universe, and r and χ are two possible choices of radial coordinate.
The spatial curvature radius of the universe at time t is a(t)/

√
|K|, or a comoving curvature

radius of rcurv = 1/
√
|K|. We use the normalization a0 = 1 so that a = 1/(1 + z).

The relation of the relevant distance concepts to the redshift are: comoving distance

DC(z) =

∫ z

0

dz′

H(z′)
, (7.67)

angular diameter distance

DA(z) =
1

1 + z
fK

(∫ z

0

dz′

H(z′)

)
, (7.68)

and comoving angular diameter distance

DM (z) = fK

(∫ z

0

dz′

H(z′)

)
. (7.69)
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These are related to the coordinates used in the metric as

DC(z) = χ and DM (z) = r . (7.70)

We observe the separation s = (s‖, s⊥) of two galaxies as an angular separation ∆ϑ on the
sky and a redshift difference ∆z, so that

s‖ ≈
∆z

H(z)
and s⊥ ≈ DM (z)∆ϑ . (7.71)

Both results are small-separation approximations, for s‖ we approximated H ≈ const within ∆z

and for s⊥ we used the small-angle approximation (for K = 0, sin(1
2∆ϑ) ≈ 1

2∆ϑ; for K 6= 0
something different).

The Hubble parameter H(t) ≡ ȧ/a is given by the Friedmann equation

H2 =
8πG

3
ρ− K

a2
. (7.72)

For a universe containing radiation, matter, and dark energy with equation of state43

w ≡ w0 + wa(1− a) , (7.73)

the Hubble parameter evolves (exercise) as

H(z) = H0

√
Ωr(1 + z)4 + Ωm(1 + z)3 + Ωk(1 + z)2 + Ωw(1 + z)3(1+w0+wa)e−3waz/(1+z) .

(7.74)
where Ωr, Ωm, and Ωw are density parameters giving the present density of radiation, matter,
and dark energy as a fraction of the critical energy density, and

Ωk ≡ −
K

H2
0

. (7.75)

For a flat universe,
DM (z) = DC(z) = r = χ (K = 0) , (7.76)

the spatial geometry is Euclidean, and we can convert the observed coordinates z, θ, φ of a
galaxy into Cartesian redshift space coordinates simply by

x = r sin θ cosφ , y = r sin θ sinφ , z = r cos θ , (7.77)

where
r = DC(z) . (7.78)

We thus work with comoving coordinates, so that structures which expand with the universe
have fixed size.

However, we need to know the cosmology to know DC(z). What should we do, if we are
trying to determine the cosmology from the galaxy distribution? The usual approach is to
assume a fiducial cosmology for converting the observed galaxy positions and redshifts into
Cartesian redshift coordinates. To compare the data to predictions from other cosmologies, one
then calculates theoretically how the observed correlation function and power spectrum should

43This is not a physically motivated equation of state for dark energy (there aren’t any), but just a phe-
nomenological two-parameter model that we will try to fit to the data for the redshift range z = 0 to a few. For
larger redshifts dark energy should have a negligible effect on the geometry of spacetime (if its equation-of-state
parameter w stays sufficiently less than 0).
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appear if the conversion to Cartesian coordinates is done using this (wrong) fiducial cosmology.
This works best if the fiducial cosmology is not too far from the true cosmology.

For an open (K < 0) or closed (K > 0) universe the situation is trickier. Fortunately Planck
and BAO observations constrain the universe to be close to flat, |Ωk| < 0.0026 (68% C.L.) [34],
so that the curvature radius is much larger than the present Hubble distance,

rcurv = H−1
0 /

√
|Ωk| > 19.6H−1

0 = 58 800h−1Mpc (7.79)

(this assumes extended ΛCDM cosmology, where this curvature is the only extension). Thus
the fiducial cosmology can be chosen to be flat. We still need to consider how the curvature
affects the theoretical predictions. Because of evolution effects, for deep surveys the correlation
functions and powers spectra are estimated separately for different redshift ranges (redshift bins).
To assess how significantly the geometry within the survey volume of such a bin [zmin, zmax]
deviates from flat one has to compare the radial comoving extent DC(zmax)−DC(zmin), which
is usually less than 1000h−1Mpc, to rcurv. For the correlation function we are usually only
interested in galaxy separations less than rmax ∼ 200h−1Mpc� rcurv, so that the discussion of
ξ(r)in Sec. 1 based on Euclidean geometry should hold well. Curvature affects the expansion
rate and therefore also the growth of density perturbations, and therefore ΩK can be constrained
indirectly by measurements at small scales where the direct geometrical effect of curvature is
negligible.

The other concern regarding the analysis presented in Secs. 7.1–7.3 is that the Hubble pa-
rameter is a function of redshift. This analysis had to do with how redshift differences are
converted to radial (line-of-sight) distance differences. Instead of the s‖ = H−1

0 ∆z of (7.2) we
now have

s‖ =

∫ z2

z1

dz′

H(z′)
≈ H(z)−1∆z (7.80)

so the analysis and results for correlation function and power spectrum multipoles hold to the
extent H can be approximated as a constant within the redshift bin. Of course also ξ(r), P (k)
and β = f/b evolve in time and thus depend on redshift, so that we measure some kind of
average value over the redshift bin. These evolution effects can be minimized by using narrow
redshift bins, but this way we also lose statistics especially in the line-of-sight direction, and the
thickness of the redshift bin should be at least as large as rmax.

The results on β = f/b from galaxy surveys are usually presented as f(z)σ8(z), where σ8

is the linear theory prediction for the rms mass density fluctuation (square root of variance) in
R = 8h−1Mpc spheres, i.e., the top-hat σT (8h−1Mpc). Galaxy surveys measure σg = bσ, so
that multiplying the two measurements, β and σg, gives fσ8, which is independent of bias, and
can be directly compared to the prediction of a cosmological model.44 The redshift dependence
of σ8 is ∝ D(z) (the growth function), so that

σ8(z) =
D(z)

D(z = 0)
σ8 , (7.81)

and the present value is σ8(z = 0) ∼ 0.8 (assuming ΛCDM, Planck finds45 σ8 = 0.811 ± 0.006
[34], with σ8 = 0.8120 for the best-fit ΛCDM model). In Fig. 24 we plot the f(z)σ8(z) of the
Planck 2018 best-fit ΛCDM model, and compare it to modified gravity with a larger or smaller
growth index γ.

44There is a missing piece in this discussion, since the measured σg includes also a contribution from non-linear
effects. The relation between the nonlinear and linear σ is obtained from numerical simulations.

45Note that this is not a measurement of σ8. Planck looks at the early universe, whereas σ8 relates to the
present universe. One fits the parameters of a chosen cosmological model to Planck data, and for this fitted
model one calculates theoretically what the present-day σ8 ought to be.
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Figure 24: Theoretical f(z)σ8(z) corresponding to the Planck 2018 best-fit ΛCDM model (Ωm = 0.3158,
σ8 = 0.8120), compared to what it would be with growth indices γ = 0.53 and γ = 0.57. Euclid should
be able to distinguish these from each other.

Currently (2021) the most important results on this are from the SDSS BOSS (Baryon
Oscillation Spectroscopic Survey) [35] and eBOSS (extended BOSS) [61] surveys. See Fig. 25
and Fig. 27.

7.6 Alcock–Paczyński effect

Consider a spherical group of objects (e.g. galaxies) far away, with negligible peculiar veloci-
ties (to avoid the redshift-space distortion), so that it expands with the universe, i.e., forms a
comoving sphere with some comoving radius r. The transverse and line-of-sight extents of the
sphere are thus equal also in redshift space,

s‖ =
∆z

H(z)
= s⊥ = DM (z)∆ϑ (7.82)

so that
∆z

∆ϑ
= DM (z)H(z) ≡ FAP (z) . (7.83)

Observing ∆z and ∆ϑ one can thus determine the Alcock–Paczyński parameter FAP (z) of the
universe. One does not need to know the size r of the sphere, only that it has a spherical shape.
Alcock and Paczyński[36] proposed this cosmological test in 1979 especially for testing for the
presence of a non-zero cosmological constant. Different cosmologies have different FAP (z). It
is not necessary to have a sphere (it was used here just for pedacogical reasons); the Alcock–
Paczyński test requires just an isotropic distribution, e.g., an isotropic ξ(r). The powerful feature
of this test is that it requires no correction for evolution effects.

The weakness of the Alcock–Paczyński test is that it will be contaminated by peculiar veloc-
ities, since the isotropy is required in redshift space. A reverse consideration is that if we try to
measure the anisotropy (the multipoles) of the redshift-space correlation function or power spec-
trum, and our fiducial cosmology has a different FAP (z) than the true one, we get the anisotropy
wrong. There are thus two contributions to the observed anisotropy of an isotropic distribution:
the true redshift-space distortion due to peculiar velocities and this Alcock–Paczyński effect due
to using a wrong fiducial cosmology.
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Figure 25: Left: Measurements of fσ8 at different redshifts from the BOSS survey. The latest results
are the ‘DR12 final consensus’ from [35]. This is left panel of Fig. 15 in [35]. The curve with blue error
band is the prediction of the ΛCDM model with parameters determined from Planck data. This plot can
be compared to D(z)f(z) in Fig. 16, except that D(z) has different normalization than σ8(z). Right:
Constraints (68% and 95% confidence levels) from BOSS data on a phenomenological two-parameter
modification of the growth function: fσ8 → fσ8 [A+B(z − zp)] where the pivot redshift zp = 0.51 was
chosen to be at the center of the survey. The data is consistent with no modification, A = 1 and B = 0,
i.e., the prediction from General Relativity. This is Fig. 20 of [35]. See Fig. 27 for an update.
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Figure 26: The Hubble parameter H(z) and the Alcock–Paczyński parameter FAP (z) as a function of
redshift for the ΛCDM model with Ωm = 0.3.
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10 eBOSS Collaboration

TABLE 2
Data sets for cosmology analyses.

Name Data Combination Cosmology Analysis
BAO DM (z)/rd and DH(z)/rd from BAO measurements of all SDSS tracers Section 4
RSD f�8(z) from all SDSS tracers, marginalizing over DM (z)/rd and DH(z)/rd Section 5
SDSS DM (z)/rd, DH(z)/rd, and f�8(z) of all SDSS tracers Sections 6,7
CMB T&P Planck TT, TE, EE, and lowE power spectra Sections 4,5
CMB lens Planck lensing measurements Section 5
Planck Planck temperature, polarization, and lensing measurements Sections 6,7
SN Pantheon SNe Ia measurements Sections 4,6,7
WL DES cosmic shear correlation functions Section 5
DES DES 3⇥2 measurements (cosmic shear, galaxy clustering, and galaxy-galaxy lensing) Sections 6,7
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Fig. 1.— Top: Distance measurements from the SDSS lineage of BAO measurements presented as a function of redshift. Measurements
include those from SDSS MGS (Ross et al. 2015; Howlett et al. 2015), BOSS galaxies (Alam et al. 2017), eBOSS LRGs (Bautista et al.
2020; Gil-Marin et al. 2020), eBOSS ELGs (Tamone et al. 2020; de Mattia et al. 2020), eBOSS quasars (Hou et al. 2020; Neveux et al.
2020), the BOSS+eBOSS Ly↵ auto-correlation, and the BOSS+eBOSS Ly↵-quasar cross-correlation measurements (du Mas des Bourboux
et al. 2020). Red points correspond to transverse BAO, while green points to radial BAO. The MGS DV measurement is plotted in orange
with a translation to DM assuming a ⇤CDM model for illustrative purposes. The red and green theory curves are not fit to the BAO
data; they are the Planck bestfit predictions for a flat ⇤CDM model. Bottom: Growth rate measurements from the SDSS lineage of
f�8 measurements as a function of redshift. The measurements match the BAO samples except for z > 2, where we do not report a
measurement of the growth rate. As for the upper panel, theory curve is not a fit, but a bestfit Planck model.

structed correlation function (Ross et al. 2015) and an
RSD measurement from the anisotropic correlation func-
tion (Howlett et al. 2015), both at an e↵ective redshift
ze↵ = 0.15. The BAO measurement was characterized
with DV (z)/rd and the RSD fit was performed using the
post-reconstruction BAO fit as a prior. The likelihoods
from this work are found in the Supplementary Data as-
sociated with Howlett et al. (2015). We refer to this
sample as the ‘Main Galaxy Sample’ (MGS) in the table
and throughout the paper.

BOSS DR12 Galaxies (0.2 < z < 0.6): Over the pe-
riod 2009–2014, BOSS performed spectroscopy to mea-
sure large-scale structure with galaxies over the redshift
interval 0.2 < z < 0.75. BOSS obtained redshifts for
1,372,737 galaxies over 9,376 deg2 from which the final
galaxy catalog was produced for clustering measurements
(Reid et al. 2016). The sample was divided into three
redshift bins covering 0.2 < z < 0.5, 0.4 < z < 0.6,
and 0.5 < z < 0.75 for studies of BAO and RSD. For

each redshift bin, seven di↵erent measurements of BAO,
AP, and RSD were performed (Ross et al. 2017; Vargas-
Magaña et al. 2018; Beutler et al. 2017b,a; Satpathy et al.
2017; Sánchez et al. 2017b; Grieb et al. 2017) based
on the galaxy correlation function or power spectrum.
Following the methodology of Sánchez et al. (2017a),
these measurements were combined into a single consen-
sus likelihood spanning DM (z)/rd and DH(z)/rd for the
BAO-only measurements and DM (z)/rd, DH(z)/rd, and
f�8(z) for the combined BAO and RSD measurements.
These results were computed over all three redshift inter-
vals after fully accounting for systematic errors and co-
variances between parameters and between redshift bins
(Alam et al. 2017). We refer to the 0.2 < z < 0.5 and
0.4 < z < 0.6 samples as the ‘BOSS Galaxies’.

eBOSS Galaxies and Quasars (0.6 < z < 2.2):
eBOSS began full operations in July 2014 to perform
spectroscopy on luminous red galaxies (LRGs), emis-
sion line galaxies (ELGs), and quasars and concluded

Figure 27: Bottom panel: Measurements of fσ8 at different redshifts from the eBOSS survey. The
fourth data point from the left (effective redshift z ≈ 0.7) is from the 0.6 < z < 1 LRG sample of Fig. 21.
The blue curve is the theoretical prediction from the Planck 2018 best-fit ΛCDM model (see Fig. 24).
Note that here the z axis is logarithmic, whereas in Fig. 24 it was linear. Top panel: Distance, i.e.,
expansion history, measurements from eBOSS based on BAO as standard ruler – this is discussed in
Sec. 10. This is Fig. 1 of [61].

.
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8 Measuring the correlation function

Methods to estimate the correlation function from data are based on its definition as excess
probability of finding a galaxy pair. One counts from the data catalog the number DD(r) of
pairs of galaxies with separation |x2−x1| ∈ r± 1

2∆r, where ∆r is the bin width. (From here on
“separation r” will mean that the separation falls in this bin.) What part of this is excess? It
should be compared to the number of pairs we would get for ξ = 0, i.e., for a Poisson process.
For this we generate a random catalog by throwing points randomly (a Poisson process) into
the survey volume and count the corresponding number RR(r) of random pairs. This gives us
an estimator

1 + ξ̂(r) ≡ DD(r)

RR(r)
. (8.1)

This assumes that both the data catalog and random catalog were drawn from an ensemble with
the same 〈ρ〉.

An unavoidable problem is that we do not know the true expectation value 〈ρ〉. We have
to estimate it from the data, replacing it by ND/V where ND is the number of data points
(observed galaxies) and V the survey volume. The estimator (8.1) assumes then an equal
number of random points NR = ND.

The inherent randomness in both the data catalog and the random catalog introduce a
random error in the estimator. The larger the number of points the smaller is the expected
error. Since it is much cheaper to increase the number of random points (you need computer
time) than the number of data points (you need telescope time), one usually uses NR � ND,
e.g., NR = 50ND, to minimize random errors due to the finite number or random points. One
then needs to scale the estimator with the ratio of the total number of random pairs 1

2NR(NR−1)
to that of the data pairs 1

2ND(ND − 1). Thus we have our first estimator

1 + ξ̂1(r) ≡ NR(NR − 1)

ND(ND − 1)

DD(r)

RR(r)
. (8.2)

Generalization to anisotropic ξ(r). For simplicity, this chapter is written for ξ(r), as if we
could assume that the correlation function ξ(r) is isotropic. In reality, for a galaxy redshift survey, the
observations are in redshift space, where ξ(z)(z) is anisotropic. In fact, the whole discussion of this chapter
generalizes trivially to a 3D function ξ(z)(z) or the 2D function ξ(z)(s, µ), by just replacing r everywhere
with r (or z) and taking r to refer to some bin in the 3D space, which we need not specify before we
apply the results. Thus the bin could represent, e.g., a 2D bin s±∆s, µ±∆µ.

Monte Carlo integration. The use of the random catalog can be thought of as Monte Carlo
integration. The probability of finding a galaxy pair (see Eq. 2.10) with separation r is

dP ≡ 〈ρ〉2[1 + ξ(r)]dV1dV2 . (8.3)

The expected number DD(r) of pairs of galaxies with separation r is thus

〈DD(r)〉 = 1
2 〈ρ〉2

∫
[1 + ξ(r)]Θ12(r)dV1dV2 , (8.4)

where
Θ12(r) ≡ 1 if |x2 − x1| ∈ r ± 1

2∆r, otherwise 0 , (8.5)

which should be compared to

〈ρ〉2Vp(r) ≡ 1
2 〈ρ〉2

∫
Θ12(r)dV1dV2 , (8.6)
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where Vp(r) is the volume in pair space {{x1,x2}} corresponding to pairs whose separation falls into the
bin. (The factor 1

2 is there so that pairs are only counted once, i.e., to cancel the effect of both dV1 and
dV2 going through the same locations.) This gives us an estimator

1 + ξ̂(r) ≡ DD(r)

〈ρ〉2Vp(r)
. (8.7)

How to calculate the volume Vp(r)? It is a complicated volume in the 2d-dimensional pair space. A
standard method for multidimensional integration over regions of complicated shape (defined by some
condition) is Monte Carlo integration: One throws random points (a Poisson process) into an enclosing
volume of simpler shape and counts those points who satisfy the condition of belonging in the region.
This fraction of all points provides an estimate of the fraction the region is of the enclosing volume. The
application here is to throw random points into the survey volume and count the number RR(r) of pairs
of these random points whose separation is r. For a large enough number NR of random points,

RR(r) ≈ ρ2
RVp(r) ≈

NR(NR − 1)

V 2
Vp(r) ≡ Gp(r)

1
2NR(NR − 1) , (8.8)

where

Gp(r) ≡
Vp(r)
1
2V

2
(8.9)

is the fraction of the pair space corresponding to bin r. Here ρR = NR/V is the density of random points
and 1

2NR(NR − 1) is the total number of random pairs. Thus we have the estimator

1 + ξ̂(r) ≡ ρ2
R

〈ρ〉2
DD(r)

RR(r)
, (8.10)

which is the same as (8.2) when we replace the ratio of squared densities with the ratio of total numbers
of pairs.

Since a galaxy survey surveys just a finite volume of a single realization, the ξ̂(r) obtained
differs from the true ξ(r) for other reasons besides the difference between ND/V and 〈ρ〉. This
random error can be amplified by edge effects.

To demonstrate edge effects, consider an extreme case: Suppose the clustering is such that
there is typically one tight cluster, say, of 100 galaxies, per survey volume, and nothing else. If
this cluster happens to lie far from the survey boundaries, we get 1

2 × 100 × 99 = 4450 close
pairs. However, if we instead have two such clusters at the survey edge so that only half of
each cluster is included in the survey, we get only 2 × (1

2 × 50 × 49) = 2450 close pairs. Thus
these two different samples of the same galaxy distribution give very different estimates for ξ(r)
at small r. We can try to minimize such edge effects by using data-random pairs instead of
random-random pairs. The total number of data-random pairs is NDNR. Since the random
points are not correlated with the data points, the number of data-random pairs DR(r) with
separation r is not affected by the correlation ξ(r). Thus the excess of DD(r) compared to
DR(r) measures the correlation and we have our second estimator

1 + ξ̂2(r) = 1 + ξ̂DP(r) ≡ 2NR

ND − 1

DD(r)

DR(r)
(8.11)

(Davis&Peebles [37]). Consider now the earlier example. Whereas the factor RR(r) measured
just the volume of an r-shell around an average location, the factor DR(r) measures the volume
of an r-shell around an average galaxy. In the case where the galaxies lie close to the edge of the
survey these volumes are smaller as the part of the shell that falls outside the survey volume is
not included. Thus the estimator ξ̂DP(r) gives results closer to each other for the two samples.

Other combinations of DD(r), DR(r) and RR(r) can also be used as ξ estimators. Hamilton
[38] proposed

1 + ξ̂3(r) = 1 + ξ̂H(r) ≡ 4NDNR

(ND − 1)(NR − 1)

DD(r)RR(r)

DR(r)2
. (8.12)
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Landy&Szalay [39] proposed

ξ̂4(r) = ξ̂LS(r) ≡ NR(NR − 1)

ND(ND − 1)

DD(r)

RR(r)
− NR − 1

ND

DR(r)

RR(r)
+ 1 . (8.13)

Symbolically these four estimators are often denoted (leaving out the normalization factors from
the different total numbers of pairs)46

DD

RR
,

DD

DR
,

DD ·RR
DR2

,
DD − 2DR+RR

RR
, (8.14)

but note that here the three first represent estimators for 1+ξ, the last one just for ξ. We follow
now Landy&Szalay [39] to estimate their bias and variance in the limit where the correlations
are small and NR � ND.. (Although Landy&Szalay refer to “angular correlation functions”,
the derivation is independent of the dimension and geometry of space. Of course 3D correlations
have the additional issues of redshift distortions and selection function that we do not consider
in this section.)

