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Preface

These are the lecture notes for my Cosmology course at the University of Helsinki. I first lectured
Cosmology at the Helsinki University of Technology in 1996 and then at University of Helsinki
from 1997 to 2009. Syksy Räsänen taught the course from 2010 to 2015. I have lectured the
course again since 2016. These notes are based on my notes from 2009, but I have adopted some
improvements made by Syksy.

A difficulty in teaching cosmology is that some very central aspects of modern cosmology rely
on rather advanced physics, like quantum field theory in curved spacetime. On the other hand,
the main applications of these aspects can be discussed in relatively simple terms, so requiring
students to have such background would seem overkill, and would prevent many interested
students in getting a taste of this exciting and important subject. Thus I am assuming just the
standard bachelor level theoretical physics background (mechanics, special relativity, quantum
mechanics, statistical physics). The more advanced theories that cosmology relies on, general
relativity and quantum field theory, are reviewed as a part of this course to a sufficient extent,
that we can go on. This represents a compromise which requires from the student an acceptance
of some results without a proper derivation. Even a quantum mechanics or statistical physics
background is not necessary, if the student is willing to accept some results taken from these fields
(in the beginning of Chapter 4). As mathematical background, Cosmology I requires integral
and differential calculus (as taught in Matemaattiset apuneuvot I, II). Cosmology II requires
also Fourier analysis and spherical harmonic analysis (Fysiikan matemaattiset menetelmät I,
II).

The course is divided into two parts. In Cosmology I, the universe is discussed in terms
of the homogeneous and isotropic approximation (the Friedmann–Robertson–Walker model),
which is good at the largest scales and in the early universe. In Cosmology II, deviations from
this homogeneity and isotropy, i.e., the structure of the universe, are discussed. I thank Elina
Keihänen, Jussi Väliviita, Ville Heikkilä, Reijo Keskitalo, and Elina Palmgren for preparing
some of the figures and doing the calculations behind them.

These lecture notes have grown longer year by year. Small print text (including footnotes),
except examples and exercises, can be skipped.

– Hannu Kurki-Suonio, August 2023

There are six chapters in Cosmology I:

1. Introduction

2. General Relativity

3. Friedmann–Robertson–Walker Universe

4. Thermal history of the Early Universe

5. Big Bang Nucleosynthesis

6. Dark Matter

and three in Cosmology II:

7. Inflation

8. Structure Formation

9. Cosmic Microwave Background Anisotropy



Contents

1 Introduction 1

1.1 Misconceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Units and terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 c = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.2 kB = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.3 ~ = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.4 Astronomical units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Brief History of the Early Universe . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Cosmological Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Structure Formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.6 Dark Matter and Dark Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.7 Observable Universe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.7.1 Big bang and the steady-state theory . . . . . . . . . . . . . . . . . . . . 10
1.7.2 Electromagnetic channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.7.3 Redshift and the Hubble law . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.7.4 Horizon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.7.5 Optical astronomy and the large scale structure . . . . . . . . . . . . . . . 17
1.7.6 Radio astronomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.7.7 Cosmic microwave background . . . . . . . . . . . . . . . . . . . . . . . . 17

1.8 Distance, luminosity, and magnitude . . . . . . . . . . . . . . . . . . . . . . . . . 19

2 General Relativity 23

2.1 Curved 2D and 3D space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2 The metric of 2D and 3D space . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3 4D flat spacetime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.4 Curved spacetime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.5 Einstein equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 Friedmann–Robertson–Walker Universe 30

3.1 Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.1.1 Robertson–Walker metric . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.1.2 Redshift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.1.3 Age-redshift relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.1.4 Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.1.5 Volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.1.6 Angular diameter distance . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.1.7 Luminosity distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.1.8 Hubble law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.1.9 Conformal time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2.1 Friedmann equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2.2 Critical density and density parameter . . . . . . . . . . . . . . . . . . . . 43
3.2.3 Equation of state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2.4 Cosmological parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.2.5 Age of the FRW universe . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.2.6 Distance-redshift relation . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.2.7 Angular diameter distance . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.2.8 Luminosity distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62



3.3 Concordance Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.4 Vacuum Energy, Dark Energy, Anthropic Principle, and the Multiverse . . . . . . 70

4 Thermal history of the Early Universe 77

4.1 Relativistic thermodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.2 Primordial soup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.3 QCD transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.4 Neutrino decoupling and electron-positron annihilation . . . . . . . . . . . . . . . 85
4.5 Time scale of the early universe . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.6 Neutrino masses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.7 Matter-radiation equality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.8 Baryonic matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.9 Recombination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.10 The Dark Age . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5 Big Bang Nucleosynthesis 101

5.1 Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.2 Neutron-proton ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.3 Bottlenecks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.4 Calculation of the helium abundance . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.5 Why so late? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.6 The most important reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.7 BBN as a function of time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.8 Primordial abundances as a function of the baryon-to-photon ratio . . . . . . . . 111
5.9 Comparison with observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.10 BBN as a probe of the early universe . . . . . . . . . . . . . . . . . . . . . . . . . 114

6 Dark Matter 116

6.1 Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.2 Baryonic dark matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.3 Nonbaryonic dark matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
6.4 Hot dark matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.5 Cold dark matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
6.6 Decoupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.7 WIMP miracle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.8 Dark Matter vs. Modified Gravity . . . . . . . . . . . . . . . . . . . . . . . . . . 127

A More about General Relativity 129

A.1 Vectors, tensors, and the volume element . . . . . . . . . . . . . . . . . . . . . . 129
A.2 Contravariant and covariant components . . . . . . . . . . . . . . . . . . . . . . . 131
A.3 Einstein equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
A.4 Friedmann equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

C Numerical Constants 135

C.1 Defining constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
C.2 Other constants of nature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
C.3 Mathematical constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
C.4 Astronomical units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
C.5 Cosmological quantities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135



1 INTRODUCTION 1

1 Introduction

About this chapter: This introductory chapter covers briefly material that will be discussed
in more detail in later chapters of Cosmology I and II. The idea is to paint the big picture so that
you know where each topic discussed later will fit in. There is also some material that will not
be returned to later. This chapter is the definitive one for introducing the natural unit system
and various astronomical units; and for defining redshift, Hubble law, and Hubble constant, and
the concepts of absolute and apparent luminosity and magnitude.

Cosmology is the study of the universe as a whole, its structure, its origin, and its evolution.
Cosmology is based on observations, mostly astronomical, and laws of physics. These lead

naturally to the standard framework of modern cosmology, the Hot Big Bang.
As a science, cosmology has a severe restriction: there is only one universe.1 We cannot

make experiments in cosmology, and observations are restricted to a single object: the Universe.
Thus we can make no comparative or statistical studies among many universes. Moreover, we
are restricted to observations made from a single location, our solar system. It is quite possible
that due to this special nature of cosmology, some important questions can never be answered.

Nevertheless, the last few decades have seen a remarkable progress in cosmology, as a sig-
nificant body of relevant observational data has become available with modern astronomical
instruments. We now have a good understanding of the overall history2 and structure of the
universe, but important open questions remain, e.g., the nature of dark matter and dark energy.
Hopefully observations with more advanced instruments will resolve many of these questions in
the coming decades.

The fundamental observation behind the big bang theory was the redshift of distant galaxies.
Their spectra are shifted towards longer wavelengths. The further out they are, the larger is
the shift. This implies that they are receding away from us; the distance between them and
us is increasing. According to general relativity, we understand this as the expansion of the
intergalactic space itself, not as actual motion of the galaxies. As the space expands, the
wavelength of light traveling through space expands also.3

This expansion appears to be uniform over large scales: the whole universe expands at the
same rate.4 We describe this expansion by a time-dependent scale factor, a(t). Starting from
the observed present value of the expansion rate, H ≡ (da/dt)/a ≡ ȧ/a, and knowledge of
the energy content of the universe, we can use general relativity to calculate a(t) as a function
of time. The result is, using the standard model of particle physics for the energy content at
high temperatures, that a(t) → 0 about 14 billion years ago (I use the American convention,
adopted now also by the British, where billion ≡ 109). At this singularity, the “beginning”
of the big bang, which we choose as the origin of our time coordinate, t = 0, the density of
the universe ρ → ∞. In reality, we do not expect the standard model of particle physics to be

1There may, in principle, exist other universes, but they are not accessible to our observation. We spell Universe
with a capital letter when we refer specifically to the universe we live in, whereas we spell it without a capital
letter, when we refer to the more general or theoretical concept of the universe. In Finnish, ‘maailmankaikkeus’
is not capitalized.

2Except for the very beginning.
3These are not the most fundamental viewpoints. In general relativity the universe is understood as a four-

dimensional curved spacetime, and its separation into space and time is a coordinate choice, based on convenience.
The concepts of expansion of space and photon wavelength are based on such a coordinate choice. The most
fundamental aspect is the curvature of spacetime. At large scales, the spacetime is curved in such a way that
it is convenient to view this curvature as expansion of space, and in the related coordinate system the photon
wavelength is expanding at the corresponding rate.