8.1 Bias and variance of different estimators

This section follows Landy&Szalay [39] to estimate the bias and variance of the four ξ estimators.
The variance estimate applies only in the limit where correlations are small. The square root of
the variance provides our estimate for the statistical error. The bias is a systematic error due
to the estimator (but if we can estimate the bias we can try to correct for it).

Define α, β, γ to represent the relative deviation of the DD(r), DR(r), RR(r) counts from
their expectation values:

DD(r) ≡ 〈DD(r)〉[1 + α(r)]

DR(r) ≡ 〈DR(r)〉[1 + β(r)]

RR(r) ≡ 〈RR(r)〉[1 + γ(r)] (8.15)

(we will mostly suppress the notation of the dependence on r in the following). By definition

〈α〉 = 〈β〉 = 〈γ〉 = 0 . (8.16)

The more pairs we have in an r-bin the smaller will be the typical relative deviation from the
expectation value. Thus we assume α and β will be small and calculate only up to second order
in them. Moreover, we assume that NR is sufficiently large that we can approximate γ ≈ 0. (I
kept the notation for γ here, in case we later want to study the effect of NR.)

For example, for the estimator (8.11) we get the expectation value and variance (exercise)

〈1 + ξ̂DP(r)〉 =
2NR

ND − 1

〈DD〉
〈DR〉

〈
1 + α

1 + β

〉
≈ 2NR

ND − 1

〈DD〉
〈DR〉

(
1− 〈αβ〉+ 〈β2〉

)
var[ξ̂DP(r)] ≡

〈(
ξ̂DP − 〈ξ̂DP〉

)2
〉

= 〈ξ̂2
DP〉 − 〈ξ̂DP〉2

≈
(

2NR

ND − 1

〈DD〉
〈DR〉

)2 (
〈α2〉 − 2〈αβ〉+ 〈β2〉

)
, (8.17)

46The last one can be written symbolically as (D − R)2/RR, which suggest an alternative implementation:
From the D and R catalogs one constructs a “D − R” catalog, which contains all the D and R points, but the
random points are assigned negative weight. One then counts the (D −R)(D −R) pairs, where those pairs that
are DR make a negative contribution.
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where we get 〈α2〉, 〈αβ〉, and 〈β2〉 from

〈DD ·DD〉 = 〈DD〉2(1 + 〈α2〉) ⇒ 〈α2〉 =
〈DD ·DD〉 − 〈DD〉2

〈DD〉2

〈DR ·DR〉 = 〈DR〉2(1 + 〈β2〉) ⇒ 〈β2〉 =
〈DR ·DR〉 − 〈DR〉2

〈DR〉2

〈DD ·DR〉 = 〈DD〉〈DR〉(1 + 〈αβ〉) ⇒ 〈αβ〉 =
〈DD ·DR〉 − 〈DD〉〈DR〉

〈DD〉〈DR〉 . (8.18)

Thus we will need the expectation values 〈DD〉, 〈DR〉, 〈RR〉, 〈DD ·DD〉, 〈DR ·DR〉, 〈DD ·DR〉
(for other estimators also 〈RR〉 occurs).

Consider ND data points and NR random points in survey volume V . Expectation values
〈·〉 in this subsection refer to conditional expectation values with a fixed value of ND. Divide
the volume into K microcells, so that the number of galaxies ni in microcell i is 0 or 1. The
expectation value is 〈ni〉 = ND/K.

The number of data pairs with separation r is

DD(r) =

K∑
i<j

ninjΘij(r) , (8.19)

where the sum is over all microcell pairs and

Θij(r) ≡ 1 , if |rj − ri| ∈ r ± 1
2∆r, otherwise 0 , (8.20)

picks only those pairs with the correct separation. The sum
∑

Θij(r) is thus the number of
microcell pairs with separation r, and ninj is 1 exactly when both contain a data point (a
galaxy). The expectation value is thus

〈DD(r)〉 =

K∑
i<j

〈ninj〉Θij(r) . (8.21)

If there were no correlations, we would have simply

〈ninj〉 =
ND

K

ND − 1

K − 1
, (8.22)

and we would get

〈DD(r)〉 =
ND(ND − 1)

2
Gp(r) , (8.23)

where

Gp(r) ≡
2

K(K − 1)

K∑
i<j

Θij(r) (8.24)

is the fraction of microcell pairs with separation r. For small enough microcells (large K) it is
independent of K. By definition, Gp(r) is normalized,∑

r

Gp(r) = 1 , (8.25)

when the sum go over r bins that cover all possible separations r that fit in the survey volume.
With correlations, the expectation 〈ninj〉 is modified by the correlation function ξ(r). Now

one has to take into account that here ξ(r) is the true, unknown, correlation function, which
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is defined with respect to the unknown 〈ρ〉, whereas we are considering here a constrained
expectation value 〈DD〉 for a fixed ND 6= 〈ND〉. Thus we need to include a normalization factor
CV to correct for this, and we have

〈ninj〉 =
ND

K

ND − 1

K − 1
[1 + ξ̃(r)] =

ND

K

ND − 1

K − 1
CV [1 + ξ(r)] , (8.26)

where ξ̃(r) is the correlation function normalized to the survey density, so that we get

〈DD(r)〉 =
ND(ND − 1)

2
Gp(r)CV [1 + ξ(r)] . (8.27)

We can relate the normalization factor to ξ(r) by noting that the total number of pairs is

ND(ND − 1)

2
=
∑
r

〈DD(r)〉 =
ND(ND − 1)

2
CV
∑
r

Gp(r)[1 + ξ(r)] (8.28)

so that

CV =
1∑

rGp(r)[1 + ξ(r)]
≡ 1

1 + ξV
(8.29)

where
ξV ≡

∑
r

Gp(r)ξ(r) (8.30)

is the mean expected correlation over the survey pair space {{x1,x2}} volume (it is positive,
since a finite volume misses some of the large-r negative correlations, and becomes smaller for
larger volumes). Thus our final result is

〈DD(r)〉 =
ND(ND − 1)

2
Gp(r)

1 + ξ(r)

1 + ξV
. (8.31)

Note that for ξ̃, we get the mean ξ̃V = 0, the “integral constraint”.

8.1.1 Derivation of 〈DD ·DD〉, 〈DR ·DR〉, and 〈DD ·DR〉
The expectation value for the square of DD(r) is

〈DD ·DD〉 =

K∑
i<j

K∑
k<l

〈ninjnknl〉Θij(r)Θkl(r) , (8.32)

where both i, j and k, l sum over all pairs. There are three different cases for the terms 〈ninjnknl〉
depending on how many indices are equal (i 6= j and k 6= l for all of them).

Quadruplets: The first case is when i, j, k, l are all different. We denote by
∑∗

ijkl this part

of the sum. There are 1
2K(K − 1)× 1

2(K − 2)(K − 3) such terms and they have

〈ninjnknl〉 =
ND

K

ND − 1

K − 1

ND − 2

K − 2

ND − 3

K − 3

〈
(1 + δi)(1 + δj)(1 + δk)(1 + δl)

〉
=

ND

K

ND − 1

K − 1

ND − 2

K − 2

ND − 3

K − 3

[
1 + 〈δiδj〉+ 〈δkδl〉+ 〈δiδk〉+ 〈δiδl〉+ 〈δjδk〉+ 〈δjδl〉+

+〈δiδjδk〉+ 〈δiδjδl〉+ 〈δiδkδl〉+ 〈δjδkδl〉+ 〈δiδjδkδl〉
]

=
ND

K

ND − 1

K − 1

ND − 2

K − 2

ND − 3

K − 3

[
1 + ξ̃(rij) + ξ̃(rik) + ξ̃(ril) + ξ̃(rjk) + ξ̃(rjl) + ξ̃(rkl)

+ζ̃(xi,xj ,xk) + ζ̃(xi,xk,xl) + ζ̃(xi,xj ,xl) + ζ̃(xj ,xk,xl) +

+ξ̃(rij)ξ̃(rkl) + ξ̃(rik)ξ̃(rjl) + ξ̃(ril)ξ̃(rjk) + η̃(xi,xj ,xk,xl)
]

(8.33)
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where δi ≡ δ(xi) is the density perturbation relative to the mean galaxy number density of the
survey (not relative to its ensemble average, which we do not know),

1 + ξ̃(r) ≡ 1 + ξ(r)

1 + ξV
(8.34)

represents the “renormalized” correlation, ζ̃ is the 3-point correlation and the last line is the
4-point correlation, where η̃ is the reduced 4-point correlation. The 3-point and 4-point correla-
tions are discussed in Sec. 11. For Gaussian perturbations, ξ̃ and η̃ vanish. We shall now work
in the small-ξ and Gaussian approximation (these are related, since the Gaussian approximation
requires that ξ is small; and on the other hand, if the primordial perturbations were Gaussian,
which is a natural assumption supported by cosmological data, they would have remained Gaus-
sian while the perturbations were still small), so that only the first line of the last form in (8.33)
survives.

The fraction of microcell quadruplets (pairs of pairs) that satisfy rij ∈ r ± 1
2∆r and rkl ∈

r± 1
2∆r is Gp(r)

2. In the limit of large K47 the number of other index quadruplets is negligible
compared to those where all indices have different values, so we have

∗∑
ijkl

Θij(r)Θkl(r) =
K(K − 1)(K − 2)(K − 3)

4
Gp(r)

2 . (8.35)

Due to the Θ constraints in (8.35),

ξ̃(rij) = ξ̃(rkl) = ξ̃(r) , (8.36)

whereas the other 4 terms range over different values of r, and we approximate them with the
mean over survey ξ̃V = 0. Thus

〈ninjnknl〉 ≈
ND(ND − 1)(ND − 2)(ND − 3)

K(K − 1)(K − 2)(K − 3)

[
1 + 2ξ̃(r)

]
=

ND(ND − 1)(ND − 2)(ND − 3)

K(K − 1)(K − 2)(K − 3)

1 + 2ξ(r)− ξV
1 + ξV

. (8.37)

Triplets: The second case is where we have three different values for the indices, so that
k or l is equal to i or j, i.e., we have microcell triplets (one of the three points is shared with
the two pairs, see Fig. 28). How many such terms do we have in the sum? Altogether there are
K(K − 1)(K − 2)/6 triplets of index values, where the three values are all different. But the
same triplet occurs several times in the sum. Let the values by 1, 2, 3. There are six different
ways they can be assigned to (i, j, k, l) that satisfy the conditions i < j and k < l: (1, 2, 1, 3),
(1, 2, 2, 3), (1, 3, 1, 2), (1, 3, 2, 3), (2, 3, 1, 2), and (2, 3, 1, 3). Thus there are K(K−1)(K−2) such
terms (6× 1

6 = 1). Denote by
∑∗

ijk this part of the sum, where i is the shared microcell.
The triplet part of (8.32) becomes

∗∑
ijk

〈ninjnk〉Θij(r)Θik(r) . (8.38)

The Θij(r)Θik(r) factor selects those terms where the other points are separated by r from the
shared point. Let Gt(r) denote the fraction that satisfy this condition. Thus

∗∑
ijk

Θij(r)Θik(r) = K(K − 1)(K − 2)Gt(r) . (8.39)

47The microcell approach is essentially the limit K →∞, so we could write K4 instead of K(K−1)(K−2)(K−3)
etc.
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Figure 28: A quadruplet (two pairs), a triplet, and a pair of microcells.

Since most triplets have arms of unequal length,
∑
Gt(r) � 1. It is clear that Gt(r) is of the

same magnitude as Gp(r)
2, since there are now two conditions to satisfy; but we see later that

Gt > G2
p. The difference between Gt and G2

p becomes important later. The Θ constraints in
(8.39) require that rij = rik = r and since cells j and k are connected by two steps of length r,
rjk has to lie between 0 and 2r. We approximate also ξ(rjk) with ξ(r). Thus

〈ninjnk〉 ≈
ND(ND − 1)(ND − 2)

K(K − 1)(K − 2)

[
1 + 3ξ̃(r) + ζ̃(xi,xj ,xk)

]
≈ ND(ND − 1)(ND − 2)

K(K − 1)(K − 2)

1 + 3ξ(r)− 2ξV
1 + ξV

. (8.40)

Pairs: The third case is when i = k and j = l, i.e., the two pairs are the same, so this part
is just a single sum over pairs,∑

i<j

〈ninj〉Θij(r)Θij(r) =
ND(ND − 1)

2
Gp(r)

[
1 + ξ̃(r)

]
, (8.41)

from (8.19) and (8.31), as Θij(r)Θij(r) = Θij(r).
Altogether we have:

〈DD ·DD〉 ≈ ND(ND − 1)(ND − 2)(ND − 3)

4
Gp(r)

2 1 + 2ξ(r)

1 + 2ξV
(8.42)

+ND(ND − 1)(ND − 2)Gt(r)
1 + 3ξ(r)

1 + 3ξV
+
ND(ND − 1)

2
Gp(r)

1 + ξ(r)

1 + ξV
.

(Since ξV is small, 1/(1 + ξV ) ≈ 1− ξV . I have moved thus ξV up or down.)
Thus we have that (exercise)

〈α2〉 ≈ 2

ND(ND − 1)

{
2(ND − 2)

[
Gt(r)

Gp(r)2

1 + ξ(r)

1 + ξV
− 1

]
+

1

Gp(r)

1 + ξV
1 + ξ(r)

− 1

}
. (8.43)

The 〈DR〉, 〈DR · DR〉, 〈DD · DR〉 are calculated in a similar way, noting that D and R
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Figure 29: Left: Simple survey geometry (chosen for ease of simulation) corresponding to a redshift
bin. The units on the axes are h−1Mpc and the observer is on the left at (0, 0, 0). The two red curves
represent comoving distances to cosmological redshifts z = 0.95 and z = 1.05 in the ΛCDM model with
Ωm = 0.32. The survey volumes consists of the intersection of the shell between these redshifts with the
(1500h−1Mpc)3 box illustrated in blue, except points where the line of sight leaves the box before the
outer shell are excluded (illustrated in green). The thickness of the shell is 166.6h−1Mpc (this is a bit
narrow, giving poor statistics in the radial direction for large r, none beyond r = 166.6h−1Mpc; so a
larger ∆z would be better). Right: The difference between Gt and G2

p in this geometry, calculated by
assigning random points into the survey volume with a Poisson process and counting pairs and triplets.
The vertical red line represents the shell thickness. The dashed and dotted lines are simple fits (by hand)
to the observed small-r and large-r behavior.

points are uncorrelated with each other. We get

〈DR〉 = NDNRGp(r)

〈DR ·DR〉 = NDNR(ND − 1)(NR − 1)Gp(r)
2 +NDNR(NR − 1)Gt(r) +

+NDNR(ND − 1)
1 + ξ(r)

1 + ξV
Gt(r) +NDNRGp(r) (8.44)

〈DD ·DR〉 = 1
2ND(ND − 1)(ND − 2)NRGp(r)

2 1 + ξ(r)

1 + ξV
+NRND(ND − 1)Gt(r)

1 + ξ(r)

1 + ξV
.

For the random catalog, we get 〈RR〉 and 〈RR ·RR〉 by just copying the derivations of 〈DD〉
and 〈DD ·DD〉, except now ξ = 0. However, since we made the approximation γ = 0, we have
simply

RR = 〈RR〉 =
NR(NR − 1)

2
Gp(r) , (8.45)

so that we obtain the value of Gp(r) from RR(r). To find the value of Gt(r) one has to write
a separate piece of code to find all such triplets from the random catalogue that satisfy the r
condition. See Fig. 29.

Calculation of 〈DR ·DR〉 and 〈DD ·DR〉. Consider 〈DR〉 and 〈DR ·DR〉, which contain data-
random pairs. We have to decide whether we allow a data point and a random point to share the same
microcell. Let’s decide we don’t, i.e., the microcells are small enough, i.e., K is large enough. This means
that K is just huge compared to ND or NR, so there is really no difference between K, K − 1, etc. So
let’s just write K always. Landy&Szalay [39] seem to work here in the NR →∞ approximation which I
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do not like to make, so I keep, e.g., the distinction between NR and NR − 1. For 〈DR〉 I get

〈DR〉 =

K∑
i 6=j

〈nirj〉Θij(r) =
NDNR
K2

K∑
i 6=j

Θij(r) = NDNRGp(r) , (8.46)

where rj = 0 or 1 is the number of random points in microcell j and each microcell pair is included in
the sum twice, since we have to check for both possibilities, either the first cell contains a data point and
the second cell a random point, or vice versa.

For 〈DR · DR〉 we follow the calculation of 〈DD · DD〉, where the sum is divided into three parts.
Now the microcell triplets occur 24 times instead of 6; we have 6 cases were the cell i shared by the pairs
contains a data point, 6 cases with a random point, and 12 cases where it would have to contain both,
for which we assigned zero probability, so these terms vanish. I get

〈DR ·DR〉 = NDNR(ND − 1)(NR − 1)Gp(r)
2 +NDNR(NR − 1)Gt(r) +

+NDNR(ND − 1)
1 + ξ(r)

1 + ξV
Gt(r) +NDNRGp(r) . (8.47)

This becomes (8.50b) in the limit of large NR and negligible correlations; the last term can be dropped
when NR � Gp/Gt.

In 〈DD ·DR〉 we get again a 3-point correlation but with a different condition on the separations. I
get

〈DD ·DR〉 = 1
2ND(ND − 1)(ND − 2)NRGp(r)

2 1 + ξ(r)

1 + ξV
+NRND(ND − 1)Gt(r)

1 + ξ(r)

1 + ξV
. (8.48)

8.1.2 The small-correlation limit

In (8.42) and (8.44) the correlation function ξ appears only as 1+nξ. Since we have already made
approximations based on ξ being small, we may approximate these with 1 for calculating the
variance, since it is not needed as accurately as the bias. (We do not make this approximation
in 〈DD〉, which is needed for the bias.) With this approximation and in the limit of NR →∞,
(8.42) and (8.44) become

〈DD ·DD〉 =
ND(ND − 1)(ND − 2)(ND − 3)

4
Gp(r)

2 +ND(ND − 1)(ND − 2)Gt(r) +
ND(ND − 1)

2
Gp(r)

〈DR〉 = NDNRGp(r)

〈DR ·DR〉 = NDN
2
R

[
G2
p(r)(ND − 1) +Gt(r)

]
〈DD ·DR〉 = 1

2ND(ND − 1)NR

[
(ND − 2)Gp(r)

2 + 2Gt(r)
]

(8.49)

Then we have

〈α2〉 =
2

ND(ND − 1)

{
2(ND − 2)

[
Gt(r)

Gp(r)2
− 1

]
+

1

Gp(r)
− 1

}
〈β2〉 =

1

ND

[
Gt(r)

Gp(r)2
− 1

]
≡ t

〈αβ〉 =
2

ND

[
Gt(r)

Gp(r)2
− 1

]
= 2〈β2〉 = 2t . (8.50)

Here t is a small quantity that arises from the difference between Gt and G2
p. Since it is equal

to 〈β2〉, it has to be positive, so that Gt > G2
p. This difference arises from edge effects.
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8.1.3 Bias

We define normalized pair counts

d(r) ≡ DD(r)
1
2ND(ND − 1)Gp(r)

⇒ 〈d〉 =
1 + ξ(r)

1 + ξV

x(r) ≡ DR(r)

NDNRGp(r)
⇒ 〈x〉 = 1 (8.51)

so that we can write the four estimators as

1 + ξ̂1(r) ≡ d(r)

1 + ξ̂DP(r) ≡ d(r)/x(r)

1 + ξ̂H(r) ≡ d(r)/x(r)2

1 + ξ̂LS(r) ≡ d(r)− 2x(r) + 2 . (8.52)

We immediately se that the first and last estimators are unbiased, except for the “integral
constraint” factor 1 + ξV ,

1 + 〈ξ̂1〉 = 1 + 〈ξ̂LS〉 = 〈d〉 =
1 + ξ(r)

1 + ξV
. (8.53)

The ratios in the second and third estimators create a bias. In the ξ → 0 limit (8.17a)
becomes

1 + 〈ξ̂DP〉 = 〈d(r)/x(r)〉 = 〈d〉
(
1− 〈αβ〉+ 〈β2〉

)
= 〈d〉(1− t) (8.54)

and a similar calculation (exercise) gives

1 + 〈ξ̂H〉 =
〈
d(r)/x(r)2

〉
= 〈d〉

(
1− 2〈αβ〉+ 3〈β2〉

)
= 〈d〉(1− t) (8.55)

8.1.4 Variance in the small-correlation limit

In the limit of small correlations

〈α2〉 ≈ 2

ND(ND − 1)

{
2(ND − 2)

[
Gt(r)

Gp(r)2
− 1

]
+

1

Gp(r)
− 1

}
= 4t+ p , (8.56)

where

p ≡ 2

ND(ND − 1)

[
1

Gp
− 2

Gt
G2
p

+ 1

]
≈ 2

ND(ND − 1)Gp(r)
(8.57)

(the other terms inside the brackets are of order 1, whereas 1/Gp is large). The approximate
form for p is the inverse of the expected number of pairs in the bin (in the case of no correlations);
which is the relative variance for a Poisson distribution.