4This applies only at distance scales larger than the scale of galaxy clusters, about 10 Mpc. Bound systems,
e.g., atoms, chairs, you and me, the Earth, the solar system, galaxies, or clusters of galaxies, do not expand.
The expansion is related to the overall averaged gravitational effect of all matter in the universe. Within bound
systems local gravitational effects are much stronger, so this overall effect is not relevant.



1 INTRODUCTION 2

applicable at extremely high energy densities. Thus there should be modifications to this picture
at the very earliest times, probably just within the first nanosecond. A popular modification,
discussed in Cosmology II, is cosmological inflation, which extends these earliest times, possibly,
like in the ”eternal inflation” model, infinitely (although usually inflation is thought to last only
a small fraction of a second). At the least, when the density becomes comparable to the so
called Planck density, ρPl ∼ 1096 kg/m3, quantum gravitational effects should be large, so that
general relativity itself is no longer valid. To describe this Planck era, we would need a theory
of quantum gravity, which we do not have.5 Thus these earliest times, including t = 0, have
to be excluded from the scientific big bang theory. Nevertheless, when discussing the universe
after the Planck era and/or after inflation we customarily set the origin of the time coordinate
t = 0 where the standard model solution would have the singularity.

Thus the proper way to understand the term “big bang” is not as some event by which the
universe started or came into existence, but as a period in the early universe, when the universe
was very hot,6 very dense, and expanding rapidly.7 Moreover, the universe was then filled with
an almost homogeneous “primordial soup” of particles, which was in thermal equilibrium for a
long time. Therefore we can describe the state of the early universe with a small number of
thermodynamic variables, which makes the time evolution of the universe calculable.

1.1 Misconceptions

There are some popular misconceptions about the big bang, which we correct here:
The universe did not start from a point. The part of the universe which we can observe

today was indeed very small at very early times, possibly smaller than 1mm in diameter at
the earliest times that can be sensibly discussed within the big bang framework.8 However, 1)
1mm is not small compared to the time scales at the time: this part of the universe expanded
to be much larger in a much shorter time than it takes a light signal to travel 1mm; and 2)
the universe extends beyond what can be observed today (beyond our “horizon”), and if the
universe is infinite, in current models it has always been infinite, from the very beginning. While
we do not know whether the universe is finite or infinite, it is anyway large enough that there is
no observational evidence suggesting that it is not infinite, and thus it is simplest to think of it
as infinite.

As the universe expands it is not expanding into some space “around” the universe. The
universe contains all space, and this space itself is “growing larger”.9

1.2 Units and terminology

We shall use natural units where c = ~ = kB = 1.

5String theory is a candidate for the theory of quantum gravity. It is, however, very difficult to calculate
definite predictions for the very early universe from string theory. This is a very active research area at present,
but remains quite speculative.

6The realization that the early universe must have had a high temperature did not come immediately after the
discovery of the expansion. The results of big bang nucleosynthesis and the discovery of the cosmic microwave
background are convincing evidence that the Big Bang was Hot.

7There is no universal agreement among cosmologists about what time period the term ”big bang” refers to.
My convention is that it refers to the time from the end of inflation (or from whenever the standard hot big bang
picture becomes valid) until recombination, so that it is actually a 370-000-year-long period, still short compared
to the age of the universe.

8And if the inflation scenario is correct, even very much smaller than that before (or during earlier parts of)
inflation.

9If the universe is infinite, we can of course not apply this statement to the volume of the entire universe,
which is infinite, but it applies to finite parts of the universe.
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1.2.1 c = 1

Relativity theory unifies space and time into a single concept, the 4-dimensional spacetime. It
is thus natural to use the same units for measuring distance and time. Since the (vacuum)
speed of light is c = 299 792 458m/s, we set 1 s ≡ 299 792 458m, so that 1 second = 1 light
second, 1 year = 1 light year, and c = 1.10 Velocity is thus a dimensionless quantity, and smaller
than one11 for massive objects. Energy and mass have now the same dimension, and Einstein’s
famous equivalence relation between mass and energy, E = mc2, becomes E = m. This justifies
a change in terminology; since mass and energy are the same thing, we do not waste two words
on it. As is customary in particle physics we shall use the word “energy”, E, for the above
quantity. By the word “mass”, m, we mean the rest mass. Thus we do not write E = m, but
E = mγ, where γ = 1/

√
1− v2. The difference between energy and mass, E −m, is the kinetic

energy of the object.12

1.2.2 kB = 1

Temperature, T , is a parameter describing a thermal equilibrium distribution. The formula for
the equilibrium occupation number of energy level E includes the exponential form eβE , where
the parameter β = 1/kBT . The only function of the Boltzmann constant, kB = 1.380 649 ×
10−23 J/K, is to convert temperature into energy units. Since we now decide to give temperatures
directly in energy units, kB becomes unnecessary. We define 1K = 1.380 649 × 10−23 J, or

1 eV = 11 604.5K = 1.782 662 × 10−36 kg = 1.602 177 × 10−19 J. (1.1)

Thus kB = 1, and the exponential form is just eE/T .

1.2.3 ~ = 1

The third simplification in the natural system of units is to set the Planck constant ~ ≡ h/2π = 1.
This makes the dimension of mass and energy 1/time or 1/distance. This time and distance
give the typical time and distance scales quantum mechanics associates with the particle energy.
For example, the energy of a photon E = ~ω = ω = 2πν is equal to its angular frequency. Since
h = 6.626 070 15 × 10−34 Js in SI units, we have

1 kg = 2.842 788 × 1042 m−1 = 8.522 465 × 1050 s−1

1 eV = 5067 730.7m−1 = 1.519 267 × 1015 s−1 . (1.2)

A useful relation to remember is
~ = 1 ≈ 197MeV fm (1.3)

(more precisely, the number is 197.327), where we have the energy scale ∼ 200MeV and length
scale ∼ 1 fm of strong interactions.

Equations become now simpler and the physical relations more transparent, since we do not
have to include the above fundamental constants. This is not a completely free lunch, however;
we often have to do conversions among the different units to give our answers in familiar units.

10Most cosmological quantities are not known to better than 3-digit accuracy. In these notes I give more digits
for many quantities, especially when they are known, so that round-off errors do not accumulate if these quantities
are used in calculations.

11In the case of “physical” (as opposed to “coordinate”) velocities.
12The talk about “converting mass to energy” or vice versa can be understood to refer to conversion of rest

mass into kinetic energy.
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1.2.4 Astronomical units

A common unit of mass and energy is the solar mass, M⊙ = 1.988 48 ± 9× 1030 kg [1],13 and a
common unit of length is parsec, 1 pc = 3.261 564 light years = 3.085 678×1016 m. One parsec
is defined as the distance from which 1 astronomical unit (AU, the distance between the Earth
and the Sun) forms an angle of one arcsecond, 1′′. More common in cosmology is 1Mpc =
106 pc, which is a typical distance between neighboring galaxies. For angles, 1 degree (1◦) = 60
arcminutes (60′) = 3600 arcseconds (3600′′).

1.3 Brief History of the Early Universe

Because of the high temperature, particles had large energies in the early universe. To describe
matter in that era, we need particle physics. The standard model of particle physics is called
SU(3)c ⊗ SU(2)w ⊗U(1)y , which describes the symmetries of the theory. From the viewpoint of
the standard model, we live today in a low-energy universe, where many of the symmetries of the
theory are broken. The “natural” energy scale of the theory is reached when the temperature of
the universe exceeds 100GeV (about 1015 K), which was the case when the universe was younger
than 10−11 s. Then the primordial soup of particles consisted of free massless fermions (quarks
and leptons) and massless gauge bosons mediating the interactions (color and electroweak)
between these fermions. The standard model also includes a particle called the Higgs boson.

Higgs boson is responsible for the breaking of the electroweak (the SU(2)w⊗U(1)y) symmetry.
This is one of the phase transitions14 in the early universe. In the electroweak (EW) transition
the electroweak interaction becomes two separate interactions: 1) the weak interaction mediated
by the massive gauge bosons W± and Z0, and 2) the electromagnetic interaction mediated by
the massless gauge boson γ, the photon. Fermions acquire their masses in the EW transition.15

The mass is due to the interaction of the particle with the Higgs field. The EW transition took
place when the universe cooled below the critical temperature Tc ∼ 160GeV of the transition
at t ∼ 10−11 s. See Fig. 1.

In addition to the standard model particles, the universe contains dark matter particles,
whose exact nature is unknown. These will be discussed later, but we ignore them now for a
while.

Another phase transition, the QCD (quantum chromodynamics) transition, or the quark–
hadron transition, took place at t ∼ 10−5 s. The critical temperature of the QCD transition is
Tc ∼ 150MeV. Quarks, which had been free until this time, formed hadrons: baryons, e.g., the
nucleons n (neutron) and p (proton), and mesons, e.g., π (pion), K (kaon). The matter filling
the universe was converted from a quark–gluon plasma to a hadron gas.