Calculate now the variances

var(ξ̂) ≡
〈(

ξ̂ − 〈ξ̂〉
)2
〉

= 〈ξ̂2〉 − 〈ξ̂〉2 (8.58)

for the four estimators. We use from the above

d = 〈d〉(1 + α) , x = 〈x〉(1 + β) , 〈α2〉 = 4t+ p , 〈β2〉 = t , 〈αβ〉 = 2t . (8.59)
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For the first estimator

ξ̂1 = d− 1 = 〈d〉(1 + α)− 1 ⇒ ξ̂2
1 = 〈d〉2(1 + α)2 − 2〈d〉(1 + α) + 1

〈ξ̂2
1〉 = 〈d〉2(1 + 〈α2〉)− 2〈d〉+ 1

〈ξ̂1〉2 = 〈d〉2 − 2〈d〉+ 1

var(ξ̂1) = 〈d〉2〈α2〉 ≈ 〈d〉2(4t+ p) . (8.60)

and for the Davis-Peebles estimator

ξ̂DP =
d

x
− 1 = 〈d〉1 + α

1 + β
− 1 ≈ 〈d〉(1 + α− β − βα+ β2)− 1

〈ξ̂DP〉 ≈ 〈d〉(1− 〈βα〉+ 〈β2〉)− 1 = 〈d〉(1− t)− 1

ξ̂2
DP =

(
d

x

)2

− 2
d

x
+ 1 = 〈d〉2 (1 + α)2

(1 + β)2
− 2〈d〉1 + α

1 + β
+ 1

〈ξ̂2
DP〉 = 〈d〉2

〈
(1 + α)2

(1 + β)2

〉
− 2〈d〉

〈
1 + α

1 + β

〉
+ 1 ≈ 〈d〉2(1− t+ p)− 2〈d〉(1− t) + 1

〈ξ̂DP〉2 ≈ 〈d〉2(1− 2t)− 2〈d〉(1− t) + 1

var(ξ̂DP) ≈ 〈d〉2(t+ p) . (8.61)

Similarly we obtain (exercise)

var(ξ̂H) ≈ var(ξ̂LS) ≈ 〈d〉2p , (8.62)

showing that these two have a smaller variance. (I got var(ξ̂LS) ≈ 〈d〉2p + 4t(〈d〉 − 1)2, but
since we are assuming small correlations, (〈d〉 − 1)2 is small and we can drop t(〈d〉 − 1)2.) Since
ξ̂LS is also unbiased (except for the integral constraint), it is usually preferred.

Note that the result that ξ̂1 and ξ̂LS are unbiased, was obtained in the limit NR → ∞.
A finite random catalog introduces a bias, which, however, is small if the random catalog is
sufficiently large.

Note that these results for the variances were obtained in the limit of small ξ(r). It is not
easy to estimate the variance of the estimators when ξ(r) is large. For this there are methods
(bootstrap and jackknife) based on resampling the data itself. (We won’t discuss these now.)
In fact, the large ξ(r) for small separations affects the variance even at those larger separations
where ξ(r) is small – for example, it hurts the approximation ξ(rjk) ≈ ξ(r) before (8.40).
Thus the above comparison of estimator variances is indicative only and the true variances are
larger. The variance of the correlation function estimate is needed for the use of the estimated
correlation function for the estimation of cosmological parameters. Even the data resampling
methods mentioned above are unreliable and for serious work the variances are estimated by
producing a large number of simulated data realizations and calculating the correlation function
from all of them, and then calculating the variance over this set of realizations. For large galaxy
surveys this is a major computational effort.

Note that the result that the Landy–Szalay estimator is unbiased in the NR → ∞ limit
holds also for large ξ(r); this argument for preferring it is thus on more solid foundation than
the small variance.

Exercise: Pair volume fraction. Find Gp(r) for a cubic volume V = Ld in d = 1, 2, and 3
dimensions, in the approximation where one ignores edge effects (good for r � L) and ∆r is treated like
dr (good for ∆r � r). What is rmax (the maximum possible separation r) in these three cases? What
do you get for

∑
r Gp(r) when using these approximate formulae? At what value of r the sum already

reaches 1?
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Exercise: Triplet volume fraction. The difference between Gt(r) and Gp(r)
2 is due to edge

effects. Now take these properly into account (but you can still treat ∆r like dr), and find Gp(r) and
Gt(r) in the 1D case (survey volume is L). Show that Gt(r) > Gp(r)

2. Are there special values of r
where they are equal?

Project: For large surveys it may become computationally expensive to have NR � ND. For
example, for Euclid, ND ∼ 109. With the usually recommended NR ∼ 102ND, there would be ∼ 1022

random pairs. To study the effect of using a smaller NR, redo this section without assuming γ ≈ 0. This
was done in [40].
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9 Power spectrum estimation

For large scales, estimating P (k) directly has a number of advantages compared to ξ(x). Uncer-
tainty about the true value of 〈ρ〉 is just a multiplicative factor for P (k), whereas it may cause us
to get even the sign of ξ wrong when ξ is smaller than the difference (ρ̄2 − 〈ρ〉2)/〈ρ〉2. For large
scales, where the perturbations are still in the linear regime, different Fourier modes δk evolve
independently, and thus the low-k modes are not contaminated by the small-scale non-linear
behavior48; whereas ξ(r) for large r contains a mixture of linear and nonlinear modes.

9.1 Shot noise

We saw in Sec. 2 that for a Poisson distribution P (k) = const = 1/〈ρ〉 and ξ(r) = 0 for r 6= 0, but
ξ(0) has a nonzero value that increases with resolution, i.e., ξ(r) is a delta function. (Constant
and delta function form a Fourier transform pair.) We take the view that the galaxies sample
an underlying continuous density field, and we want the P (k) and ξ(r) of that density field.
This constant contribution to P (k) and the associated delta-function spike in ξ(r) are the result
of this discrete sampling, called shot noise (or Poisson noise), and not part of the underlying
density field. Thus we do not want to include it in the estimated P (k). This is consistent with
the methods to estimate ξ(r) discussed in Sec. 8, since there we estimated ξ by comparing it to
a Poisson distribution, so that the expected result for ξ was 0 in the case of Poisson distribution.
Thus for a Poisson distribution P (k) = ξ(r) = 0 now.

Let us redo the power spectrum analysis for a discrete set of objects, done in Sec. 2.5.1 for a
Poisson distribution, for a case where there are correlations. The Fourier coefficients of density
and its perturbation are related simply

δk =
1

〈ρ〉ρk , except for k = 0. (9.1)

Thus

P (k) ≡ V 〈|δk|2〉 =
V

〈ρ〉2 〈|ρk|
2〉 , (9.2)

except for k = 0, and we are not asking for P (k = 0) here. Thus we shall work with ρ instead
of δ as it is conceptually easier.

We again divide the reference volume V into microcells of volume δV . The density of
microcell j is

ρ(xj) =
nj
δV

. (9.3)

where the occupation number is nj = 0 or 1 and its expectation value is 〈nj〉 = 〈ρ〉δV � 1. For
ρk and its expectation value we get

ρk =
1

V

∫
V
ρ(x)e−ik·xddx =

1

V

∑
j

nj
δV

e−ik·xjδV =
1

V

∑
j

nje
−ik·xj (9.4)

〈ρk〉 =
1

V

∑
j

〈nj〉e−ik·xj =
〈ρ〉
V

∫
V
e−ik·xddx = 0 for k 6= 0 .

For their correlations we get

〈ρ∗kρk′〉 =
1

V 2

∑
ij

〈ninj〉eik·xie−ik
′·xj (9.5)

48To be exact, the Fourier modes are strictly independent only when all scales are in the linear regime; the
question of how much nonlinear small scales may affect the large scales in the linear regime is the difficult
backreaction question, not fully solved; but it is reasonable to expect these effects are small.
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Now the first key step here is to separate from the sum over microcell pairs the part where
i = j. One might think that this makes a negligible contribution since the number of microcells
is semi-infinite. However, this is precisely where we have the δ-function spike of ξ, and therefore
the contribution is not negligible. But because the volume of the i = j part is negligible in pair
space, we can then still treat the i 6= j part of the sum as a full double integral over the volume,
we have just taken out the δ-spike of ξ. Thus49

〈ρ∗kρk′〉 =
1

V 2

∑
j

〈nj〉ei(k−k
′)·xj +

1

V 2

∑
i 6=j
〈ninj〉eik·xie−ik

′·xj

=
1

V 2

∑
j

〈ρ〉δV ei(k−k′)·xj +
1

V 2

∑
i 6=j
〈ρ〉2δV 2 [1 + ξ(xj − xi)] e

ik·xie−ik
′·xj

=
〈ρ〉
V 2

∫
V
ei(k−k

′)·xddx+
〈ρ〉2
V 2

∫
V
ddxeik·x

∫
V
ddx′e−ik

′·x′

+
〈ρ〉2
V 2

∫
V
ddxddx′ξ(x′ − x)eik·xe−ik

′·x′

=
〈ρ〉
V
δkk′ + 0 + 〈ρ〉2 1

V
δkk′P (k) , (9.6)

where we used statistical homogeneity to get P (k) from ξ(x′ − x) just like in Eq. (1.74).
We can write the result as

P̃ (k) ≡ V

〈ρ〉2 〈|ρk|
2〉 =

1

〈ρ〉 + P (k) , (9.7)

where P̃ (k) is the power spectrum of the point (galaxy) distribution, 1/〈ρ〉 is the shot noise,
and

P (k) =
V

〈ρ〉2 〈|ρk|
2〉 − 1

〈ρ〉 , where ρk =
1

V

∑
j

nje
−ik·xj (9.8)

is the power spectrum we want.
To turn this into a power spectrum estimator we replace the expectation values 〈nj〉 with

the actual observed numbers nj = 0 or 1, which changes the sum over microcells into a sum
over galaxies, and 〈ρ〉 with ρ̄ = N/V ,

P̂ (k) = V

(
V 2

N2
|ρk|2 −

1

N

)
, where ρk =

1

V

∑
i

e−ik·xi

= V

∣∣∣∣∣ 1

N

∑
i

e−ik·xi

∣∣∣∣∣
2

− V

N
. (9.9)

In this section I use the convention that sums over j are over microcells, and single sums over i
are over galaxies – double sums over ij are over microcells.

In practice one groups the k values into bins and averages over the P̂ (k) obtained from (9.9)
to get the P̂ (k) or P̂ (k) for the bin.

49In hindsight, it was unnecessary to include the k 6= k′ case here; with k = k′ (9.6) becomes

〈|ρk|2〉 =
〈ρ〉
V

+ 0 +
〈ρ〉2
V 2

∫

V

ddxddx′ξ(x′ − x)e−ik·(x′−x) ,

where the last term is (〈ρ〉2/V )P (k). We don’t even have to assume statistical homogeneity if we take

P (k) =
1

V

∫

V

ddxddx′ξ(x′ − x)e−ik·(x′−x)

as the definition of the power spectrum.
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9.2 Mask

In reality, the survey volume is not likely to be a perfect cube. Let thus V be a large cubic volume
that contains the survey volume VS < V ; we assume periodicity in V for Fourier purposes. We
account for the survey volume by introducing a mask

W (x) = 1 if x ∈ VS , 0 otherwise. ⇒
∫
V
W (x)ddx = VS . (9.10)

We can also use the mask to assign different weights to different parts of the survey (reasons
for this will be discussed later), so that

0 ≤W (x) ≤ 1 ; (9.11)

regions with smaller W will be weighted less. We can still define VS according to (9.10); this
weighted volume will then be smaller than the actual volume. As will be seen below, we have
to require that W changes slowly, so that the typical wavelengths of the shape of W are much
larger than the wavelengths of the Fourier modes k we try to estimate P (k) for. The weights
can be used also to smooth the edge of the survey, so that W does not fall sharply from 1 to 0
there.

The mask multiplies the density field, ρ(x) → ρw(x) ≡ W (x)ρ(x), which I call here the
weighted density. This has a number of effects: It breaks the statistical homogeneity; true
density perturbations will now correspond to W (x)ρ(x) differing from W (x)〈ρ〉, which is already
inhomogeneous by itself; and the density perturbation obtained this way is the true density
perturbation multiplied by the mask, which becomes convolution in Fourier space.

We define the weighted number of galaxies in a microcell as nwj ≡ W (xj)nj = Wjnj , where

nj = 0 or 1 is the true number of galaxies in the microcell, so that 0 ≤ nwj ≤ 1. Now n2
j = nj ,

but (nwj )2 6= nwj in general for a weighted mask. The weighted density of a microcell is

ρw(xj) ≡
nwj
δV

≡ W (xj)nj
δV

=
Wjnj
δV

(9.12)

For the Fourier components of the weighted density we have

ρwk =
1

V

∑
j

njWje
−ik·xj (9.13)

〈ρwk 〉 =
1

V

∑
j

〈nj〉Wje
−ik·xj =

〈ρ〉
V

∫
V
W (x)e−ik·xddx = 〈ρ〉Wk 6= 0 .

We now proceed like in (9.6). Since the mask has broken statistical homogeneity, different
ρwk will now be correlated. For the power spectrum we need only 〈|ρwk |2〉, so we put k′ = k from
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the start:

〈ρw∗k ρwk 〉 =
1

V 2

∑
j

〈nj〉W 2
j +

1

V 2

∑
i 6=j
〈ninj〉WiWje

ik·(xi−xj)

=
1

V 2

∑
j

〈ρ〉W 2
j δV +

1

V 2

∑
i 6=j
〈ρ〉2δV 2 [1 + ξ(xj − xi)]WiWje

ik·(xi−xj)

=
〈ρ〉
V

1

V

∫
V
W (x)2ddx+ 〈ρ〉2

∣∣∣∣ 1

V

∫
V
ddxW (x)e−ik·x

∣∣∣∣2
+
〈ρ〉2
V 2

∫
V
ddxddx′W (x)W (x′)ξ(x′ − x)eik·(x−x

′)

=
〈ρ〉
V

∑
q

|Wq|2 + 〈ρ〉2 |Wk|2 (9.14)

+〈ρ〉2 1

V

∑
k′

P (k′)
1

V

∫
V
ddxW (x)ei(k−k

′)·x 1

V

∫
V
ddx′W (x′)e−i(k−k

′)·x′ ,

where we used the Parseval formula

1

V

∫
V
W (x)2ddx =

∑
q

|Wq|2 (9.15)

for the first term and

ξ(r) =
1

V

∑
k′

eik
′·rP (k′) (9.16)

for the last term.50 We have now

〈ρw∗k ρwk 〉 − 〈ρ〉2 |Wk|2 =
〈ρ〉
V

∑
q

|Wq|2 +
〈ρ〉2
V

∑
k′

|Wk−k′ |2 P (k′) . (9.17)

Without the mask, the second term of (9.14), which we now moved to the lhs, was zero. From
(9.13) we see that it is |〈ρwk 〉|2. Thus we can write the lhs of (9.17) as 〈|ρwk − 〈ρwk 〉|2〉, i.e. we are
comparing Wρ to W〈ρ〉 to find the density perturbation.

The last term in (9.17) is a convolution of the power spectrum with |Wk|2. To solve P (k) we
would have to deconvolve the equation. We do this in an approximate manner, which is based
on the assumption that W (x) is smooth at the scales we want to estimate P (k) and that P (k)
does not change fast as a function of k. (In the extreme case that W (x) = const , its Fourier
transform is a delta function times a constant, and convolving with a delta function is equivalent
with multiplying by this constant.51) If instead W (x) is just smooth, W (k) will be a narrow
peak around k = 0, i.e., in the sum∑

k′

|Wk−k′ |2 P (k′) =
∑
q

|Wq|2 P (k + q) (q ≡ k′ − k and W−q = W ∗q) , (9.18)

only terms where |q| = |k−k′| � |k| are significant (where k represents the scale we are interest
in). We assume that P (k + q) does not change much over this range of q and approximate the
sum with

P (k)
∑
q

|Wq|2 , (9.19)

50The reason I write P (k), not Pk, here is that in my conventions Pk = P (k)/V and I want to keep focus on
the quantity P (k), which we are trying to estimate and which is independent of the reference volume V .

51The reason I didn’t write this in equations is that I didn’t bother to think about how to deal with the square.
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turning the convolution into multiplication, and thus deconvolution into division.
Now we can solve P (k) from (9.17),

P (k) ≈
V 〈|ρwk − 〈ρwk 〉|2〉 − 〈ρ〉

∑
q |Wq|2

〈ρ〉2∑q |Wq|2
≡ V 2〈|ρwk − 〈ρwk 〉|2〉 −Neff

〈ρ〉2V ∑q |Wq|2
, (9.20)

where
Neff = 〈ρ〉V

∑
q

|Wq|2 . (9.21)

To turn this into an estimator, we write ρwk (9.13) and 〈ρ〉 in terms of nj and then replace
expectation values with observed values and sums over microcells with sums over observed
galaxies. We have ∑

〈nj〉Wj = 〈ρ〉
∑

WjδV ⇒ 〈ρ〉 =

∑〈nj〉Wj∑
WjδV

, (9.22)

which we replace with52

ρ̄ ≡
∑
njWj∑
WjδV

=

∑
Wi

VS
≡ NS

VS
, (9.23)

where we defined
NS ≡

∑
i

Wi ; (9.24)

and

ρwk − 〈ρwk 〉 →
1

V

∑
j

njWje
−ik·xj − NS

VS
Wk =

1

V

∑
i

Wie
−ik·xi − NS

VS
Wk . (9.25)

Thus we have the estimator

P̂ (k) = V
V 2
S

N2
S

∑
q |Wq|2

∣∣∣∣∣ 1

V

∑
i

Wie
−ik·xi − NS

VS
Wk

∣∣∣∣∣
2

− 1

V

NS

VS

∑
q

|Wq|2


=
V∑

q |Wq|2

∣∣∣∣∣VSV 1

NS

∑
i

Wie
−ik·xi −Wk

∣∣∣∣∣
2

− VS
NS

. (9.26)

Here the VS/NS term subtracts the shot noise.

Exercise: Show that in the case of an unweighted mask (i.e. W (x) = 0 or 1), (9.20) becomes

P (k) ≈ V 2〈|ρwk − 〈ρwk 〉|2〉 − 〈ρ〉VS
〈ρ〉2VS

. (9.27)

52Note that ρ̄ defined this way is not the ratio of the actual (unweighted) number of observed galaxies to the
actual (unweighted) survey volume, since in NS the weighting goes by galaxy and in VS by microcell. MBW do
not define these weighted quantities NS and VS (their VS stands for the actual survey volume). I was not able to
get exactly the same form for Neff as they give.
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9.3 Selection function

In the preceding we assumed 〈nj〉 = 〈ρ〉δV . Because of selection effects this will not be true for
observed galaxies. Let nj = 0 or 1 now be the number of observed galaxies in a microcell. Then

〈nj〉 = S(xj)〈ρ〉δV ⇒
〈
nj
Sj

〉
= 〈ρ〉δV , (9.28)

where S(x) is the selection function. To correct for this we let each observed galaxy i represent
1/S(xi) galaxies assumed to exist, and define a corrected number of galaxies in a microcell

ncj ≡ A
W (xj)

S(xj)
nj = A

Wj

Sj
nj , (9.29)

where A is an additional normalization factor.53 It may appear that we just replaced the Wj of
Sec. 9.2 with Wj/Sj ; but they behave differently since Sj will be absorbed by expectation values
according to (9.28).

We get now

ρck =
A

V

∑
j

nj
Wj

Sj
e−ik·xj (9.30)

〈ρck〉 =
1

V

∑
j

〈
nj
Sj

〉
Wje

−ik·xj =
A〈ρ〉
V

∫
V
W (x)e−ik·xddx = A〈ρ〉Wk ,

and arrive at54 (exercise)

P (k) ≈
V 2〈|ρck − 〈ρck〉|2〉 −A2〈ρ〉

∫
V
W (x)2

S(x) d
dx

〈ρ〉2A2V
∑

q |Wq|2
. (9.31)

9.4 Weights

In a redshift survey we observe fewer galaxies per unit volume at larger distances (redshifts),
so that the more distant volume elements are poorly sampled and their contribution to the
estimate has larger uncertainty. When we divide by the selection function to compensate for the
low observed density, this puts more weight to an individual observed galaxy, so that all volume
elements will be weighted equally if we do not assign weights. We may want to account for the
larger uncertainty by assigning weights W (x) = S(x), so that instead each observed galaxy is
weighted equally (W/S = 1) in the estimate. However, this is not optimal either, since now we
assign most of the weight to a small nearby region of the survey, which is not a good sample of
the universe; a smaller volume has a larger cosmic variance. Feldman et al. [41] showed that an
optimal compromise (to minimize the expected error in the P (k)) is to assign weights55

W (x) =
S(x)

1 + n̄(x)P (k)
=

S(x)

1 + S(x)〈ρ〉P (k)
, (9.32)

(called the FKP weights) where n̄ ≡ S(x)〈ρ〉 is the expected observed number density at x. For
large distances, where S � 1, we get W = S � 1 and each observed galaxy gets equal weight in

53We can choose A = N∑
j njWjS

−1
j

, to make
∑
nc
j = N , the actual number of galaxies in the survey.

54MBW include the normalization factor A in Wq, i.e., W̃q = AWq, so that A disappears from the denominator.
55Feldman et al. [41] and Peacock[1] write just w(x) = 1/[1 + n̄(x)P (k)], but I think their w must mean our

W/S; otherwise this does not do what it says.
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the estimate. For more nearby regions where S ≈ 1, the weights become independent of location
and each volume element is weighted equally.

Note that the weights are different for estimating P (k) for different k. Since we are in the
process of estimating P (k) the task appears circular; but it is not crucial to use exactly optimal
weights. We can use prior knowledge of P (k) to set the weights, and if desired, we can iterate
by repeating the estimation using the estimated P (k) from the first round.