To every type of particle there is a corresponding antiparticle, which has the same properties
(e.g., mass and spin) as the particle, but its charges, like electric charge and color charge, have
opposite sign. Particles which have no charges, like photons, are their own antiparticles. At
high temperatures, T ≫ m, where m is the mass of the particle, particles and antiparticles are
constantly created and annihilated in various reactions, and there is roughly the same number
of particles and antiparticles. But when T ≪ m, particles and antiparticles may still annihilate
each other (or decay, if they are unstable), put there is no more thermal production of particle-
antiparticle pairs. As the universe cools, heavy particles and antiparticles therefore annihilate
each other. These annihilation reactions produce additional lighter particles and antiparticles. If

13In my notation, uncertainties (here ±9) refer always to the last given digits, so here I mean M⊙ = (1.988 48±
0.000 09)× 1030 kg.

14It may be that the EW and QCD phase transitions do not satisfy the technical definition of phase transition,
but are instead just cross-overs, which means that they don’t have a sharp critical temperature, but rather
correspond to a temperature interval. The exact nature of these transitions is an open research problem.

15Except possibly neutrinos, the origin of whose masses in uncertain.
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Figure 1: Short history of the universe.
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the universe had had an equal number of particles and antiparticles, only photons and neutrinos
(of the known particles) would be left over today. The presence of matter today indicates that in
the early universe there must have been slightly more nucleons and electrons than antinucleons
and positrons, so that this excess was left over. The lightest known massive particle with strong
or electroweak interactions is the electron,16 so the last annihilation event was the electron-
positron annihilation which took place when T ∼ me ∼ 0.5MeV and t ∼ 1 s. After this the
only remaining antiparticles were the antineutrinos, and the primordial soup consisted of a large
number of photons (who are their own antiparticles) and neutrinos (and antineutrinos) and a
smaller number of “left-over” protons, neutrons, and electrons.

When the universe was a few minutes old, T ∼ 100 keV, protons and neutrons formed nuclei
of light elements. This event is known as Big Bang Nucleosynthesis (BBN), and it produced
about 75% (of the total mass in ordinary matter) 1H, 25% 4He, 10−4 2H, 10−4 3He, and 10−9 7Li.
(Other elements were formed much later, mainly in stars). At this time matter was completely
ionized, all electrons were free. In this plasma the photons were constantly scattering from
electrons, so that the mean free path of a photon between these scatterings was short. This
means that the universe was opaque, not transparent to light.

The universe became transparent when it was 370 000 years old. At a temperature T ∼
3000K (∼ 0.25 eV), the electrons and nuclei formed neutral atoms, and the photon mean free
path became longer than the radius of the observable universe. This event is called recombination
(although it actually was the first combination of electrons with nuclei, not a recombination).
Since recombination the primordial photons have been traveling through space mostly without
scattering. We can observe them today as the cosmic microwave background (CMB). It is light
from the early universe. We can thus “see” the big bang.

After recombination, the universe was filled with hydrogen and helium gas (with traces of
lithium). The first stars formed from this gas when the universe was a few hundred million
years old; but most of this gas was left as interstellar gas. The radiation from stars reionized
the interstellar gas when the universe was 700 million years old.

1.4 Cosmological Principle

The ancients thought that the Earth is at the center of the Universe. This is an example of
misconceptions that may result from having observations only from a single location (in this
case, from the Earth). In the sixteenth century Nicolaus Copernicus proposed the heliocentric
model of the universe, where Earth and the other planets orbited the Sun. This was the first
step in moving “us” away from the center of the Universe. Later it was realized that neither the
Sun, nor our galaxy, lies at the center of the Universe. This lesson has led to the Copernican
principle: We do not occupy a privileged position in the universe. This is closely related to the
Cosmological principle: The universe is homogeneous and isotropic.

Homogeneous means that all locations are equal, so that the universe appears the same no
matter where you are. Isotropic means that all directions are equal, so that the universe appears
the same no matter which direction you look at. Isotropy refers to isotropy with respect to some
particular location, but 1) from isotropy with respect to one location and homogeneity follows
isotropy with respect to every location, and 2) from isotropy with respect to all locations follows
homogeneity.

There are two variants of the cosmological principle when applied to the real universe. As
phrased above, it clearly does not apply at small scales: planets, stars, galaxies, and galaxy
clusters are obvious inhomogeneities. In the first variant the principle is taken to mean that a

16According to observational evidence from neutrino oscillations, neutrinos also have small masses. However,
at temperatures less than the neutrino mass, the neutrino interactions are so weak that the neutrinos and an-
tineutrinos cannot annihilate each other.
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homogeneous and isotropic model of the universe is a good approximation to the real universe
at large scales (larger than the scale of galaxy clusters). In the second variant we add to this
that the small-scale deviations from this model are statistically homogeneous and isotropic. This
means that if we calculate the statistical properties of these inhomogeneities and anisotropies
over a sufficiently large region, these statistical measures are the same for different such regions.

The Copernican principle is a philosophical viewpoint. Once you adopt it, observations lead
to the first variant of the cosmological principle. CMB is highly isotropic and so is the distribu-
tion of distant galaxies, so we have solid observational support for isotropy with respect to our
location. Direct evidence for homogeneity is weaker, but adopting the Copernican principle, we
expect isotropy to hold also for other locations in the Universe, so that then the Universe should
also be homogeneous. Thus we adopt the cosmological principle for the simplest model of the
universe, which is an approximation to the true universe. This should be a good approximation
at large scales, and in the early universe also for smaller scales.

The second variant of the cosmological principle cannot be deduced the same way from
observations and the Copernican principle, but it follows naturally from the inflation scenario
discussed in Cosmology II.

1.5 Structure Formation

CMB tells us that the early universe was very homogeneous, unlike the present universe, where
matter has accumulated into stars and galaxies. The early universe had, however, very small
density variations, at the 10−5 to 10−3 level, which we see as small intensity variations of the
CMB (the CMB anisotropy). Due to gravity, these slight overdensities have grown in time, and
eventually became galaxies. This is called structure formation in the universe. The galaxies are
not evenly distributed in space but form various structures, galaxy groups, clusters (large gravi-
tationally bound groups), “filaments”, and “walls”, separated by large, relatively empty “voids”.
This present large scale structure of the universe forms a significant body of observational data
in cosmology, which we can explain fairly well by cosmological theory.

There are two parts to structure formation:
1. The origin of the primordial density fluctuations, the “seeds of galaxies”. These are

believed to be due to some particle physics phenomenon in the very early universe, probably
well before the EW transition. The particle physics theories applicable to this period are rather
speculative. The currently favored explanation for the origin of primordial fluctuations is known
as inflation. Inflation, discussed in Cosmology II, is not a specific theory, but it is a certain kind
of behavior of the universe that could result from many different fundamental theories. Until
the 1990s the main competitor (for origin of the primordial density fluctuations) to inflation was
topological defects. Such defects (e.g., cosmic strings) may form in some phase transitions. The
CMB data has ruled out topological defects at least as the main cause of structure formation.

2. The growth of these fluctuations as we approach the present time. The growth is due
to gravity, but depends on the composition and total amount (average density) of matter and
energy in the universe.

1.6 Dark Matter and Dark Energy

One of the main problems in cosmology today is that most of the matter and energy content of
the universe appears to be in some unknown forms, called dark matter and dark energy. The
dark matter problem dates back to 1930s, whereas the dark energy problem arose in late 1990s.

From the motions of galaxies we can deduce that the matter we can directly observe as stars
and other “luminous matter” is just a small fraction of the total mass which affects the galaxy
motions through gravity. The rest is dark matter, something which we observe only due to its
gravitational effect. We do not know what most of this dark matter is. A smaller part of it
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is just ordinary, “baryonic”, matter, which consists of atoms (or ions and electrons) just like
stars, but does not shine enough for us to notice it. Possibilities include planet-like bodies in
interstellar space, “failed” stars (too small, m < 0.07M⊙, to ignite thermonuclear fusion) called
brown dwarfs, old white dwarf stars, and tenuous intergalactic gas. In fact, in large clusters of
galaxies the intergalactic gas17 can be observed. Thus its mass can be estimated and it turns
out to be several times larger than the total mass of the stars in the galaxies. We can infer that
other parts of the universe, where this gas is too thin to be observable from here, also contain
significant amounts of it; so this is apparently the main component of baryonic dark matter
(BDM). However, there is not nearly enough of it to explain the dark matter problem.