We did not discuss weights and selection function in the context of ξ estimation. In that case
their application is straightforward: we just apply the selection function to the random catalog
and weight both catalogs the same way. In the ξ case the procedure that corresponds to the
FKP weights for P (k) is to weight each pair by W 2, where

W (r; z) =
1

1 + 4πn̄(z)J3(r)
=

1

1 + n̄(z)V (r)ξ̄(r)
, (9.33)

where r is the separation of the pair and z is their mean redshift [41, 2].
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10 Baryon acoustic oscillation scale as a standard ruler

The acoustic oscillation of the baryon-photon fluid before the photon decoupling imprints on
the matter distribution a particular distance scale, the sound horizon at photon decoupling time

rd =

∫ td

0

cs(t)

a(t)
dt =

∫ ∞
zd

cs(z)

H(z)
dz . (10.1)

This scale can be seen prominently in the CMB anisotropy and is therefore known very accu-
rately. To be precise, the distance scale r∗ = 144.57±0.22 Mpc seen in CMB is slightly different
from the baryon acoustic oscillation (BAO) scale rd = 147.21 ± 0.23 Mpc seen in the matter
distribution. This is because the decoupling was not instantaneous and there are many more
photons than baryons. In CMB we see the situation when photons on average interacted with
baryons the last time, at z∗ = 1089.80 ± 0.21, but those photons that interacted with baryons
later than average kept the oscillation going on for a bit longer (the d in rd stands for ‘drag’),
and the scale rd in the matter distribution reflect the time when baryons on average stopped
oscillating, at zd = 1060.01±0.29. The numerical values are the Planck+BAO results from [34].

The BAO scale can be observed as enhanced correlation between galaxy positions at this
separation. In the line-of-sight direction this corresponds to a redshift difference

∆z = H(z)rd ≡
rd

DH(z)
, (10.2)

where DH(z) ≡ H(z)−1 is the Hubble distance at redshift z; and in the transverse direction to
an angular separation on the sky

∆ϑ =
rd

DM (z)
. (10.3)

By measuring the statistics of the galaxy distribution and determining at what ∆z and ∆ϑ this
enhanced correlation appears at different redshifts one can determine the functions H(z) and
DM (z), and thus the correct cosmology.

The correlation function ξ(s) = ξ(s, µ) = ξ(s‖, s⊥) measures separations in all directions,
and the results are often expressed as the weighted geometric mean

DV (z) ≡
[
zDM (z)2DH(z)

]1/3
(10.4)

and the ratio

FAP (z) ≡ DM (z)

DH(z)
. (10.5)

Since two of the three components of s are transverse and only one is radial, the transverse
directions carry more weight in the data, and DM can be determined more accurately than DH .
The FAP is the Alcock–Paczyński parameter from Sec. 7.6. The comoving volume element is
given by

dV = DH(z)dzDM (z)2dΩ = DV (z)3dz

z
dΩ . (10.6)

The ‘distortion’ of the shape of the volume element (ratio of the comoving distances correspond-
ing to ∆z and ∆ϑ) compared to flat space with Hubble law D(z) = H−1

0 z is

DM (z)

zDH(z)
=

z

FAP (z)
; (10.7)

this quantity equals 1 at z = 0 and decreases with increasing z for ΛCDM (see Fig. 26) since a
given ∆z corresponds to a shorter comoving separation for higher z.
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Figure 30: The monopole (blue) and quadrupole (yellow) of the two-point correlation function around
the BAO feature, measured by the BOSS survey at two different redshift bins. This is Fig. 11 from [42].

In reality the determination of these quantities from measured ξ(s) is more complicated,
since the value of rd also depends somewhat on cosmology, so one has to correct for that. Also,
the peak of the 2-point correlation function is not exactly at rd. Rather, one needs to calculate
the theoretical ξ(s) and compare it to the observed ξ(s).

Ross et al. [42] describe how the determination was done from the SDSS-III BOSS survey
2-point correlation function. We present here a simplified version of this description.

They start by assuming a fiducial cosmology, using CAMB to calculate the linear power
spectrum P (k) for it, adding redshift-space distortions and nonlinear effects to it (we omit the
description of how this was done). They then Fourier transform this anisotropic power spectrum
(or rather its ` = 0, ` = 2, and ` = 4 multipoles) to obtain the anisotropic two-point correlation
function ξfid(s, µ) and its multipoles for the fiducial cosmology.

The fiducial cosmology has some Hfid(z), Dfid
M (z) and rfid

d . The observed redshifts are con-
verted to comoving distances and the measured correlation function is calculated from the data
assuming the geometry of the fiducial cosmology. Comparing the measured ξobs(s, µ) to ξfid(s, µ)
should find the BAO feature shifted by factors

α‖ ≡
Hfid(z)rfid

d

H(z)rd
, α⊥ ≡

Dfid
M (z)rfid

d

DM (z)rd
(10.8)

in the line-of sight (µ = 1) and transverse (µ = 0) directions.
If we made the, too simplistic, assumption that the effect of the different cosmology is just

to strecth/compress ξ(s, µ) = ξ(s‖, s⊥) by these factors, we would get that

ξobs(s‖, s⊥) = ξfid(α‖s‖, α⊥s⊥) , (10.9)

or
ξobs(s, µ) = ξfid(s′, µ′) , (10.10)
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where (exercise)

s′ = s
√
µ2α2

‖ + (1− µ2)α2
⊥ and µ′ =

µα‖√
µ2α2

‖ + (1− µ2)α2
⊥

. (10.11)

The observed monopole and quadrupole would then be

ξobs
0 (s) ≡

∫ 1

0
ξobs(s, µ)dµ =

∫ 1

0
ξfid(s′, µ′)dµ ≡ ξ0(s, α‖, α⊥) ,

ξobs
2 (s) ≡ 5

2

∫ 1

0
ξobs(s, µ)(3µ2 − 1)dµ = 5

2

∫ 1

0
ξfid(s′, µ′)(3µ2 − 1)dµ

≡ 5
2

[
ξµ2(s, α‖, α⊥)− ξ0(s, α‖, α⊥)

]
, (10.12)

where the last line defined

ξµ2(s, α‖, α⊥) ≡
∫ 1

0
ξfid(s′, µ′)3µ2dµ (10.13)

(to be used at this step instead of defining the whole thing on the second line to be ξ2(s, α‖, α⊥)).

We now have to account for the fact that changing the cosmology will change ξobs also in
other ways than this stretching. Our focus is in fitting the BAO feature around rd, which is
a relatively sharp peak. The peak occurs near s = 100h−1Mpc and therefore we only fit the
part of ξobs at 50 < s < 150h−1Mpc. We allow for the change of cosmology to change the
amplitude of the BAO feature but otherwise we expect the changes to be relatively smooth
in the vicinity of rd. Thus we introduce additional fitting parameters B0 and B2 to represent
rescaling of the BAO feature in monopole and quadrupole and then allow smooth changes in
the form of arbitrary second-order polynomials A`1 +A`2s+A`3s

2 added to s2ξ`(s). We arrive
at the models

ξmod
0 (s) = B0ξ0(s, α‖, α⊥) +A01s

−2 +A02s
−1 +A03

ξmod
2 (s) = 5

2

[
B2ξµ2(s, α‖, α⊥)−B0ξ0(s, α‖, α⊥)

]
+A21s

−2 +A22s
−1 +A23 (10.14)

to be fit to ξobs
0 (s) and ξobs

2 (s). Thus 10 parameters, α‖, α⊥, B0, B2, A01, A02, A03, A21, A22,
and A23 are fit to the data, but we only care about what we get for α‖ and α⊥. The other eight
are ‘nuisance’ parameters allowing for changes in the shape of ξ(s, µ) that we did not want to
calculate. Thus this procedure is aimed at fitting the BAO scale only, it is not about fitting the
full theoretical ξ(s, µ) to the observed one.

Figure 30 shows ξ0 and ξ2 from the BOSS survey; the results from BOSS[35] on DM (z) and
H(z) are shown in Fig. 31, and a “world compilation” of BAO results on DM (z), DV (z), and
DH(z) is shown in Fig. 32.
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Figure 31: Comoving angular diameter distance DM (z) and Hubble parameter H(z) measured from
BAO by the BOSS survey. The blue lines are ΛCDM predictions using cosmological parameters from
Planck[19]. Solid and dashed lines are the best-fit models. (FS stands for ‘full shape’, i.e., the BOSS
team determined these quantities independently from the location of the BAO feature and from the full
shape of the correlation function and power spectrum.) This is part of Fig. 12 from [35].

Figure 32: Compilation of BAO determinations of DM (z), DV (z), and DH(z) from different surveys.
The scaling by

√
z is just to compress the curves so that they fit better in the plot with error bars clearly

visible. The solid lines are the ΛCDM prediction with Ωm = 0.3156, h = 0.6727. This is Fig.14 from
[35]. See Fig. 27 for an updated result from eBOSS [61].
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11 Higher-order statistics

11.1 N-point correlation function and (N-1)-spectrum

In analogy with the 2-point correlation function we define the N -point correlation function

ξ(N)(x1,x2, . . . ,xN ) ≡ 〈δ(x1)δ(x2) . . . δ(xN )〉 (11.1)

for a continuous density perturbation field δ(x). For a distribution of discrete objects

dP = 〈ρ〉N
〈[

1 + ξ(N)(x1,x2, . . . ,xN )
]〉
dV1dV2 . . . dVN (11.2)

is the probability for finding N objects located at x1, x2, . . . ,xN . Note that these quantities are
invariant under permutation of (x1,x2, . . . ,xN ).

The connected N -point correlation function56 is the remaining part of the N -point correlation
function when we subtract from it all the contributions from the lower-order correlations:

ζ(N)(x1,x2, . . . ,xN ) ≡ ξ(N)(x1,x2, . . . ,xN )−
∑
P

ζ(N1) . . . ζ(Nn) (11.3)

where
∑
Ni = N and

∑
P sums over all partitions of the set {x1,x2, . . . ,xN} into smaller

subsets. In particular,

ζ(1)(x) ≡ ξ(1)(x) = 〈δ(x)〉 = 0

ζ(2)(x1,x2) ≡ ξ(2)(x1,x2)− ζ(1)(x1)ζ(1)(x2) = ξ(2)(x1,x2)

ζ(3)(x1,x2,x3) ≡ ξ(3)(x1,x2,x3)− ζ(2)(x1,x2)ζ(1)(x3)− ζ(2)(x1,x3)ζ(1)(x2)

−ζ(2)(x2,x3)ζ(1)(x1)− ζ(1)(x1)ζ(1)(x2)ζ(1)(x2)

= ξ(3)(x1,x2,x3)

ζ(4)(x1,x2,x3,x4) ≡ ξ(4)(x1,x2,x3,x4)− ζ(2)(x1,x2)ζ(2)(x3,x4)− ζ(2)(x1,x3)ζ(2)(x2,x4)

−ζ(2)(x1,x4)ζ(2)(x2,x3) , (11.4)

so that the connected correlation function differs from the full correlation function only for
N ≥ 4.

For Gaussian density perturbations ζ(N) = 0 for N > 2, so that the statistics of a Gaussian
field is fully determined by ξ(2)(x1,x2), and the connected higher-order statistics measure non-
Gaussianity.

Assuming statistical homogeneity, ξ(N) depends only on the separations between the points.
Picking one point, say xN , as the reference point and writing xi = xN + ri,

ξ(N)(x1,x2, . . . ,xN ) = ξ(N)(r1, r2, . . . , rN−1) . (11.5)

Because of the permutation invariance, we could order the ri by length, so that |r1| ≤ |r2| ≤
. . . ≤ |rN−1|, and the values of ξ(N) over this subset of the d(N−1)-dimensional space define it
completely. There is, however, and additional symmetry since we are free to pick the reference
point. For ξ(2), this symmetry is ξ(2)(r) = ξ(2)(−r), and we discuss ξ(3) in the next subsection.

Assuming also statistical isotropy, ξ(N) is invariant under the rotation of the full N -point
configuration. We can rotate it (or the coordinate system) so that r1 becomes parallel to the
x-axis, r2 will lie in the xy-plane (and so on, if d > 3), reducing the number of components
ξ(N) depends on to 1 + 2 + . . . + d + . . . + d, where there are N − 1 terms in the sum, so that

56I don’t know if there’s a standard notation for this; ζ is the usual notation for the 3-point correlation function
(connected or not, for it they are the same).
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ξ(2) depends on one component (r), ξ(3) depends on 1 + 2 = 3 components (for d ≥ 2), and
ξ(4) depends on 1 + 2 + 3 = 6 components for d ≥ 3. (When we go to redshift space, we lose
statistical isotropy, and ξ(N) will depend on more components.)

In analogy with the power spectrum we define the (N − 1)-spectrum57

P (N−1)(k1,k2, . . . ,kN ) ≡ V N−1〈δk1δk2 . . . δkN
〉 . (11.6)

where

δk =
1

V

∫
ddx δ(x)e−ik·x . (11.7)

Using periodic boundary conditions and statistical isotropy,

〈δk1
. . . δkN

〉 =
1

V N

∫
ddx1 . . . d

dxNe
−i

∑N ki·xi〈δ(x1)δ(x2) . . . δ(xN )〉

=
1

V N

∫
ddr1 . . . d

drN−1d
dxe−i

∑N−1 ki·(x+ri)e−ikN ·x〈δ(x + r1) . . . δ(x + rN−1)δ(x)〉

=
1

V N

∫
ddr1 . . . d

drN−1e
−i

∑N−1 ki·riξ(N)(r1, . . . , rN−1)

∫
ddxe−i(

∑N ki)·x , (11.8)

where the last integral gives V , if
∑N

i=1 ki = 0, otherwise zero.
Thus we have that

P (N−1)(k1, . . . ,kN ) =

∫
ddr1 . . . d

drN−1e
−i
∑N−1 ki·riξ(N)(r1, . . . , rN−1) (11.9)

for kN = −∑N−1
i=1 ki and otherwise P (N−1) is zero. Thus, because of statistical homogeneity,

the nonzero part of P (N−1) depends only on the first N − 1 wave vectors and we can write it as

P (N−1)(k1, . . . ,kN−1) (11.10)

The correlation functions vanishes at large separations, so that we can extend the integrals
in (11.9) to infinity. Thus the N -point correlation function and the (N − 1)-spectrum form an
(N − 1)d-dimensional Fourier transform pair and

ξ(N)(r1, . . . , rN−1) =
1

(2π)(N−1)d

∫
ddk1 . . . d

dkN−1e
+i
∑N−1 ki·riP (N−1)(k1, . . . ,kN−1) .

(11.11)
In the Fourier integral notation, δ(k) in place of V δk, we write

〈δ(k1)δ(k2) . . . δ(kN )〉 = (2π)dδdD

(
N∑
i=1

ki

)
P (N−1)(k1, . . . ,kN−1) (11.12)

11.2 Three-point correlation function and bispectrum

For N = 3, assuming statistical homogeneity, we have the 3-point correlation function

ζ(r1, r2) ≡ 〈δ(x)δ(x + r1)δ(x + r2)〉 (11.13)

57Again, I do not know if there is a standard notation or what is the standard term for this. The expression
“(N − 1)-spectrum” and notation P (N−1) are my own. For N = 3 and N = 4 the standard notations and terms
are B, the bispectrum, and T , the trispectrum. P (1)(k1,k2) = V 〈δk1δk2〉 is the same as the power spectrum we
defined earlier as P (k) = 〈|δk|2〉. We get below that k2 = −k1. Because of the reality of δ(x), δk2 = δ−k1 is equal
to δ∗k1

, so indeed δk1δk2 = |δk1 |2.
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and its Fourier transform, the bispectrum

B(k1,k2) =

∫
ddr1d

dr2e
−ik1·r1−ik2·r2ζ(r1, r2)

ζ(r1, r2) =
1

(2π)2d

∫
ddk1d

dk2e
ik1·r1+ik2·r2B(k1,k2) , (11.14)

with

〈δk1δk2δk3〉 =
1

V 2
δk1+k2,−k3B(k1,k2) (11.15)

or
〈δ(k1)δ(k2)δ(k3)〉 = V 3〈δk1δk2δk3〉 → (2π)dδdD(k1 + k2 + k3)B(k1,k2) . (11.16)

The bispectrum may also be denoted as B(k1,k2,k3), with the condition k1 + k2 + k3 = 0
understood.

Assuming statistical isotropy, both ζ(r1, r2) and B(k1,k2) are functions of triangles. In case
of ζ the triangle is formed by the three points, in case of B, the triangle is formed by the closed
loop of the wave vectors k1 + k2 + k3 = 0. Both of them depend on three scalar quantities,
which are required to define a triangle, e.g., the lengths of the three sides, or two sides and the
angle between them.

Functions of three variables are already complicated to study and plot. One may choose to
concentrate on some selected triangle shapes, e.g., equilateral triangles.

Another approach is multipole expansion [43]. Express the bispectrum as a function of the
side lengths k1 and k2, and the angle θ between them, and expand the angular dependence in
Legendre polynomials,

B(k1, k2, θ) =
∑
`

B`(k1, k2)L`(cos θ) , (11.17)

where

B`(k1, k2) =
2`+ 1

2

∫ 1

−1
B(k1, k2, θ)L`(cos θ)d cos θ . (11.18)

We expand the 3-point correlation function likewise

ζ(r1, r2, θ) =
∑
`

ζ`(r1, r2)L`(cos θ) , (11.19)

where

ζ`(r1, r2) =
2`+ 1

2

∫ 1

−1
ζ(r1, r2, θ)L`(cos θ)d cos θ . (11.20)

Only the lowest multipoles are expected to be important. This allows easier display of results,
since each multipole can be plotted as a 2D contour or color plot. Note that this was assuming
statistical isotropy, the angle is related to the shape of the triangle, not to direction with respect
to line of sight as in Sec. 7; adding redshift-space distortion, ζ and B become functions of more
variables.

Example: Relate ζ` to B` in 3D. (This is from [43].) We need here (5.30),

eik·x = 4π
∑
`m

i`j`(kx)Y`m(x̂)Y ∗`m(k̂) = 4π
∑
`m

i`j`(kx)Y ∗`m(x̂)Y`m(k̂) (11.21)

and (5.28),

L`(cosϑn) =
4π

2`+ 1

∑
m

Y ∗`m(n̂1)Y`m(n̂2) . (11.22)
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Starting from (11.14) with (11.17),

ζ(r1, r2) =
1

(2π)6

∫
d3k1d

3k2e
ik1·r1eik2·r2

∑
`

B`(k1, k2)L`(cosϑk)

=
1

4π4

∑
`

∑
`1m1

∑
`2m2

∫
k2

1dk1

∫
k2

2dk2 i
`1i`2j`1(k1r1)j`2(k2r2)B`(k1, k2)

4π

2`+ 1

∑
m

∫
dΩ1dΩ2Y

∗
`1m1

(r̂1)Y`1m1
(k̂1)Y`2m2

(r̂2)Y ∗`2m2
(k̂2)Y ∗`m(k̂1)Y`m(k̂2)

=
1

4π4

∑
`

∫
k2

1dk1

∫
k2

2dk2 (−1)`j`(k1r1)j`(k2r2)B`(k1, k2)
4π

2`+ 1

∑
m

Y ∗`m(r̂1)Y`m(r̂2)

=
1

4π4

∑
`

∫
k2

1dk1

∫
k2

2dk2 (−1)`j`(k1r1)j`(k2r2)B`(k1, k2)L`(cosϑr) , (11.23)

from which we can pick

ζ`(r1, r2) =
1

4π4

∫
k2

1dk1

∫
k2

2dk2 (−1)`j`(k1r1)j`(k2r2)B`(k1, k2) . (11.24)

From theoretical grounds, the magnitude of the bispectrum of the cosmological density field
is expected to be of the order P (k)2, which motivates the definition of the reduced bispectrum

Q(k1,k2,k3) ≡ B(k1,k2,k3)

P (k1)P (k2) + P (k2)P (k3) + P (k3)P (k1)
. (11.25)

11.3 Measuring the three-point correlation function

In Sec. 8 we found that the best estimator (minimizing bias and variance) for the two-point
correlation function is the Landy–Szalay estimator, which can be written symbolically as

ξ̂LS =
(D −R)2

R2
. (11.26)

This can be generalized to N -point correlation functions as the Szapudi–Szalay estimator [44]

ξ̂
(N)
SS =

(D −R)N

RN
. (11.27)

For the three-point correlation function this becomes

ζ̂SS =
(D −R)3

R3
=

DDD − 3DDR+ 3DRR−RRR
RRR

, (11.28)

where DDD etc. denote the number of triplets of data and random points corresponding to the
given triangle configuration. These configurations are binned, e.g. into bins of (r1 ± 1

2∆r1, r2 ±
1
2∆r2, θ± 1

2∆θ), and the triplet counts have to be scaled by the total numbers of the four different
triplet types, like we did for pair counts in Sec. 8. (One can also combine the data and random
catalogs into a D − R catalog, where the random points have negative weights, and just count
D −R triplets.)

The computational cost of this estimator scales as the number of triplets, which goes as N3,
where N is the number of data or random points. One usually uses many more random points
than data points, so the relevant N is the number of random points. The correlation function is
usually needed only up to some rmax, so one can save computation by arranging the points into
a data structure which helps to skip triplets with larger separations than rmax, but even then
the computational cost is a problem for large surveys.

Slepian&Eisenstein [45] have proposed an approximate method, which scales as N2, and will
be faster for sufficiently large surveys.58 See also [46].

58I haven’t yet read their paper, so I am not saying more about it now.
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Figure 33: Left: Measurement of f and σ8 from the CMASS sample of the BOSS survey. The effective
redshift for the CMASS sample is z = 0.57. ‘Planck15’ refers to the theoretical prediction of ΛCDM
cosmology, using cosmological parameters determined from Planck data (i.e., not a Planck measurement
of f and σ8). This is Fig. 13 of [49]. Right: Constraints on the growth index γ and Ωm from combined
BOSS and Planck data. This is Fig. 18 of [49].