Beyond these mass estimates, there are more fundamental reasons (BBN, structure forma-
tion) why baryonic dark matter cannot be the main component of dark matter. Most of the
dark matter must be non-baryonic, meaning that it is not made out of protons and neutrons18.
The only non-baryonic particles in the standard model of particle physics that could act as dark
matter, are neutrinos. If neutrinos had a suitable mass, ∼ 1 eV, the neutrinos left from the
early universe would have a sufficient total mass to be a significant dark matter component.
However, structure formation in the universe requires most of the dark matter to have different
properties than neutrinos have. Technically, most of the dark matter must be “cold”, instead of
“hot”. These are terms that just refer to the dynamics of the particles making up the matter,
and do not further specify the nature of these particles. The difference between hot dark matter
(HDM) and cold dark matter (CDM) is that HDM is made of particles whose velocities were
large compared to escape velocities from the gravity of overdensities, when structure formation
began, but CDM particles had small velocities. Neutrinos with m ∼ 1 eV, would be HDM. An
intermediate case is called warm dark matter (WDM). Structure formation requires that most of
the dark matter is CDM, or possibly WDM, but the standard model of particle physics contains
no suitable particles. Thus it appears that most of the matter in the universe is made out of
some unknown particles.

Fortunately, particle physicists have independently come to the conclusion that the standard
model is not the final word in particle physics, but needs to be “extended”. The proposed
extensions to the standard model contain many suitable CDM particle candidates (e.g., neu-
tralinos, axions). Their interactions with standard model particles would have to be rather weak
to explain why they have not been detected so far. Since these extensions were not invented to
explain dark matter, but were strongly motivated by particle physics reasons, the cosmological
evidence for dark matter is good, rather than bad, news from a particle physics viewpoint.

In these days the term ”dark matter” usually refers to the nonbaryonic dark matter, and
often excludes also neutrinos, so that it refers only to the unknown particles that are not part
of the standard model of particle physics.

Since all the cosmological evidence for CDM comes from its gravitational effects, it has been
suggested by some that it does not exist, and that these gravitational effects might instead be
explained by suitably modifying the law of gravity at large distances. However, the suggested
modifications do not appear very convincing, and the evidence is in favor of the CDM hypothesis.
The gravitational effect of CDM has a role at many different levels in the history and structure
of the universe, so it is difficult for a competing theory to explain all of them. Most cosmologists
consider the existence of CDM as an established fact, and are just waiting for the eventual
discovery of the CDM particle in the laboratory (perhaps produced with the Large Hadronic

17This gas is ionized, so it should more properly be called plasma. Astronomers, however, often use the word
“gas” also when it is ionized.

18And electrons. Although technically electrons are not baryons (they are leptons), cosmologists refer to matter
made out of protons, electrons, and neutrons as “baryonic”. The electrons are anyway so light, that most of the
mass comes from the true baryons, protons and neutrons.
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Figure 2: Our past light cone. We have not attempted to represent the expansion of the universe in this
figure. Any such representation would distort some features of the geometry of the curved spacetime,
just like any planar map of the surface of Earth is distorted. In Chapter 3 we present different ways to
represent this geometry.

Collider (LHC) at CERN).19

The situation with the so-called dark energy is different. While dark matter fits well into
theoretical expectations, the status of dark energy is much more obscure. The accumulation of
astronomical data relevant to cosmology has made it possible to determine the geometry and
expansion history of the universe with improving accuracy. It looks like yet another component
to the energy density of the universe is required to make everything fit, in particular to explain
the observed acceleration of the expansion. This component is called “dark energy”. Unlike
dark matter, which is clustered, the dark energy should be relatively uniform in the observable
universe. And while dark matter has negligible pressure, dark energy should have large, but
negative pressure. The simplest possibility for dark energy is a cosmological constant or vacuum
energy. Unlike dark matter, dark energy was not anticipated by high-energy-physics theory, and
it appears difficult to incorporate it in a natural way. Again, another possible explanation is a
modification of the law of gravity at large distances. In the dark energy case, this possibility is
still being seriously considered. The difference from dark matter is that there is more theoretical
freedom, since there are fewer relevant observed facts to explain, and that the various proposed
models for dark energy do not appear very natural. A nonzero vacuum energy by itself would be
natural from quantum field theory considerations, but the observed energy scale is unnaturally
low.

1.7 Observable Universe

The observations relevant to cosmology are mainly astronomical. The speed of light is finite, and
therefore, when we look far away, we also look back in time. The universe has been transparent

19By 2022, it is already a disappointment that LHC has not yet found a dark matter particle.
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since recombination, so more than 99.99% of the history of the universe is out there for us to
see. (See Fig. 2.)