11.4 Higher-order statistics in cosmology

Higher-order statistics (bispectrum, 3-point correlation function, and the reduced (higher than
three)-correlation functions) vanish for Gaussian perturbations. Primordial perturbations are
thought to be Gaussian or very close to Gaussian (Planck did not find any signal of primordial
non-Gaussianity; the simplest inflation models predict very-close-to-Gaussian primordial per-
turbations). Linear evolution maintains Gaussianity of perturbations. Higher-order statistics
measure thus nonlinear effects even at large scales. Therefore they provide tests of modified
gravity. Alternatively, they test primordial non-Gaussianity. Combining higher-order statistics
results with power spectrum and/or 2-point correlation results can be used to break the degen-
eracy between f and σ8 (or bias), i.e., both can be determined separately and not just their
product.

(Here should be a section on higher-order perturbation theory to show how higher-order
correlations arise.)

11.5 Results from galaxy surveys

The 3-point correlation function measured in the BOSS survey is discussed in [47] and [48] and
the bispectrum measured in the BOSS survey is described in [49].

Fig. 33 shows the BOSS determination of the growth rate f , σ8, and growth index γ. BOSS
(combined with Planck data) finds γ = 0.733 ± 0.069, a 2.7σ deviation from the prediction
γ = 0.55 of GR. They say that “This tension could be due to (i) a statistical fluctuation in the
fσ8 measured values; (ii) unaccounted systematic uncertainties in BOSS or Planck15 data; (iii)
an indication of a failure of the CDM or the GR gravity model. Future galaxy surveys using
more redshift bins and more accurate data may shed light on this tension revealing the origin
of this discrepancy.”[49].
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12 Galaxy surveys

12.1 Historical surveys

Some of the material for this section is from [50].

12.1.1 Catalogs of Nebulae

Figure 34: Star chart depicting the Messier objects. From Wikipedia, copied under the terms of the GNU
Free Documentation License https://en.wikipedia.org/wiki/en:GNU Free Documentation License.

The French astronomer Charles Messier (1730–1817) compiled a catalog of permanent diffuse
objects on the sky. His main interest were comets, so the purpose of the catalog was to list objects
that looked like comets, but were not, since they were not moving. His first version from 1771
had 45 objects, and by 1781 he had extended it to 103 objects. Based on Messier’s notes the
list was later extended to 110 objects in the final Messier catalog, Catalogue des Nébuleuses
et des Amas d’Étoiles. Many of these objects are star clusters (globular or open) or nebulae
(planetary or diffuse) in our own galaxy, and M1, the Crab Nebula, is a supernova remnant, but
41 (M31–33, M49, M51, M58–61, M63–66, M74, M77, M81–91, M94–96, M98–102, M104–106,
and M108-110) are galaxies. See Fig. 34.

William and Caroline Herschel compiled the Catalogue of Nebulae and Clusters of Stars
in 1786. By 1810 they had extended it to 2500 objects visible from the northern latitudes.
John Herschel extended it to the General Catalogue of Nebulae and Clusters in 1864, with
5079 objects, including observations from South Africa. The New General Catalogue of Nebulae
and Clusters of Stars (NGC), containing 7840 objects, was compiled by John Dreyer in 1888,
based on observations by many astronomers. He supplemented it in 1895 and 1908 by two
Index Catalogues (IC) containing 5386 additional objects. Most of the objects in these catalogs
are galaxies. The true nature of galaxies was not known then. These early catalogs included
essentially all known diffuse objects, and were not results from a uniform survey, so they were
not suitable for measuring the large scale structure of the universe.
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12.1.2 2D Surveys

The Lick Survey [21] gave us the first good view of the large-scale structure of the universe. It
was already mentioned in Sec. 4, see Fig. 12. It was conducted in 1950–1967 using the 0.5 m
refractor at Lick observatory, covered the northern galactic hemisphere and about half of the
southern galactic hemisphere, had a limiting magnitude of about m∗ = 19, and included over
800 000 galaxies. Shane and Wirtanen divided the sky into 10′ × 10′ cells and counted by eye
and hand the number of galaxies in each cell.

Figure 35: A 1◦ × 1◦ region of the Palomar Sky Survey (red plate), from the area of the Coma galaxy
cluster.

The Palomar Schmidt telescope (aperture 1.22 m or 48 inches; in Southern California) was
completed in 1948. (It was renamed the Samuel Oschin telescope in 1986.) It opened the era
of Schmidt telescopes, designed to provide a wide field of view with limited aberration, thus
suitable for sky surveys. It was used in the 1950s for the Palomar Sky Survey (POSS I). The
survey covered the full sky north of declination −30◦ in 936 pairs (blue- and red-sensitive) of
6◦ × 6◦ photographic plates. The limiting magnitude was about 19 for the blue and 20 for
the red. Different observatories around the world obtained copies of these images. I remember
looking at them (just out of curiosity) at the Helsinki Observatory at around 1980. It can now
be accessed digitally, e.g., at https://archive.stsci.edu/cgi-bin/dss form. See Fig. 35 for a
sample. The southern sky was covered by similar UK and ESO Schmidt telescopes in Australia
and Chile in the 1970s.

The APM (Automated Plate Measuring) survey [51] from 1990, see Fig. 36, covered 4300
squared degrees of the southern galactic hemisphere. It used 185 plates obtained with the UK
Schmidt Telescope. Instead of selecting galaxies by eye, it used “the SERC Automated Plate
Measuring system in Cambridge” to digitize the survey plates, detect and analyze galaxy images,
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Figure 36: The APM galaxy survey: galaxy number density map.

and produce their position and magnitude. With a limiting magnitude of m∗ = 20.5 it went
deeper than the Lick survey and contained over 2 million galaxies. In addition to speeding up the
process and relieving humans from this tedious task, the automated system had the advantage
of guaranteeing a uniform treatment of the whole survey area.

12.1.3 Redshift Surveys

For the third dimension, the redshifts of the galaxies need to be measured. This is much more
effort than just taking sky images and measuring galaxy positions. To get a good spectrum
requires collecting much more light than is needed for an image position.

The first redshift survey of sufficient extent to map the large-scale structure was the Harvard-
Smithsonian Center for Astrophysics (CfA) redshift survey. There were actually two surveys,
CfA1 with limiting magnitude 14.5 in 1977–82 and CfA2 with limiting magnitude 15.5 in 1985–
95. CFA2 contained 18 000 galaxies in the northern sky. The CfA2 survey proceeded in slices
of 6◦ thickness in declination. Fig. 37 shows their first slice, published in 1986 [53]. This can be
said to be our first view of the 3D structure in the distribution of galaxies, showing, in addition
to clusters, large voids and overdense structures (sheets and/or filaments) extending over much
larger scales than the volume of a cluster. The CfA1 survey was not deep enough (did not reach
faint enough magnitudes) to reveal these structures.

The Las Campanas redshift survey [54] used the Las Campanas telescope in Chile to measure
the redshifts of 26 418 galaxies during 1988–94. The survey covered over 700 square degrees.
The median redshift of the survey was z = 0.1 (30 000 km/s), so it went much deeper than the
CfA2 survey. See Fig. 38.

The 2dF Galaxy Redshift Survey [http://www.2dfgrs.net/] used the 2dF multifibre spectro-
graph on the Anglo-Australian Telescope, which is capable of observing 400 objects simultane-
ously over a 2◦ diameter field [55]. The source catalog was the APM survey. The survey covered
1500 square degrees, in two strips (plus some random small fields), with a magnitude limit
19.45, see Fig. 39. Reliable redshifts were obtained for 221 414 galaxies. The median redshift
was z = 0.11. The final data release was in 2003.
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Fig. 1.—(a) Map of the observed velocity plotted vs. right ascension in the dechnation wedge 26°.5 < 8 < 32°.5. The 1061 objects plotted have 
mB < 15.5 and V < 15,000 km s-1. (b) Same as Fig. la for mB < 14.5 and K < 10,000 km s-1. The plot contains 182 galaxies, (c) Projected map of the 
7031 objects with mB < 15.5, listed by Zwicky et al. in the region bounded by 8h < a < 17h and 8?5 < 5 < 50?5. 

with the depth of the earlier survey. Thus undersampling 
explains the difference in the appearance of the surveys. 

In order to compare the redshift-space distribution with the 
distribution projected on the sky, Figure Ic shows the posi- 
tions of all the galaxies from the Zwicky et al. catalog which 
satisfy mB < 15.5, 8h < a < 17h and 8°5 < 8 < 50?5. The 
grid is Cartesian in R.A. and decl. The deficiency of galaxies 
west of 9h and east of 16h is caused by Galactic obscuration. 
The tick marks show the 6° dechnation region of the redshift 
survey in Figure la. The Coma cluster is the dense region at 
13h in the 6° strip. 

III. ANALYSIS 
The cellular pattern of Figure la and the smoothness of 

Figure 1c can be simply understood if the galaxies are distrib- 
uted on the surfaces of shells tightly packed next to each 
other. If shell-like structures are common in the universe, any 
sufficiently deep wedge-shaped redshift survey will show a 
pattern of voids surrounded by connected filaments of gal- 
axies similar to that in Figure la. 

One impressive feature of the new data in Figure la is the 
presence of several large regions almost devoid of galaxies. 
The galaxies appear to be distributed in elongated structures 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 

Figure 37: (a) The first slice of the CfA2 survey, declination range 26.5◦ ≤ δ ≤ 32.5◦, containing 1061
galaxies. Redshifts are given in velocity units: the map extends to 15 000 km/s, i.e., to z = 0.05. The
Coma cluster is at the center, elongated radially by the finger-of-God effect. The narrow overdense struc-
ture extending in an arc from 17h, 10 000 km/s to 8h, 6000 km/s was named the Great Wall. Extensions
of the survey to lower and higher declinations confirmed that the structure indeed extended to this direc-
tion and was planar, not a filament. (b) The same as (a), but limited to m ≤ 14.5 and v ≤ 10 000 km/s,
containing 182 galaxies. (c) Sky map of the galaxies with m ≤ 15.5 in the Zwicky catalog that the CfA
was using as a starting point for the redshift survey. From [53].
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Figure 38: One of the six slices of the Las Campanas redshift survey. The thickness of the slice is 1.5◦

in declination. From [54].

Figure 39: The 2dF Galaxy Redshift Survey. The left cone is an up to 10◦ wide strip along the celestial
equator – compare to Fig. 1. The right cone is an up to 15◦ wide strip centered at declination δ = −30◦.
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12.1.4 Weak Lensing Surveys

Figure 40: The mass distribution determined by weak lensing in the 4 CFHTLens fields. The cen-
tral colour inset shows the previous (before CFHTLens) largest weak lensing mass map (COSMOS
Dark Matter map, credit: NASA, ESA, P. Simon and T. Schrabback) and the full moon to scale.
From https://www.cfht.hawaii.edu/en/news/CFHTLens/. Credit: Van Waerbeke, Heymans, and
CFHTLens collaboration.

Weak gravitational lensing can be used to map the distribution of all matter, including dark
matter. Weak lensing is discussed in the companion course to this, Gravitational Lensing. Very
briefly: The gravity of the mass distribution between a distant galaxy and us bends the path
of light distorting the image of the galaxy. For most galaxies the effect is small, of the order of
1% distortion, and in this regime of weak lensing appears as an elongation of the image in some
direction. Since we do not know the undistorted shapes of the images, the distortion can only
be determined statistically: how the average shape of many galaxies in a particular small region
of sky deviates from circular symmetry. Thus weak lensing surveys require a very large number
of galaxy images to be useful. The observed average distortion, called shear, provides a measure
of integrated (and weighted so that masses half-way along the line of sight carry the heaviest
weight) mass between the observer and the source galaxies. The more technical term for this
integrated mass measure is convergence, denoted κ; and this quantity is actually the deviation
of weighted surface mass density (per solid angle) from the background value corresponding to
the mean density of the universe, normalized to a critical value, the dividing line between weak
and strong lensing.

Thus weak lensing surveys can provide a 2D mass map of the sky. For such a very large
number of galaxies it is not practical to obtain accurate spectroscopic redshifts, but for the
2D mass maps they are not needed, we need just a rough redshift estimate provided by the
photometric redshift : images are taken at several different wavelength bands to provide the
“color” of the galaxy, which gives a probability distribution for its redshift. Some level of
information about the third dimension of the mass distribution (tomography) is provided by
dividing the source galaxies into different photometric redshift bins. Typically the width of such
a redshift bin is at least ∆z = 0.2.

While for the redshift surveys I took the cut-off for historical surveys to be near year 2000,
for the weak lensing surveys I take it to be near 2020. The time of modern weak lensing surveys
is just beginning, with Euclid, LSST, and Roman.

The Canada+France Hawaii Telescope Lensing Survey (CFHTLens) covered 154 square de-
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grees (in 4 different fields) of sky in five optical bands, with a limiting magnitude 24.5. On
average, there were 14 galaxies per square arcmin useful for lensing analysis [56, 57]. See Fig. 40
for the obtained mass maps in the 4 fields. The data was obtained in 2003–2008. There were
many analysis papers (see https://www.cfhtlens.org/astronomers/publications): e.g., in [58]
4.2 million galaxy images with m ≤ 22 and redshifts 0.2 ≤ z ≤ 1.3 were used for the analysis.

2	

	

	

	

Figure	1:	location	of	the	1006	KiDS-ESO-DR4	tiles.	The	area	covered	in	DR1/2/3	is	shown	in	blue,	
while	the	green	tiles	are	new	additions.	The		target	1350	sq.deg.	KiDS	survey	area	(top:	KiDS-North;	
bottom:	KiDS-South)	is	outlined	in	grey.	

Overview of Observations 
This	data	release	(KiDS-ESO-DR4)	consists	of	the	coadded	images,	weight	maps,	masks	and	
source	lists	of	1006	square	degree	survey	tiles	observed	with	OmegaCAM	on	the	VST	in	u,	g,	r	and	
i	bands	before	January	24,	2018.	It	supercedes	the	440	tiles	released	in	DR1/2/3	(de	Jong	et	al.	
2015,	A&A	582,	A62;	de	Jong	et	al.	2017,	A&A	604,	A134).	Figure	1	shows	the	DR4	footprint.	Un-
like	the	previous,	incremental	releases,	for	DR4	all	data	were	reprocessed	with	improved	astro-
metric	and	photometric	calibration	algorithms.	The	u,g,r	and	i	images	were	reduced	with	the	As-
tro-WISE	system	(McFarland	et	al.	2013,	Exp.Astron.,	35,	45).	

In	addition	to	these	single-band	data	products,	KiDS-ESO-DR4	includes	a	9-band	ugriZYJHKs	
source	catalogue	that	spans	all	survey	tiles	in	the	data	release.	It	contains	list-driven,	aperture-	
and	PSF-matched	GAaP	photometry	from	the	stacked	VST	images,	as	well	as	from	the	VISTA	
pointings	taken	for	the	near-IR	VIKING	survey	(Edge	et	al.	2013,	The	Messenger	154,	32).	The	
included	sources	are	detected	on	a	separate	reduction	of	the	r-band	stacks	with	the	THELI	pipe-
line	(Erben	et	al.	2013,	MNRAS	433,	2545),	optimised	for	the	weak	lensing	analysis.	These	r-band	
detection	images	are	also	included	in	the	data	release.	

From	the	beginning,	KiDS	and	VIKING	were	conceived	together	as	a	combined	survey,	covering	
the	same	parts	of	the	sky.	The	VIKING	survey	started	before	KiDS,	and	was	terminated	in	2015	
before	completing	the	originally	planned	1500	square	degree	footprint.	It	was	therefore	decided	
that	KiDS	observations	would	prioritise	the	1350	square	degrees	for	which	VIKING	data	exist.	At	
the	time	of	writing	it	seems	likely	that	KiDS	will	also	conclude	observations	once	the	1350	square	
degree	VIKING	footprint	has	been	covered.	The	footprint	area	shown	in	grey	in	Figure	1	is	this	
reduced	area.	

Figure 41: The KiDS survey: Top panel: The area covered in data releases 1–3 is shown in blue,
the additional area in DR4 is in green, and the target 1350 deg2 area is outlined in gray. From
https://kids.strw.leidenuniv.nl/DR4/releasenotes.php. Bottom panel: Mass map of the KiDS
Southern field. High-density regions shown in yellow, low-density regions in dark color. The gray square
shows the size of an individual 1 deg2 KiDS image in the enlarged region, with a full moon for scale. Over
1000 images make up the KiDS map. From https://kids.strw.leidenuniv.nl/pr jul2020.php.

The Kilo-Degree Survey (KiDS) [https://kids.strw.leidenuniv.nl/] is a European Southern
Observatory (ESO) survey, which began in 2011. The survey uses the VLT Survey Telescope,
with mirror diameter 2.61 m and the 268 megapixel OmegaCAM camera, with a 1 deg2 field of
view. The complete survey will cover 1350 deg2 of sky in two fields, an equatorial and a southern
field. See Fig. 41. The fourth data release, in 2019, covered 1006 deg2 and over 21 million
galaxies useful for lensing analysis (reliable shape measurement and photometric redshift). It is
difficult to get a good overview of the KiDS results because there are so many KiDS publications
(220 papers listed at https://kids.strw.leidenuniv.nl/papers.php as of today (May 4, 2023))
without a clear overview paper. See Fig. 41 for a KiDS mass map.
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DES Year 3: Weak lensing mass map reconstruction 4639
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Figure 10. METACALIBRATIONDES Y3 weak lensing mass maps, obtained from the official DES Y3 shear catalogue and created using different map making
methods. Top left-hand panel: noisy KS E-mode map; Top right-hand panel: E-mode map obtained with the null B-mode prior method. Bottom left-hand panel:
E-mode Wiener filter map. Bottom right-hand panel: E-mode GLIMPSE map. The maps in the top panels have been smoothed at 10 arcmin; no further smoothing
is applied to the maps showed in the lower panels. Inset: RAcentre, Deccentre = 70◦, −40◦; !RA, !Dec = 15◦, 10◦.

lensed cluster richness λeff
R :

λeff
R = λR

p(χ )χ
a(χ )

, (38)

where λR is the redMaPPer cluster richness, a(χ ) is the scale factor
evaluated at the comoving distance to a given cluster χ , and p(χ )
is the lensing efficiency, defined as p(χ ) =

∫ +∞
χ

dχ ′n(χ ′) χ ′−χ
χ ′ , with

n(χ
′
) the redshift distribution of the source galaxies used to create the

mass maps as a function of comoving density. The effective richness
is then normalized to the mean of the effective richness of all clusters
considered. For all the maps, the measured Pearson coefficient shown
in Fig. 11 is significantly larger than 0, showing how the recovered
maps successfully trace the foreground matter density field. Again,
we use parameter value θ = 10 arcmin for the KS and the null B-
mode prior reconstruction and λ = 3 for GLIMPSE by default. For the
redMaPPer result in the right-hand panel of Fig. 11, we also plot θ

= 5 arcmin and λ = 1 (the triangular figure markers), which were
shown to improve the correlation for these maps.

6.3.2 Cosmic void imprints

Cosmic voids are an increasingly favoured cosmic probe and have
now already been successfully used to extract cosmological infor-

mation (for a recent overview see Pisani et al. 2019). We expect
these large lower density regions in the cosmic web to display a
typical imprinting in the convergence signal when cross-correlated
with weak lensing mass maps (for previous results from DES Y1
data see Chang et al. 2018).

We create a catalogue of so-called ‘2D voids’ (Sánchez et al. 2017)
from the DES Y3 redMaGiC (Rozo et al. 2016) photometric redshift
data set by searching for projected underdensities in tomographic
slices of the galaxy catalogue. On average, these tunnel-like voids
correspond to density minima that are compensated by an overdense
zone in their surroundings. With this simple approach, we detect 3222
voids in the DES Y3 data set, which are larger on average, although
also less underdense, than most voids from other void finders (see
e.g. Fang et al. 2019). They certainly are useful tools in void lensing
studies (Davies, Cautun & Li 2018) and they have been widely used
in previous DES analyses (see e.g. Kovács et al. 2017, 2019; Fang
et al. 2019; Vielzeuf et al. 2021).

The lensing imprint of typical individual voids is expected to be
undetectable (Amendola, Frieman & Waga 1999). Therefore, after
selecting our void sample, we follow a stacking method to measure
the mean signal of all voids (see e.g. Vielzeuf et al. 2021). Knowing
the angular size of voids, we re-scale the local mass map patches
around the void centres. In such re-scaled units, we then extract
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Figure 42: Mass map from the 3-year DES data. From [59], where four different versions of the mass
map, from using 4 different map reconstruction methods, are presented (their Fig. 5). The one shown
here is from their Wiener filter method. The quantity shown is the convergence κE . Since |κE | � 1,
we are in the weak lensing regime, where the distortions of the galaxy images are small. The inset is an
enlarged 15◦ × 10◦ region centered at RA= 70◦, Dec= −40◦.

The Dark Energy Survey (DES) was a six-year survey that began on August 31, 2013 and
ended taking data on January 9, 2019, having surveyed 5000 deg2 of sky on the southern hemi-
sphere and observed over 300 million galaxies [https://www.darkenergysurvey.org/]. It used a
570-megapixel digital camera on a 4-meter telescope in Chile. They have so far released their
3-year results. The 3-year data already covers the full 5000 deg2 survey area. See Fig. 42 for a
DES mass map.

12.2 Sloan Digital Sky Survey

The Sloan Digital Sky Survey (SDSS) is an ongoing galaxy survey that began in 2000. It
uses a dedicated 2.5-meter wide-field telescope in New Mexico. Timewise the project has been
divided into 5 stages, I (2000–2005), II (2005–2008), III(2008–2014), IV (2014–2020), and V,
which began in 2020. Each stage had multiple data releases (DR). The final data release of
SDSS-IV, DR17, was in 2021 [60]. The main sources for this section are the SDSS home page
(https://www.sdss.org/) and Wikipedia (https://en.wikipedia.org/wiki/Sloan Digital Sky Survey

). SDSS has produced an enormous number of publications, which makes it difficult to obtain
a good overview of SDSS.

At first (until 2009) SDSS operated both in photometric and spectroscopic mode. In photo-
metric mode it took images in 5 different bandpasses (wavelength ranges) from near ultraviolet
through optical to near infrared wavelengths. The 5 bandpasses are called u (near ultraviolet),
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g (green), r (red), i, and z (both near infrared). DR8 (2009) is the final photometric release.
The images cover 14 555 square degrees (35% of the full sky) and almost a billion objects. After
that, SDSS has concentrated on spectroscopy. For cosmology, the main use of spectroscopy is
to determine redshifts of galaxies, which can be used as proxy for their distances. Cosmological
spectroscopic surveys are thus called redshift surveys and from them we get the 3D distribution
of galaxies.

12.2.1 SDSS-I

SDSS-I took images of more than 8000 square degrees of sky and measured spectra of galaxies
and quasars selected from 5700 square degrees of those images. The later stages contained
several subsurveys, some of which were not relevant for cosmology, but focused on the Milky
Way and nearby galaxies. We mention below only the cosmological subsurveys.

12.2.2 SDSS-II

Sloan Legacy Survey: This redshift survey contains spectra of over 800 000 galaxies and
100 000 quasars, covering over 7500 square degrees. (Most of the data is from SDSS-I.)

Sloan Supernova Survey: Focused on Type Ia supernova, which are standardizable can-
dles and can thus be used to determine the redshift-distance relation. The final release (in 2014)
contains 4607 confirmed or likely supernovae.

12.2.3 SDSS-III

Baryon Oscillation Spectroscopic Survey (BOSS): This redshift survey was aimed at
measuring the baryon acoustic oscillation (BAO) scale, which is a statistical standard ruler, at
different redshifts; to constrain the expansion history of the universe. It focused on luminous
objects, Luminous Red Galaxies (LRG) and quasars, which can be detected at high redshifts.

12.2.4 SDSS-IV

Extended Baryon Oscillation Spectroscopic Survey (eBOSS): eBOSS was “the last use
of the Sloan Telescope for galaxy redshift surveys designed to measure cosmological parameters
using BAO and RSD techniques, with SDSS now focusing on other exciting astronomical ques-
tions” [61]. In [61] the galaxies and quasars selected from all the SDSS redshift surveys for BAO
and RSD studies were grouped into 6 samples:

• Main Galaxy Sample (MGS): 63 163 galaxies from SDSS-I and -II with 0.07 < z < 0.2
and M < −21.2 from a contiguous 6813 deg2 area of the sky, selected to probe the full
redshift range roughly homogeneously.

• BOSS DR12 galaxies: 1 372 737 galaxies with 0.2 < z < 0.75 from 9 376 deg2 of sky.

• eBOSS Luminous Red Galaxies (LRG): 377 458 LRGs with 0.6 < z < 1.0 from the
same 9 376 deg2 of sky.

• eBOSS Emission Line Galaxies (ELG): 173 736 ELGs with 0.6 < z < 1.1 from 1 170
deg2 of sky.

• eBOSS Quasars: 343 708 quasars with 0.8 < z < 2.2 from 4 699 deg2 of sky.

• Lyman-α Forest Samples: 210 005 quasars with 2.1 < z < 3.5 from BOSS and eBOSS,
whose spectra were suitable for analyzing fluctuations in neutral hydrogen along the line
of sight to the quasar, using the Lyman-α absorption of the quasar light by this hydrogen.
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Figure 43: Left: Artist view of Euclid. Credit: ESA/ATG medialab (spacecraft); NASA, ESA, CXC,
C. Ma, H. Ebeling and E. Barrett (University of Hawaii/IfA), et al. and STScI (background). Right:
Euclid in a clean room of Thales Alenia Space in March 2023 before shipping to the launch site. Euclid
is 4.7 m tall and 3.7 m in diameter and has a mass of 2 tonnes. Credit: Thales Alenia Space.

12.3 Euclid

Euclid is a wide-field European Space Agency (ESA) space telescope [https://www.euclid-ec.org/].
It is an ESA medium-class mission, M2 of the Cosmic Vision 2015–25 planning cycle for ESAs
space science missions (see Table 6). The planned launch is in July 2023 from Cape Canaveral,
Florida, with a SpaceX Falcon 9 rocket. Euclid will operate on an orbit around the second La-
grange point (L2) of the Sun–Earth system, 1.5 million km from Earth in the anti-Sun direction.

Euclid has a 1.2 m diameter on-axis 3-mirror Korsch telescope and two instruments, for
visible and near infared light. The telescope has a dichroic plate that splits the visible light
from the infrared, allowing both instruments to observe the same field of view simultaneously.

The visible light (VIS) instrument has a broad-band filter for wavelengths 550–900 nm, a
6× 6 matrix of 4096× 4132 pixel CCDs (Charge Coupled Devices), and 0.57 deg2 field of view.
The pixel size corresponds to 0.1× 0.1 arcsec. [https://www.euclid-ec.org/?page id=2485]. See
Fig. 44.

The Near Infrared Spectrometer and Photometer (NISP) has both a photometric channel for
taking images at three near infrared bands: Y (900–1192 nm), J (1192–1544 nm), and H (1544–
2000 nm); and a slitless spectrometer with four grisms: 3 “red” (1250–1850 nm) and one “blue”
(920–1250 nm). NISP has a 4×4 matrix of 2040×2040 infrared detectors (H2RGs, Hawaii-2RG
integrated circuits, not CCDs) covering a field of view of 0.53 deg2. The pixel size corresponds
to 0.3× 0.3 arcsec. “Slitless” means that the spectrometer will provide an image of each object
in the field of view, spread out in a spectrum. This will mean that spectra of different objects
will partially overlap, if they lie along the same line as the direction into which the spectrum is
spread. The three different red “grisms” have different orientations, so that an overlap which
occurs with one grism does not occur with another. [https://www.euclid-ec.org/?page id=2490].
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Mission launch science

M1 Solar Orbiter February 10, 2020 Sun
L1 JUICE April 14, 2023 Jupiter’s moons
M2 Euclid July 2023 cosmology
M3 PLATO 2026 exoplanets
M4 ARIEL 2029 exoplanets
M5 EnVision ? Venus orbiter
L2 ATHENA 2035 X-rays
L3 LISA 2037 gravitational waves

Table 6: Current ESA Science Programme: L and M missions. The ESA cost of a Large (L) mis-
sion is of the order of 1 billion euro, that of a medium (M) mission about half a billion. In addi-
tion there are Small (S) and Fast (F) missions, and Missions of Opportunity (missions already ap-
proved by some other space agency, where ESA may take a role). Some of the information is from
https://sci.esa.int/web/home/-/51459-missions.

Figure 44: Left: NISP. Right: VIS. From [20].
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The exposure time for each field of view will be divided between the three imaging bands and
four grisms. See Fig. 44.

ESA provides the spacecraft and the telescope, has made a contract with SpaceX for the
launch, and is responsible for the spacecraft operation and the transmission of data to Earth.
The Euclid Consortium (EC) of 17 nations (Austria, Belgium, Canada, Denmark, Finland,
France, Germany, Italy, Japan, Netherlands, Norway, Portugal, Romania, Spain, Switzerland,
United Kingdom, and United States) provides the NISP and VIS instruments and the Science
Ground Segment of nine national Science Data Centers (SDC-CH, SDC-DE, SDC-ES, SDC-
FI, SDC-FR, SDC-IT, SDC-NL, SDC-UK, and SDC-US), and is responsible for the analysis of
Euclid data. The ESA cost of the Euclid mission is over 700 million euro, and the EC cost is
about half of that, so this is an over-a-billion-euro project.

R. Scaramella et al.: The Euclid Wide Survey
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Fig. 16. Distribution of reddening values (left), stellar density (middle), and zodiacal background (right) across the RoI. Below each graph, the
box-and-whiskers plot marks the mean (red line), median (black line), and interquartile range (empty box), plus the minimum and maximum
values.

Fig. 17. Sky constraints as experienced by Euclid from L2, and the RoI avoiding the worst regions. The four quadrants of the RoI are in blue.
The solid yellow lines trace the ecliptic latitude threshold of |�| = 10�. The solid red lines trace the galactic latitude threshold of |b| = 23�. For
declination � � +30�, the threshold is |b| = 25� to match the northern ground surveys (Sect. 5.2.1).

In this way we verify that the scientific requirements of the
Euclid project are met. Global statistics of the S/N are sum-
marised in Table 7. The median survey depths converted and
scaled to a 5� point-like source (5� point-like source) perfor-
mance metric for imaging are listed.

The resulting S/N maps for VIS and NISP are shown on
Fig. 19. All four quadrants are fully green, within specifications,
for all channels for their respective depth metrics.

We note that the S/N computations do not consider the con-
tamination of galaxy samples by stars; to this end we introduced
the thresholds to Galactic latitude. The greyed areas in Fig. 19
illustrate where a certain component (such as extinction) is out
of range. These may appear inside the RoI (e.g. at the location of
the SMC). Non greyed areas outside the RoI reflect an evolution
of the criteria that led to the RoI definition, for example by tight-
ening the Galactic latitude threshold from |b| � 23� to |b| � 25�

after the northern ground-based surveys had been defined for
|b| � 25�.

Our more complex zodiacal model (Sect. 5.1.1) predicts a
lower background that varies with time and position along the
orbit. This modulation happens at a level far below the typical
range of zodiacal background within the RoI (Fig. 12), and hence
we do not expect the median performance to change with this
model.

In summary, Fig. 19 shows that the S/N in the VIS band
exceeds the requirement of S/N � 10 over the whole RoI,
with a median value of nearly 16. This gain is mostly related
to longer than required integration times, driven by the needs
of the spectroscopic channel. Likewise, the Y JH photometric
data are well above the S/N � 5 requirement. A negligible
area (less than 50 deg2) of the NISP spectroscopy is below the
S/N � 3.5 requirement (Fig. 19 bottom). The median S/N for
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Figure 45: The Euclid Region of Interest. The Milky Way and the Zodiac divide it into four separate
regions. From [62].

The main purpose of Euclid is to do the Euclid Wide Survey, covering about 15 000 deg2,
over a third of the sky. Euclid will operate in a step-and-stare mode, spending about 70 min
for each field of view. To fill the gaps between the CCDs and detectors in the matrix, this time
is divided into four slightly different , “dithered”, pointings. The Wide Survey area is selected
from a 17 000 deg2 “region of interest” (RoI), avoiding the Milky Way plane and the Zodiac to
allow a good view of the extragalactic universe, see Fig. 45.

The Euclid Wide Survey is both a redshift survey and a weak lensing survey. The redshift
survey is based on the spectra from NISP, from which we expect accurate redshifts for 30 million
galaxies. Only the red grism is used for the Wide Survey. The most important spectral line
for the survey is Hα, the first line in the Balmer series, corresponding to the electron transition
from energy level n = 3 to n = 2 in a hydrogen atom. The wavelength of Hα is 656 nm, so it falls
in the red grism range (1250–1850 nm) for redshifts z = 0.9–1.8. For the weak lensing survey,
accurate shapes of galaxies are determined from the sharp VIS images, while their photometric
redshifts are estimated from the NISP images at the three infrared bands together with ground-
based observations at five other bands. The weak lensing survey has a limiting magnitude of
24.5 and is expected to contain 1.5 billion galaxies.

Sending a telescope to L2 is much more expensive than observing from the ground. There
are a number of reasons for going into space:
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1. The observation conditions are much more stable in an orbit around L2 than on ground,
which is important to get unbiased statistical measures.

2. The whole sky is visible from L2. Again, it is important for correct statistics that the
same telescope and instrument is used for all of the survey.

3. The lack of atmosphere makes sharper and undistorted images possible, which is critical
for shear (weak lensing) measurements.

4. The atmosphere absorbs infrared radiation. Although some of the infrared radiation gets
through, the absorption is wavelength dependent, which distorts the statistics of a redshift
survey and the infrared color needed for photometric redshifts.

These reasons are more critical for image shapes and infrared observations, and therefore Euclid
is designed to do only that part of the survey. For visible wavelength color the advantage of going
to space is not that large, and it is much more economical to make the visible band photometric
observations on ground. In addition to the three near infrared bands from NISP, Euclid relies on
ground observations (see the subsections on LSST and Northern Surveys below) of five visible
bands for the determination of photometric redshifts.

Ground-based redshift surveys like SDSS have obtained extensive information on the large-
scale structure at redshifts z . 1. It appears that the expansion of the universe began to
accelerate near z = 1; to study the effect of dark energy, we need measurements from both sides
of this redshift, up to z ∼ 2. For z & 2 the effect of dark energy is expected to be negligible.
Thus the Euclid redshift survey focus on z = 0.9–1.8 is exactly where more information is the
most needed.

Three Euclid Deep Fields (within the Wide Survey area) covering 40 deg2 will be observed to
2 magnitudes deeper than the Wide Survey (and also with the blue grism). In addition there will
be calibration fields and auxiliary fields. These fields will be used for calibration of the Euclid
instruments and analysis software and are thus needed for the quality of the Wide Survey, but
they will also be used for additional science of their own, especially the Deep Fields.R. Scaramella et al.: The Euclid Wide Survey
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Fig. 1. Euclid timeline. The EWS has to be carried out within the
six year mission baseline and will start 3 months after the launch,
following a commissioning period of 1 month and a PV period of 2
months. An extension of operations beyond the six years is possible
and will be decided in due time. During the first six months of the main
mission (the early operations phase) a faster replanning of the survey is
allowed. The three main data releases (DR#) are shown. The plan is to
have 2500 deg2 made public in DR1, to grow to 7500 in DR2, and be
complete at DR3 for 15 000 deg2. In addition, four quick data releases
(Q#) are foreseen, each of ⇠50 deg2.

marginalising over 25 nuisance parameters and 7 cosmologi-
cal parameters of a flat wCDM model, DES Year 3 gets 3.2%
errors on S 8 (Dark Energy Survey Collaboration 2022). Using
the Fisher matrix for 3 ⇥ 2 pt obtained in Euclid Collaboration
(2020a) for a w0 � wa CDM model, and adding an additional
ten nuisance parameters to represent the uncertainty on the shear
multiplicative bias of each redshift bin (in order to increase the
number of nuisance parameters to have a fair comparison with
DES), we marginalise over a total of 25 nuisance and cosmolog-
ical parameters, getting 1.25% errors on S 8 in a pessimistic set-
ting and 0.68% errors in an optimistic setting. Although the com-
parison is not completely fair – because of the di↵erent intrinsic
alignments and bias models, the fewer nuisance parameters con-
sidered in the Euclid forecast, and a slightly di↵erent set of cos-
mological parameters – these numbers are roughly in agreement
with what one would obtain by simply scaling the DES Year 3
results for the Euclid increase in area and source number density.

The EWS has to be carried out within the six-year mission
baseline and will start 3 months after the launch, following a
commissioning period (1 month) and a performance verifica-
tion (PV) period (2 months). Figure 1 shows the Euclid time-
line with the data release planning. The first major data release
(DR1), corresponding to 2500 deg2 of the EWS, is planned to
take place one year after T1 (T1 = 14 months after launch), the
second data release (DR2) is expected to release 7500 deg2 three
years after T1, and the final one (DR3) will release the full sur-
vey (15 000 deg2) six years after T1. In between, there will be
other ‘quick data releases’: Q1 of 50 deg2 is planned at T1, and
Q2, Q3, and Q4 will take place two, four, and five years after Q1,
respectively.

In addition to the main survey, a significant fraction of time
will be spent on calibrating the instruments and characterising
the target galaxies. As a result, some fields will be observed to
greater depths than with the wide survey (typically two mag-
nitudes deeper). These deep fields have a great legacy value
beyond the cosmological core science. While aspects of non-
core science did not influence the design of the spacecraft and
instruments, they are taken into account in the design of the
EWS to maximise the Euclid scientific return. In fact, it must
be noticed that the large decrease in the background with the
wavelength dramatically increases the S/N in the NIR bands

when compared to Earth-based observations a↵ected by airglow,
which instead increases with wavelength. This makes even a
small space telescope competitive with a large ground telescope
that su↵ers from a background dominated by atmospheric emis-
sion in the NIR bands. The relative gain is such that, in order to
cover the same areas planned for Euclid and at the same depths,
a ground-based NIR survey on existing facilities would need to
observe for several centuries. Regarding other space-based facil-
ities, we notice that the James Webb Space Telescope (JWST)
will be in orbit as well and, with its diameter of 6.5 m, will
go much deeper and faster than Euclid, although only on very
small areas (the JWST field of view is 75 times smaller than the
Euclid one). Hence, the two facilities are complementary and,
moreover, JWST will likely benefit from targets selected from
the Euclid surveys.

The challenge is to fit all these observations into a finite time
allocation set by the limitation of the mission, which is six years,
whilst fulfilling a wide range of constraints, which are reviewed
in detail in this paper. Part of the survey optimisation involves
selecting the best areas of the sky to use, which in turn relies
on a good model of the properties of the observable sky, such as
Galactic extinction and the zodiacal background. We also need to
model the distribution of (bright) stars as their stray light lowers
the observed galaxy number density.

This paper focuses on the design of the EWS, and the deep
fields will be described in a companion paper (Scaramella et al.,
in prep., hereafter [Sc23]). The EWS design takes into account
the main backgrounds that impact any large area survey, the
sequence of operations, and the many limitations to the point-
ing of the telescope. The EWS is at an advanced stage, fulfilling
the key survey requirements over the full mission. Survey sce-
narios at this stage therefore show the detailed feasibility of the
mission but are subject to further optimisation. Nevertheless, the
results we present and their discussion are instructive and useful
for any future large area survey from space or the ground that
aims to combine imaging and spectroscopy.

The paper is organised as follows. The spacecraft is
described in Sect. 2, followed by a summary of Euclid’s instru-
ments in Sect. 3. In Sect. 4 the reference observation sequence
(ROS) is introduced, including a study of dithering scenarios.
Models of zodiacal light, stray light e↵ects, and other environ-
mental properties define the region of interest (RoI) used as input
for the implementation of the Euclid reference survey defini-
tion (RSD). These e↵ects and the properties of the resulting RoI
are presented in Sect. 5, where we also discuss complementary
ground-based observations. Section 6 describes the implementa-
tion of the calibration programme. Observations of sample char-
acterisation fields and the Euclid Deep Survey (EDS) are briefly
mentioned in this context. The construction of the EWS is pre-
sented in Sect. 7. We present the most recent outcome of the sur-
vey optimisation (mid 2021) in Sect. 8. This solution is a good
proxy for the actual survey. We conclude in Sect. 9.

In the appendix we provide a list of the acronyms used in this
paper.

2. The spacecraft and telescope

2.1. The spacecraft

The spacecraft comprises a service module (SVM) and a payload
module (PLM), connected by an interface structure designed
to maximise thermal decoupling. The PLM includes the main
instruments, the folded beam optical components of the tele-
scope, the radiators, and the fine guidance system (FGS). The
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Figure 46: Euclid timeline. From [62].

It takes about a month for Euclid to reach the orbit around L2. The orbit is a Lissajous
orbit59 and it is unstable in the direction towards or away from Earth, so that an orbital
correction is required once a month [62]. The survey begins 3 months after launch, after a

59There are two kinds of orbits in use around the Lagrangian points L1 and L2: Lissajous orbits and halo
orbits. Halo orbits are periodic while Lissajous orbits are not.
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one-month commissioning phase and a 2-month performance verification phase. There will be
three data releases, DR1 for the first year of data (2500 deg2), DR2 for three years (7500 deg2)
and DR3 for the full 6 years (15 000 deg2) of data. After collecting the data, there is a 14 month
proprietary period, during which only EC members (about 2000 scientists) have access to the
data, before the release. In addition, there will be quick data releases of small areas of the sky.
See Fig. 46. R. Scaramella et al.: The Euclid Wide Survey

Fig. 46. RSD 2021A (14 514 deg2) chronology shown in celestial coordinates. RoI boundaries are shown as solid red lines. Blinding stars cause
809 avoidance areas within the reference survey, with an average of 0.785 deg2 per avoidance area, totalling 635 deg2. Dashed lines (1300 deg2

in white per Galactic cap) delimit the highest S/N areas. The ecliptic referential is over-plotted in red. The three EDFs (bright green) and the six
EAFs (red diamonds, not to scale) are shown.

area of ⇠2696 deg2) are left unobserved. These correspond to
the uncoloured areas in the islands and at low latitudes in the
mainlands. The areas of the sky with longitudes between 150�
and 225�, and between 330� and 45�, are observable at the same
time since they are separated by 180�. They contain much area
within the RoI, and moreover the EDF-F and EDF-S are also
located there. This means that there is not enough time for the
EWS to observe all that area in the six years of the mission and
hence their worst-quality regions are not observed.

The RSD contains 44 065 fields (28 080 to build the EWS and
15 985 for EDFs, EAFs and calibration targets observations). The
EWS fields are contained in 256 patches (seen in Figs. 45 and 46).
The vast majority of the field slews, used to point the telescope, are
below 1�.2, as shown in the right panel of Fig. 47. This is the most
e�cient slew regime in terms of propellant usage. As shown in
Fig. 47, all telescope rotations are done within the allowed SAA
and AA limits. Most of the observations are done close to tran-
sit, with 90% of the SAA values used between 88� and 94�. The
statistics of AA usage shows that 71% of the telescope rotations
are done with |AA| < 1�. Even though SAA and AA values spread
over the full range allowed, the field-to-field variations (between
consecutive observations) of SAA and AA are very small through-
out the survey: smaller than 1� in 97.4% (SAA) and 98.6% (AA)
of the field-to-field transitions over the full mission. This feature is
extremely important for the thermal stability, which ensures a sta-
ble PSF for WL shape measurements. It was possible to achieve
this performance thanks to the implementation of the di↵usion
algorithm described in Sect. 7.5.2.

8.2. Unallocated time

The existence of a deficit of area on some longitudes (see
Sect. 5.2.1), compared to the available observing time, is evi-

dent from Fig. 48. The blue curve is the area available in the
RoI at a given ecliptic longitude (in bins of 1�). The RoI areas in
longitudes separated by 180� are added, since that pair of longi-
tudes can be observed at the same time, from the trailing or the
leading direction. Due to this six-month periodicity, the x-axis
range only extends to 180�. The red curve denotes the cumu-
lated number of days during which a given longitude is visible
for EWS observations, assuming transit observations, and con-
verted to equivalent area (1 day corresponding to 10 deg2). The
available time is not uniform, it is determined after the stage-1
schedule is defined (see Sect. 6.3), which creates a strong varia-
tion along the year (i.e. wiggles in the red curve). For example,
the absolute minimum corresponds to the highly booked longi-
tudes of the EDFF and EDFS, where less time is left for EWS
observations.

In longitudes where the red curve is above the blue curve,
there is a deficit of area for the time available for EWS, leading
to unallocated time. Conversely, in longitudes where the blue
curve is above the red curve, there is an excess of area for the
time available for EWS, leading to unobserved areas in the RoI.
In Fig. 46 this corresponds to the areas with no patches, which
clearly are on the areas of the RoI of worst quality.

We note that the presence of unallocated time in the EWS
schedule does not mean that there will be any idle time, because
some areas of the EWS may be re-observed or new areas that do
not qualify for the EWS, but have scientific value nonetheless,
may be observed instead. In doing so, we can either consider
fields that are observable within the thermal and pointing con-
straints enforced for the EWS, or we can operate outside these
constraints, thus with the risk of perturbing the continuation of
the EWS afterwards. Therefore, one needs to have the real in-
flight characteristics to get a solid picture of the possibilities and
constraints.
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Figure 47: Euclid reference survey RSD 2021A. Celestial coordinates are shown in white and ecliptic
coordinates in red. The different colors show the areas of the sky covered by the wide survey in each of
the six years. The red lines outlines the RoI. The white dashed lines outline the galactic caps where the
extragalactic visibility is the best. The reference survey covers 14 514 deg2. The small holes in the survey
are due to “blinding stars”, which are so bright that they would degrade the quality of a large part of
the field of view. There are 809 such holes totalling 635 deg2. The 3 Euclid deep fields are shown in light
green. The six auxiliary fields are marked with red diamonds. Calibration fields are not marked. From
[62].

The sequence of pointings comprising the Euclid survey requires careful planning to make
optimal use of the time available. There are are a number of constraints that need to be satisfied,
e.g., the angle between the pointing direction and the Sun must not vary too much to keep the
thermal conditions stable: it will be kept between 87◦ and 110◦; thus at any given time of the
year only a 23◦ wide strip of the sky is observable. The final survey sequence has not been yet
decided, but Fig. 47 shows the Euclid reference survey RSD 2021A (RSD = reference survey
definition) that satisfies the constraints and is a result of optimization. The regions furthest
from the Milky Way, where the extragalactic visibility is the best, are observed in the first two
years, and the two smaller “island” regions of the ROI are observed in the last two years of the
6-year survey.

Figure 48 shows a schematic view of the Euclid data analysis pipeline. Euclid data is trans-
mitted from space to ground stations, which transmit the data to the Mission Operations Center
(MOC) located at European Space Operations Centre (ESOC) in Darmstadt. From there the
data is sent to the Science Operations Center (SOC), located at the European Space Astronomy
Centre (ESAC) near Madrid, which performs the lowest level (Level-1) of the data analysis:
telemetry checking and handling, real time assessment of “housekeeping ” (status of spacecraft
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7. Ground Segment and Data Handling 

 

101

be achieved with parts that communicate only through the EMA. These processing units constitute a first 
step into the realisation of a distributed pipeline development. They are listed briefly hereafter:  

 
Figure 7.1: The complete Euclid data processing pipeline all the way to the science data products. Each rectangular 
box defines a logical function where the operations can be considered as self-contained, i.e. interactions with the other 
functions occur through the EMA. Actual data are represented by the green circles and reside in the EMA. The grey 
arrows indicate relations where information is provided for the destination, the purple arrows signify more complex 
relations between data and processing units. See text for details. 

x VIS: is in charge or processing the visible imaging data from level 1 to level 2. It produces fully 
calibrated images, as well as source lists for quality check purposes only. 

x NIR: is in charge of processing the near-infrared imaging data from level 1 to 2. It produces fully 
calibrated images as well as source lists for quality check purposes and to allow spectra extraction. 

x SIR: is in charge of processing the near-infrared spectral imaging data from level 1 to 2. It produces fully 
calibrated spectral images and extracts spectra in the slitless spectroscopic frames taken by the NISP. 

x EXT: is in charge of ingesting in the EMA all external data. This is mostly multi-wavelength data for 
photo-z estimation, but also spectroscopic data to validate the spectrometric redshift measurement tools. 

x SIM: realises the simulations needed to test, validate, and qualify the whole pipeline, science products 
included. 

x MER: realises the merging of all the level 2 information. It is in charge of providing stacked images and 
source catalogues where all the multi-wavelength data (photometric and spectroscopic) are aggregated. 

x SPE: extracts spectroscopic redshifts from the level 2 spectra. 
x PHZ: computes photometric redshifts from the multi-wavelength imaging data. 
x SHE: computes shape measurements on the visible imaging data. 
x LE3: computes the high-level science data products (Level 3), using the fully processed shape and 

redshift measurements. 

A system is needed to turn the flow into an actual pipeline. A strong prerequisite from the EMC scientists is 
to keep the highest flexibility in the development of the most critical paths of the data processing. This 
includes allowing for different methods, different processing environments, and different experts to tackle 
the problems raised by the Euclid pipeline. Typical high flexibility areas are shape measurements and photo-

Figure 48: Schematic view of the Euclid data processing pipeline. See the main text for explanations.
From [20].

and instruments) data, unpacking and decompression.
The 9 Euclid SDCs get the data from the SOC. IOTs are the Instrument Operation Teams

that provide information about the instrument properties. The data products are distributed
among the SDCs in the Euclid Mission Archive (EMA). VIS, NIR, and SIR refer to the reduction
of the raw images from the instruments to provide calibrated images. The reduction contains
such steps as the subtraction of “darks”, i.e., what kind of output we get from the instrument
when it receives no light, and scaling by “flats”, i.e., images produced by the instrument when it
is looking at uniform illumination, and removal of artifacts such as tracks of cosmic rays. EXT
refers to processing external data received from ground-based surveys that has to be “Euclidized”
to be in the same form as Euclid data. MER refers to merging the Euclid and external data to
produce stacked images and source catalogs where the information from the different instruments
and surveys is combined.

SPE refers to extraction of the redshifts from the spectra of the calibrated spectral images
produced by SIR. SHE refers to determination of the shapes of galaxy images in the calibrated
images produced by VIS. This step has to correct for the additional distortion produced by the
optics of the telescope and requires knowledge of the point spread function (PSF), i.e., how does
the image of a point source appear on the different parts of the VIS CCDs. PHZ determines
the photometric redshifts estimated from the images at different wavelength bands from NIR
and external data. SIM provides simulated data, which is needed for testing, validating, and
qualifying the pipeline, and also for calibration and error estimation of the Euclid data products.
The output of SPE, SHE, PHZ is in the form of final galaxy catalogs, containing their positions,
magnitudes, redshifts and shapes.

LE3 refers to the last level, “Level-3”, of the data analysis, where the final cosmology prod-
ucts, in the form of mass maps and various statistics, such as two- and three-point correlation
functions, power spectra and bispectra, and their covariance matrices are calculated from these
catalogs.



12 GALAXY SURVEYS 128

Figure 49: Vera C. Rubin Observatory on top of Cerro Pachón, 30◦15′ S 70◦45′W, at 2647 m altitude,
in Northern Chile. From https://rubinobservatory.org/slideshows/eyes-on-asteroids.

12.4 Ground-based surveys

12.4.1 LSST

In the planning stage, LSST stood for Large Synoptic Survey Telescope. The observatory has
now been named Vera C. Rubin Observatory [63] and the telescope Simonyi Survey Telescope.
See Fig. 49. The original acronym has been repurposed to stand for Legacy Survey of Space
and Time, a ten-year survey using the 8.4 m telescope and 3200 megapixel camera (the largest
digital camera ever constructed) of the observatory, with 6 different optical filters (u, g, r, i, z,
and y (see Fig. 50), covering wavelengths 320–1050 nm) [64]. The telescope has been designed
for repeated observation of the entire visible sky in a short time scale (synoptic = see all).
The field of view is 9.6 deg2 (so that pixel size is 0.2 arcsec) and the telescope can be repointed
in less than five seconds. Its etendue, the product of light collecting area and field of view,
AΩ = 319 m2deg2, will be significantly larger than any other optical telescope. The entire
visible sky will be observed every 3–4 nights. This makes the survey excellent for spotting
supernovae, asteroids, and other transient (changing in brightness or position) objects. Rubin
Observatory is expected to discover 10–100 times more Solar System objects than known before
and provide advance warning of objects that may be on collision course with Earth. First light
is expected in August 2024.

According to the baseline survey strategy [65], 85% of observing time will be taken by the
main survey (WFD = Wide, Fast, Deep), which covers 18 000 deg2 uniformly. The declination
range is δ = −65◦–+5◦ (the total sky area in this range is 20 500 deg2, but a region aligned with
the Galactic Plane is not included in WFD). Two back-to-back 15-second exposures (this pair is
called a visit) are taken of each field of view (two observations are needed to detect and remove
tracks of cosmic rays from the images). On average, there will be 816 visits per night, and there
will be 3026 observing nights in ten years. There are 2293 fields in the main survey. The same
field of view will be observed every 3–4 nights, resulting in 910 visits (62 u, 88 g, 199 r, 201 i, 180
z, and 180 with the y filter) on average during the 10-year LSST. As often as possible there will be
a pair of visits of the same field with 15–60 minute separation to help catch moving solar system
bodies [64]. As the repeated observations are coadded, the view of the sky becomes gradually
deeper, the limiting magnitude improving from (23.14, 24.47, 24.16, 23.40, 22.23, 21.57) of a
single image to (25.4, 27.0, 27.1, 26.4, 25.2, 24.4) for the full stacked image after 10 years.60

60These numbers are from [65], and may yet change. The design specifications were an 18 000
deg2 main survey area and 825 visits per field (56, 80, 184, 184, 160, and 160 per filter). On
https://www.lsst.org/scientists/keynumbers the limiting magnitudes are given as (23.9, 25.0, 24.7, 24.0,
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wavelength range nor gaps in the wavelength coverage are
desirable options), but this option is not satisfactory. Placing
the red edge of the u band blueward of the Balmer break allows
optimal separation of stars and quasars, and the telluric water
absorption feature at 9500Åeffectively defines the blue edge
of the y band. Of the remaining four filters (griz), the g band is
already quite wide. As a last option, the riz bands could be
redesigned as two wider bands. However, this option is also
undesirable because the r and i bands are the primary bands for
WL studies and for star/galaxy separation, and atmospheric
dispersion would worsen the PSF for a wider bandpass (e.g., at
air mass of 1.3, the typical dispersion in the u, g, and r bands is
0 55, 0 46, and 0 19, respectively; if the bandpass width
increased by 50%, the dispersion would increase by a similar
factor). The effects of atmospheric dispersion on WL studies
are mitigated by modeling the PSF as a function of the color of
the object (for more details, see Meyers & Burchat 2015;
Carlsten et al. 2018).

2.5. The Calibration Methods

Precise determination of the PSF across each image, accurate
photometric and astrometric calibration, and continuous
monitoring of system performance and observing conditions
will be needed to reach the full potential of the LSST mission.
Extensive precursor data including the SDSS data set and our
own data obtained using telescopes close to the LSST site of
Cerro Pachón (e.g., the SOAR and Gemini South telescopes),
as well as telescopes of similar aperture (e.g., Subaru), indicate
that the photometric and astrometric accuracy will be limited
not by our instrumentation or software, but rather by
atmospheric effects.

The overall photometric calibration philosophy (Stubbs &
Tonry 2006) is to measure explicitly, at 1 nm resolution, the
instrumental sensitivity as a function of wavelength using light
from a monochromatic source injected into the telescope pupil.
The dose of delivered photons is measured using a calibration
photodiode whose quantum efficiency is known to high
accuracy. In addition, the LSST system will explicitly measure
the atmospheric transmission spectrum associated with each
image acquired. A dedicated 1.2 m auxiliary calibration
telescope will obtain spectra of standard stars in LSST fields,

calibrating the atmospheric throughput as a function of
wavelength (Stubbs et al. 2007; see Figures 5 and 6). The
LSST auxiliary telescope will take data at lower spectral
resolution (R∼150) but wider spectral coverage (340 nm–
1.05 μm) than shown in these figures, using a slitless
spectrograph and an LSST corner-raft CCD. Celestial spectro-
photometric standard stars can be used as a separate means of
photometric calibration, albeit only through the comparison of
band-integrated fluxes with synthetic photometry calculations.

Figure 4. LSST bandpasses. The vertical axis shows the total throughput. The
computation includes the atmospheric transmission (assuming an air mass of
1.2; dotted line), optics, and the detector sensitivity.

Figure 5. Example of determination of the atmospheric opacity by
simultaneously fitting a three-parameter stellar model SED (Kurucz 1979)
and six physical parameters of a sophisticated atmospheric model (MOD-
TRAN; Anderson et al. 1999) to an observed F-type stellar spectrum (Fλ). The
black line is the observed spectrum, and the red line is the best fit. Note that
the atmospheric water feature around 0.9–1.0 μm is exquisitely well fit. The
components of the best-fit atmospheric opacity are shown in Figure 6. Adapted
from Burke et al. (2010).

Figure 6. Components of the best-fit atmospheric opacity used to model the
observed stellar spectrum shown in Figure 5. The atmosphere model
(MODTRAN; Anderson et al. 1999) includes six components: water vapor
(blue), oxygen and other trace molecules (green), ozone (red), Rayleigh
scattering (cyan), a gray term with a transmission of 0.989 (not shown), and an
aerosol contribution proportional to λ−1 and extinction of 1.3% at
λ=0.675 μm (not shown). The black line shows all six components
combined. Adapted from Burke et al. (2010).
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center of the telescope pier is located at latitude S 30°14′40 68,
longitude W 70°44′57 90, elevation 2652 m; Mamajek 2012).
The telescope enclosure houses a compact, stiff telescope
structure (see Figure 10) atop a 15 m high concrete pier with a
fundamental frequency of 8 Hz, which is crucial for achieving
the required fast slew-and-settle times. The height of the pier
was set to place the telescope above the degrading effects of the
turbulent ground layer. Capping the telescope enclosure is a
30 m diameter dome with extensive ventilation to reduce dome
seeing and to maintain a uniform thermal environment over the
course of the night. Furthermore, the summit support building
has been oriented with respect to the prevailing winds to shed
its turbulence away from the telescope enclosure. The summit
support building includes a coating chamber for recoating the
three LSST mirrors and clean room facilities for maintaining
and servicing the camera.

2.6.2. Camera

The LSST camera provides a 3.2-gigapixel flat focal plane
array, tiled by 189 4K×4K CCD science sensors with 10 μm
pixels (see Figures 11 and 12). This pixel count is a direct
consequence of sampling the 9.6 deg2 field of view (0.64 m
diameter) with 0.2×0.2 arcsec2 pixels (Nyquist sampling in
the best expected seeing of ∼0 4). The sensors are deep
depleted high-resistivity silicon back-illuminated devices with
a highly segmented architecture that enables the entire array to
be read in 2 s. The detectors are grouped into 3×3 rafts (see
Figure 13); each contains its own dedicated electronics. The
rafts are mounted on a silicon carbide grid inside a vacuum
cryostat, with a custom thermal control system that maintains
the CCDs at an operating temperature of around 173 K. The

entrance window to the cryostat is the third (L3) of the three
refractive lenses in the camera. The other two lenses (L1 and
L2) are mounted in an optics structure at the front of the camera
body, which also contains a mechanical shutter and a carousel
assembly that holds five large optical filters. The five filters in
the camera can be changed in 90–120 s, depending on the
initial camera rotator position. The sixth optical filter can
replace any of the five via a procedure accomplished during
daylight hours.
Each of the 21 rafts will host three front-end electronic

boards (REB) operating in the cryostat (at −10°C) that read in
parallel a total of 9×16 segments per CCD (144 video
channels reading 1 million pixels each). This very high
parallelization is the key to allowing for a fast readout (2 s)
of the entire focal plane. To reach this performance with a
reasonably sized board, a special low-noise (<3 electrons),
low-cross-talk-between-channels (<0.02%), and low-power-
dissipation (25 mW/channel) Analog Signal Processing Inte-
grated Circuit, hosting eight channels per chip, has been
developed, which is able to read the CCDs with a linearity
better than 0.1% (Antilogus et al. 2017).

2.6.3. Data Management

The rapid cadence and scale of the LSST observing program
will produce approximately 15 TB per night of raw imaging data96

(about 20 TB with calibration exposures). As with all large
modern surveys, the large data volume, the real-time aspects,
and the complexity of processing involved require that the
survey itself take on the task of fully reducing the data. The
data collected by the LSST system will be automatically
reduced to scientifically useful catalogs and images by the
LSST Data Management (DM; Jurić et al. 2017a) system.
The detailed outputs of the LSST Data Management system

are described in Section 3.3. The principal functions of the
system are the following:

Figure 12. LSST Camera focal plane array. Each cyan square represents one
4K×4K pixel sensor. Nine sensors are assembled into a raft; the 21 rafts are
outlined in red. There are 189 science sensors, for a total of 3.2 gigapixels. Also
shown are the four corner rafts, where the guide sensors and wavefront sensors
are located.

Figure 13. LSST Camera raft module, corresponding to the red squares in
Figure 12, with nine sensors, integrated electronics, and thermal connections.
Raft modules are designed to be replaceable.

96 For comparison, the volume of all imaging data collected over a decade by
the SDSS-I/II projects and published in SDSS DR 7 (Abazajian et al. 2009) is
approximately 16 TB.
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Figure 50: Left: LSST bandpasses. The dotted line is atmospheric transmission. Right: LSST Camera
focal plane array. Each small square is a 4K×4K pixel sensor. From [64].

Approximately 10–20% of observing time will be spent on other projects such as “deep drilling
fields” (single pointings observed in extended sequences). LSST is expected to observe 20 billion
galaxies, millions of Type Ia supernovae [64], and 17 billion stars, and determine orbits of 6
million solar system bodies [https://www.lsst.org/scientists/keynumbers]. The Deep Drilling
Fields will yield well-sampled light curves of tens of thousands of SNe to redshifts peaking around
z ∼ 0.7 and reaching beyond z = 1 [64].

23.3, 22.1) for a single exposure and (26.1, 27.4, 27.5, 26.8, 26.1, 24.9) after 10 years.
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The main deep-wide-fast survey will use about 90% of the
observing time. The remaining 10% of the observing time will
be used to obtain improved coverage of parameter space such
as very deep (r∼26) observations, observations with very
short revisit times (∼1 minute), and observations of “special”
regions such as the ecliptic plane, Galactic plane, and the Large
and Small Magellanic Clouds.

3.1.1. The Main Deep-wide-fast Survey and Its Extensions

The observing strategy for the main survey will be optimized
for the homogeneity of depth and number of visits. In times of
good seeing and at low air mass, preference is given to r- and
i-band observations. As often as possible, each field will be
observed twice, with visits separated by 15–60 minutes. This
strategy will provide motion vectors to link detections of
moving objects in the solar system and fine-time sampling for
measuring short-period variability. The ranking criteria also
ensure that the visits to each field are widely distributed in
position angle on the sky and rotation angle of the camera in
order to minimize systematic effects in galaxy shape
determination.

The universal cadence provides most of LSST’s power for
detecting NEOs and Kuiper Belt objects (KBOs) and naturally
incorporates the southern half of the ecliptic within its 18,000
square degrees, with a decl. cut of about δ=+2°. Additional
coverage of a crescent within 10 degrees of the northern
ecliptic plane would sample the full azimuthal distribution of
KBOs, crucial for understanding the different dynamical
families in which they fall. Thus, we plan to extend the
universal cadence to this region using the r and i filters only,
along with more relaxed limits on air mass and seeing. Relaxed
limits on air mass and seeing are also adopted for ∼700 deg2

around the south celestial pole, allowing coverage of the Large
and Small Magellanic Clouds (Figure 18).
Finally, the universal cadence proposal excludes observa-

tions at low Galactic latitudes, where the high stellar density
leads to a confusion limit at much brighter magnitudes than
those attained in the rest of the survey. Within this region, the
Galactic plane proposal provides 30 observations in each of the
six filters, distributed roughly logarithmically in time (it may
not be necessary to use the u and g filters for this heavily
extincted region).
The resulting sky coverage for the LSST baseline cadence

(known internally as baseline2018a), based on detailed
operations simulations, is shown for the r band in Figure 18.
The anticipated total number of visits for a 10 yr LSST survey
is about 2.45 million (∼4.9 million 15 s long exposures,
summing over the six filters). The per-band allocation of these
visits is shown in Table 1. Details of the cadence of visits over
a single season, for two distinct pointings, are shown in
Figure 19.
The baseline universal cadence is by no means the definitive

plan for the entire survey. Rather, it represents a proof of
concept that it is indeed possible to design a observing strategy
that addresses a wide variety of science goals in a nearly
optimal way. With input and engagement of the community,
we are undertaking a vigorous and systematic research
effort to explore the enormously large parameter space of
possible surveys (see LSST Science Collaboration et al. 2017).
The scientific commissioning period will be used to test the
usefulness of various observing modes and to explore
alternative strategies.

3.1.2. Mini-surveys and Deep Drilling Fields

Although the uniform treatment of the sky provided by the
universal cadence proposal can satisfy the majority of LSST
scientific goals, roughly 10% of the time will be allocated to
other strategies that significantly enhance the scientific return.
These surveys aim to extend the parameter space accessible to
the main survey by going deeper or by employing different
time/filter sampling. We have already discussed three
examples of such mini-surveys: the northern ecliptic spur to
improve completeness of the asteroid and KBO population, the
southern celestial cap to extend the survey footprint to the
South Pole (thus providing coverage of the Magellanic
Clouds), and the Galactic plane survey to include low Galactic
latitude fields.
As an additional example of a mini-survey, consider a

program that uses 1 hr of observing time per night to observe a
single pointing (9.6 deg2) to substantially greater depth in
individual visits. Accounting for readout time and filter
changes, it could obtain about 50 consecutive 15 s exposures
in each of four filters in an hour. If a field is visited every
2 days over 4 months, about 600 deg2 can be observed with this
cadence over 10 yr. Taking weather into account, the selected
fields would each have on average about 40 hr long sequences
of 200 exposures each. Each 15 s exposure in a sequence would
have an equivalent 5σ depth of r∼24, and each filter
subsequence when co-added would be 2 mag deeper than the
main survey visits (r∼26.5). When all 40 sequences and the
main survey visits are co-added, they would extend the depth
to r∼28.

Figure 18. Distribution of the r-band visits on the sky for a simulated
realization of the baseline cadence. The sky is shown in the equal-area
Mollweide projection in equatorial coordinates (the vernal equinoctial point is
in the center, and the R.A. is increasing from right to left). The number of visits
for a 10 yr survey is color-coded according to the legend. The three regions
with smaller number of visits than the main survey (“mini-surveys”) are the
Galactic plane (arc on the right), the region around the south celestial pole
(bottom), and the so-called “northern ecliptic region” (upper left; added in
order to increase completeness for moving objects). Deep Drilling Fields, with
a much higher number of visits (≈2500–4500 in the r band) than the main
survey (a median over all fields of 200 visits in the r band), are also visible as
small circles. The fields were dithered on subfield scales, and pixels with
angular resolution of ∼30 arcmin were used to evaluate and display the
coverage. The slightly elevated number of visits for four locations along the
decl. ≈−30° line is due to the pattern of the pointing tessellation on the sky.
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Figure 51: LSST baseline survey. The color scale shows number of visits using the r filter. For the main
survey area this number is about 200. There are three surveys with lower number of visits to cover the
rest of the southern ecliptic and equatorial hemispheres: The “northern ecliptic region” on the upper left
is included to increase completeness of solar system objects. The arc on the right is the Galactic plane
region that was excluded from the main survey since the high stellar density would lead to confusion
of objects in such deep exposure. The yellow regions are Deep Drilling Fields, 2500–4500 r band visits.
From [64].

12.4.2 Northern Surveys

For photometric redshift determination Euclid needs to supplement its three NIR imaging bands
with images at visible light bands; especially the griz bands are critical [20, 62]. These can be
more economically obtained by ground-based surveys. For the southern sky, Euclid can initially
use data from DES and later from LSST. For the Northern sky there is no comparable survey
with sufficiently many wavelength bands. Thus data from several different surveys will be used.
Euclid is negotiating with LSST to extend it north up to δ = +30◦. For further north there
are several surveys conducted from the northern hemisphere. Some of them cannot effectively
observe (from Hawaii) further north than δ = 80◦, and therefore the Euclid survey will also use
this as the northern limit. [62]

Three wide-field telescopes in Hawaii have joined forces to conduct the Ultraviolet Near
Infrared Optical Northern Survey (UNIONS) [https://www.skysurvey.cc]: CFHT and Sub-
aru Telescope on Maunakea (19◦50′N, 155◦29′W) and Pan-STARRS on Haleakala (20◦42′N,
156◦15′W). CFHT will provide the u and r bands, Pan-STARRS the i band, and Subaru the
g and z bands; for the declination range 30◦ ≤ δ ≤ 80◦ and more than 25◦ away from the
galactic plane (an area of 4861 deg2). In the u band LSST will not survey north of δ = 12◦ due
to the high airmass resulting from the required low elevation angle of the telescope. Therefore
UNIONS is aiming to extend the survey in u down to δ = 18◦ or 12◦. An original motivation for
UNIONS was to provide ground-based data for Euclid, but UNIONS is a separate entity from
Euclid, and has also goals of its own.

Pan-STARRS (Panoramic Survey Telescope and Rapid Response System) [66] is like LSST
for the north, although smaller, in that it continuously monitors the sky, to detect moving or
variable objects. It uses two 1.8 m telescopes equipped with Gigapixel Cameras (1400 Mpix) at
the Haleakala Observatory on Maui, Hawaii. It has been in operation since 2008 (then with
just one telescope) and is mainly funded by the NASA Near Earth Object (NEO) observation
program, and thus its main purpose is to search for potentially hazardous asteroids that may
impact Earth in the future. In 2017 Pan-STARRS discovered the first interstellar object known
to visit the solar system, ‘Oumuamua. Euclid is counting on Pan-STARSS to provide the i-band
north of δ = +30◦.
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The Canada-France Imaging Survey (CFIS) [https://www.cfht.hawaii.edu/Science/CFIS/]
is using the 3.6 m Canada-France-Hawaii Telescope (CFHT) on Maunakea with its 380 Mpix
MegaCam camera to provide the u and r bands.

The Subaru telescope [https://subarutelescope.org/en/] is an 8.2 meter telescope on Mau-
nakea, Hawaii, operated by the National Astronomical Observatory of Japan. It will use its
870 Mpix Hyper Suprime-Cam (HSC) with a 1.5◦ diameter field of view to conduct the WISHES
(Wide Imaging with Subaru HSC of the Euclid Sky) survey to provide the z band. The z band
is the most demanding of the bands to be obtained from the ground, so it requires an 8 m class
telescope. The Waterloo Hawaii IfA G-band Survey (WHIGS) uses Canadian and University of
Hawaii access by UNIONS co-leads to Subaru HSC to provide the r band.

The Javalambre Survey Telescope (JST250) [https://oajweb.cefca.es/telescopes/jst250]
at 40◦02′N, 1◦01′W in Teruel, Spain, with a 2.55 m diameter mirror will use its Javalambre
Panoramic Camera (JPCam) with a 4.3 deg2 field of view to conduct the Javalambre-Euclid Deep
Imaging Survey in g-band (JEDIS-g). Both Subaru and JEDIS are mentioned in connection of
providing the g band in the north for Euclid. According to [62], the Subaru g-band is an effort
launched in 2019 to complement the Spanish effort.

12.4.3 DESI

last FVC image is acquired, the back-illumination turned off,
and the spectrographs’ shutters are opened.

The hexapod is regularly rotated during the exposure to
compensate for the residual field rotation. Also during the
exposure, a dynamic exposure time calculator estimates the
remaining time needed to achieve a preset effective exposure
time, which is a function of the sky brightness, the sky
transparency, the airmass, and the image quality. The sky
brightness is estimated from sky monitor fibers placed on the
edge of the focal plane and read regularly with a dedicated
CCD camera. The sky transparency and image quality are
determined from the GFA images.

3.3. Exposure Data Set

At the end of the exposure sequence, the shutters are closed,
the CCD is read, and the instrument control system collects the
individual images and saves them in a single fits files with
multiple Header Data Units (hereafter HDUs), with one for
each of the 30 cameras, while adding many header keywords
about the telescope and its pointing, environmental parameters
in the dome, along with monitoring parameters for the CCDs,

cryostat, readout electronics, and temperatures and humidity in
the vicinity of the cameras. All of the guide star images are
saved for offline analysis. This is useful to model the fraction of
light in the fiber aperture given the current image quality and
the performance of the guiding. Those images also provide
redundant information about the sky transparency. The FVC
images and in particular the coordinates of the fiber tips are
recorded along with their expected positions for a perfect
alignment on the targets. This information is used for the flux
calibration, the estimation of the expected S/N in the spectra,
and general QA. The data from the dynamic exposure time
calculator is saved, along with the input fiber assignment table
associated with the observed tile, and a table of fiber
positioning offsets, determined from the analysis of the FVC
control image. All of this data is saved in one directory per
exposure (see the DESI data model referenced in Section 7 for
more details). This directory is copied to the National Energy
Research Scientific Computing Center (NERSC) within a few
minutes, and additional copies are stored at NOIRLab and the
NERSC archival tape backup system within 1 day.
The fiber assignment table contains important information

about the targets for the spectroscopic pipeline. The fibers
pointing to blank sky coordinates are separately identified; they
are used to model the sky spectrum (see Section 4.7). The table
also contains the various target bitmasks among which standard
stars can be found for the flux calibration (Section 4.8). It
provides useful information from the imaging catalogs. This
includes in particular the total flux in the g, r, and z DECam
passbands,45 along with the fiber fluxes, which are the fluxes
one would have collected in a 1 5 diameter fiber for a seeing or
image quality of 1″ FWHM for the target, given its surface
density profile as determined from the imaging data.
The majority of tiles (or pointings) are observed with a single

exposure, with an average exposure time of about 800 s in
bright time, and 1100 s in dark time. The tiles that require
exposure times longer than 1800 s because of poor observing
conditions are split into several exposures to minimize the
impact of cosmic rays and readjust the fiber positioners. This
exposure time threshold was decided after studying the effect
of unmasked cosmic-ray hits on the redshift success rate of
ELGs. Observing systematically the tiles with several shorter
exposures would further reduce the effect of cosmics rays but at
the cost of an increased read noise and a loss of exposure time
when reading the CCDs (60 s).

4. Algorithms and Performance

4.1. Overview

The spectroscopic pipeline deliverables are wavelength- and
flux-calibrated spectra of the observed targets (with flux
variance, bit mask, spectral resolution for each wavelength
and fiber), and a redshift catalog with a spectroscopic
classification of the targets, their redshift uncertainty, and a
confidence level (see Section 7 for a more complete description
of the data products). We review here the data flow. The
algorithms, fitting procedures, and performances are presented
in more details in the following sections. The data flow is
graphically presented in Figure 5.

Figure 4. Example CCD image after pre-processing. This is an NIR CCD
image of spectrograph SM10 after a 900 s exposure. On the top panel, one can
see the 500 fibers organized in 20 blocks of 25 fibers each. The mostly
horizontal curved lines are sky lines. Bright fibers (appearing as vertical dark
bands in this negative color scale) are the spectral traces from standard star
fibers. One can also note many cosmic-ray hits. The lower panel is a zoom
highlighting the clear separation of the fiber traces, the space between blocks,
and the spectrograph resolution (see Section 4.3 for more details on the
resolution).

45 See Dey et al. (2019) for a description of the surveys and the passbands, and
https://www.legacysurvey.org/dr9/ for the imaging catalogs.
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Figure 52: Left: The Mayall telescope and DESI. The focal plane with the fiber positioners is at the
top. The fibers going to the spectrographs (bottom left) are shown in purple. Right: Example NIR CCD
image from a DESI spectrograph showing 500 spectra as parallel vertical lines. The horizontal curved
lines are sky lines from the atmosphere. Also cosmic ray tracks are visible. From [68].

The Dark Energy Spectroscopic Instrument (DESI) [67, 68] is a multiobject spectroscopic
system installed at the Mayall 4 m telescope at Kitt Peak in Arizona. The field of view is
8.0 deg2. The focal plane is divided into 10 petals, each equipped with 500 fiber positioning
robots. For each exposure the robots position the fibers to look at the selected galaxies, whose
spectra we want. Fiber bundles from the petals lead to 10 spectrographs. Each spectrograph
has three arms, corresponding to blue (360–593 nm), red (560–772 nm) and near infrared (747–
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980 nm), with a CCD (4096× 4096 pixels for blue, 4114× 4124 for red and NIR). The fibers are
arranged to produce the 500 spectra as parallel lines on the CCDs. See Fig. 52. Thus DESI can
take 5000 spectra simultaneously.

Figure 53: A slice through the universe containing 400 000 galaxies from the first few months of DESI
operation. The furthest galaxies are 10 billion light years away. Credit: D. Schlegel/Berkeley Lab using
data from DESI. Acknowledgment: M. Zamani (NSF’s NOIRLab).

The DESI survey [https://www.desi.lbl.gov/the-desi-survey/] is a 5-year redshift survey
to take spectra of 40 million pre-selected galaxies over one-third of the sky, 10 times as many as
SDSS. The survey is based on four classes of galaxies:

1. bright galaxies out to z = 0.4 with limiting magnitude 20

2. luminous red galaxies (LRG) out to z = 1.0

3. emission line galaxies (ELG), which have strong emission lines DESI can pick out to z = 1.6

4. quasars, which DESI can detect out to z = 3.5 and beyond

The survey is a stage IV (see Sec. 12.6) dark energy survey based on measuring the BAO scale
as a function of redshift.

The survey began with survey validation observations from December 2020 through June
2021, when the main survey began. The first data releases will be the Early Data Release from
the survey validation and DR1 covering data until September 14, 2022 [69]. No data has been
released yet (as of May 19, 2023), but a publicity image showing 400 000 galaxies was published
in January 2022 [https://noirlab.edu/public/news/noirlab2203/], see Fig. 53.

12.5 Roman

The Decadal Survey of Astronomy and Astrophysics is conducted by the National Academy of
Sciences in the United States every 10 years to make recommendations on what major projects
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Figure 54: Roman Observatory. Credit: GSFC/SVS

should be invested on. The 2010 survey [70] identified as the top priority space project the
Wide-Field Infrared Survey Telescope (WFIRST) to be sent to an orbit around L2. The original
design had a 1.3 m diameter mirror but in 2012 the National Reconnaissance Office offered to
donate to NASA two surplus telescopes they had, with 2.4 m diameter mirrors. It was decided
to use one of them for WFIRST. See Fig. 54. The larger telescope meant launch mass (4166 kg)
almost twice as large as Euclid (2160 kg) and therefore a geosynchronous orbit was considered
instead of L2; this would also help accommodate the larger data rater the larger telescope made
possible. In 2020 the mission was renamed Nancy Grace Roman Space Telescope. It has now
been decided to send it to a halo orbit around L2 using the SpaceX Falcon Heavy launcher. The
mission was delayed by the delays and cost overruns of the James Webb Space Telescope (which
was the top space priority of the previous Decadal Survey) as NASA did not have sufficient
funding for both simultaneosly. With the JWST launch in December 2021, Roman has then
been progressing swiftly and the launch is expected in late 2026. The planned mission duration
is 5 years, with a possible 5-year extension. [71].

Roman will have two instruments: the Wide Field Instrument (WFI), and the Coronagraph
Instrument. WFI is the primary instrument, and will be used for a galaxy survey covering
a billion galaxies. It will also perform a microlensing survey of the inner Milky Way, and is
expected to find 2 600 exoplanets. WFI has a 300-megapixel camera and a 0.281 deg2 (0.8 ×
0.4 deg) field of view. It has 8 different filters, a grism and a prism [72]. The Coronagraph
Instrument is for taking images and spectra of nearby exoplanets.

Roman will perform a number of different surveys. There will be three “core community
surveys” using WFI: 1) 24 months of observing time will be devoted to the High Latitude
Wide Area Survey, covering 2000 deg2 of extragalactic sky, taking images at different bands and
spectra. 2) 6 months for the High Latitude Time Domain survey, covering 5–20 deg2, revisited
with a 5-day cadence, the goal being to measure light curves of Type Ia supernovae. 3) 13
months for Galactic Bulge Time Domain survey, covering 2 deg2 near the galactic center to
find exoplanets. In addition, 3 months is reserved for Coronagraph Instrument Tech Demo
Observations of exoplanets. The remaining 15 months of the nominal 5-year mission is reserved
for “General Astrophysics Surveys” for which astronomers can make proposals. All Roman
observations will be public with no proprietary period.

The High Latitude Wide Area Survey is similar to the Euclid survey, but complementary to
it, as it covers a much smaller region of sky (at least 1700 deg2) but to greater depth. The imaging
part covers the NIR range 930–2000 nm with four different bands (927–1192 nm, 1131–1454 nm,
1380–1774 nm, and 1683–2000 nm), leading to weak lensing shape measurements of hundreds of
millions of galaxies. The spectroscopic part covers the same region of sky with slitless grism
spectroscopy at 1000–1930 nm. The primary target spectral lines are Hα (656.3 nm) for redshifts
0.53 < z < 1.88 and O-III (500.7 nm) up to z = 2.77. (The survey is not yet fully defined; the
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above is a possible survey design).

12.6 Dark Energy Survey Stages

In 2006 the Dark Energy Task Force (DETF) [73] defined different stages (I–IV) of observational
projects according to how accurately they can determine the dark energy equation of state. They
defined the DETF Figure of Merit (FoM) as the reciprocal of the area of the error ellipse enclosing
the 95% confidence limit in the w0, wa plane, assuming the two-parameter equation of state

w(a) = w0 + (1− a)wa . (12.1)

So roughly FoM ∝ 1/(∆w0∆wa), where ∆w0 and ∆wa are the uncertainties of the two parameter
values. Stage I corresponded to what was known in 2006, Stage II represent projects ongoing
then, and Stages III-IV referred to future projects, Stage IV defined as projects that could
increase FoM by an order of magnitude from Stage II, Stage III providing a more modest
improvement.

DETF identified four main observational techniques:

1. Measurements of the Baryon Acoustic Oscillation (BAO) scale in galaxy redshift surveys

2. Galaxy Cluster (CL) surveys measuring the density and distribution of galaxy clusters

3. Supernova (SN) surveys using type Ia supernovae to determine the luminosity distance
vs. redshift relation

4. Weak Lensing (WL) surveys, which measure the angular-diameter distance vs. redshift
relation and the growth rate of structure

DETF found that no single technique is sufficient alone, so that a combination of methods and
surveys is needed.

The situation in 2023 is that the observations of Stage III projects have been mostly com-
pleted, although all results have not yet been published, whereas Stage IV projects are starting,
see Table 7. The two Stage III projects in the table that we have not discussed are the Subaru
Measurements of Images and Redshifts (SuMIRe) and Hobby-Eberly Telescope Dark Energy
Experiment (HETDEX) [https://hetdex.org/].
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project dates area [deg2] type of data z method

BOSS 2008–2014 10 000 opt-S 0.3–0.7 BAO/RSD
2–3.5 (Ly-α)

KiDS 2011–2010 1350 opt-I WL/CL
DES 2013–2019 5000 opt-I WL/CL

SN/BAO
eBOSS 2014–2018 7500 opt-S 0.6–2.0 BAO/RSD

2–3.5 (Ly-α)
SuMIRE 2014–2024 1500 opt-I WL/CL

opt/NIR-S 0.8–2.4 BAO/RSD
HETDEX 2017–2023 450 opt-S 1.9–3.5 BAO/RSD

DESI 2021–2026 14 000 opt-S 0–1.7 BAO/RSD
LSST 2025–2035 20 000 opt-I WL/CL

SN/BAO
Euclid 2023–2029 15 000 opt-I WL/CL

NIR-S 0.7–2.2 BAO/RSD
Roman 2026–2031 2200 NIR-I WL/CL/SN

NIR-S 1.0–3.0 BAO/RSD

Table 7: Stage III (above dividing line) and Stage IV (below) surveys. Dates refer to data taking; not all
data or results from Stage III surveys has been yet (May 2023) published. opt = visible light, NIR = near
infared, S = spectra, I = images. The redshift range (z) is for galaxies, except for eBOSS the upper part
of the range z = 0.6–2.0 is quasars, and Ly-α indicates structure determined from absorption features in
quasar spectra. RSD = redshift space distortions. Copied from the presentation by Josh Frieman (U.
Chicago, Fermilab) in the UCLA Dark Matter Conference, March 29, 2023. [74]

12.7 Etendue

Usually the measure of the power of a telescope is taken to be its collecting area A, which is
related to (the square of) the diameter of the main mirror or lens. For surveys, equally important
is the solid angle Ω of the field of view (FoV). The product of these two measures AΩ is called
the etendue. If the sky were uniformly bright, the amount of light collected by the telescope per
unit time would be proportional to the etendue. The time it takes to survey a given area of the
sky to a given limiting magnitude is inversely proportional to the etendue. From Table 8 we see
that to do the Euclid 6-year survey would take the Hubble Space Telescope over 200 years.
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telescope (instrument) diameter [m] A [m2] FoV diam. Ω [deg2] AΩ [ m2deg2]

Palomar Hale (WaSP) 5.1 ∼ 20 0.095 ∼ 2

Palomar Schmidt (ZTF) 1.26 47 ∼ 50
Pan-STARRS (1 telescope) 1.8 3◦

JST 250 (JPCAM) 2.55 3.89 3◦ 4.3 26.5
Subaru (HSC) 8.2 1.5◦

Rubin 8 33 9.6 319

Hubble (ACS/WFC) 2.4 4.0 0.0031 0.0126
Webb (NIRCam) 6.5 25.4 0.0027 0.068

Euclid 1.2 1.006 0.56 0.56
Roman (WFI) 2.4 ∼ 4 0.281 ∼ 1.1

Table 8: The etendue of various telescopes (and instruments). We list first ground-based telescopes
and then space telescopes. These are further grouped into non-survey and survey telescopes. A survey
telescope is characterized by a large etendue. Some of the information was difficult to find, and the
different telescopes/instruments may not have been treated consistently (instrument FoV is not necessarily
the same as telescope FoV). Often just the aperture diameter is given, not the collecting area. Non-survey
telescopes usually have many instruments with different fields of view, none of which necessarily maximizes
the field of view possible with the telescope. Modern ground-based non-survey telescopes are not included
because it was difficult to find a representative field of view for them.
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