The most important channel of observation is the electromagnetic radiation (light, radio
waves, X-rays, etc.) coming from space. We also observe particles, cosmic rays (protons, elec-
trons, nuclei) and neutrinos coming from space. A new channel, opened in 2015 by the first
observation by LIGO (Laser Interferometer Gravitational-wave Observatory), are gravitational
waves from space. In addition, the composition of matter in the solar system has cosmological
significance.

1.7.1 Big bang and the steady-state theory

In the 1950s observational data on cosmology was rather sparse. It consisted mainly of the
redshifts of galaxies, which were understood to be due to the expansion of space. At that time
there was still room for different basic theories of cosmology. The main competitors were the
steady-state theory and the Big Bang theory.

The steady-state theory is also known as the theory of continuous creation, since it postulates
that matter is constantly being created out of nothing, so that the average density of the universe
stays the same despite the expansion. According to the steady-state theory the universe has
always existed and will always exist and will always look essentially the same, so that there is
no overall evolution.

According to the Big Bang theory, the universe had a beginning at a finite time ago in the
past; the universe started at very high density, and as the universe expands its density goes
down. In the Big Bang theory the universe evolves; it was different in the past, and it keeps
changing in the future. The name “Big Bang” was given to this theory by Fred Hoyle, one of
the advocates of the steady-state theory, to ridicule it. Hoyle preferred the steady-state theory
on philosophical grounds; to him, an eternal universe with no evolution was preferable to an
evolving one with a mysterious beginning.

Both theories treated the observed expansion of the universe according to Einstein’s theory
of General Relativity. The steady-state theory added to it a continuous creation of matter,
whereas the Big Bang theory “had all the creation in the beginning”.20

The accumulation of further observational data led to the abandonment of the steady-state
theory. These observations were: 1) the cosmic microwave background (predicted by the Big
Bang theory, problematic for steady-state), 2) the evolution of cosmic radio sources (they were
more powerful in the past, or there were more of them), and 3) the abundances of light elements
and their isotopes (predicted correctly by the Big Bang theory).

By today the evidence has become so compelling that it appears extremely unlikely that
the Big Bang theory could be wrong in any essential way, and the Big Bang theory has become
the accepted basic framework, or “paradigm” of cosmology. Thus it has become arcane to talk
about ”Big Bang theory”, when we are just referring to modern cosmology. The term ”Big
Bang” should be understood as originating from this historical context. Thus it refers to the
present universe evolving from a completely different early stage: hot, dense, rapidly expanding
and cooling, instead of being eternal and unchanging. There are still, of course, many open
questions on the details, and the very beginning is still completely unknown.

20Thus the steady-state theory postulates a modification to known laws of physics, this continuous creation of
matter out of nothing. The Big Bang theory, on the other hand, is based only on known laws of physics, but it
leads to an evolution which, when extended backwards in time, leads eventually to extreme conditions where the
known laws of physics can not be expected to hold any more. Whether there was “creation” or something else
there, is beyond the realm of the Big Bang theory. Thus the Big Bang theory can be said to be “incomplete” in
this sense, in contrast to the steady-state theory being complete in covering all of the history of the universe.
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1.7.2 Electromagnetic channel

Although the interstellar space is transparent (except for radio waves longer than 100 m, ab-
sorbed by interstellar ionized gas, and short-wavelength ultraviolet radiation, absorbed by neu-
tral gas), Earth’s atmosphere is opaque except for two wavelength ranges, the optical window
(λ = 300–800 nm), which includes visible light, and the radio window (λ = 1mm–20m). The
atmosphere is partially transparent to infrared radiation, which is absorbed by water molecules
in the air; high altitude and dry air favors infrared astronomy. Accordingly, the traditional
branches of astronomy are optical astronomy and radio astronomy. Observations at other wave-
lengths have become possible only during the past few decades, from space (satellites) or at very
high altitude in the atmosphere (planes, rockets, balloons).

From optical astronomy we know that there are stars in space. The stars are grouped into
galaxies. There are different kinds of galaxies: 1) irregular, 2) elliptical, and 3) flat disks or
spirals. Our own galaxy (the Galaxy, or Milky Way galaxy) is a disk. The plane of the disk can
be seen (at a dark night) as a faint band – the milky way – across the sky.

Notable nearby galaxies are the Andromeda galaxy (M31) and the Magellanic clouds (LMC,
Large Magellanic Cloud, and SMC, Small Magellanic Cloud). These are the only other galaxies
that are visible to the naked eye. The Magellanic clouds (as well as the center of the Milky
Way) lie too far south, however, to be seen from Finland. The number of galaxies that can be
seen with powerful telescopes is many billions.

Other observable objects include dust clouds, which hide the stars behind them, and gas
clouds. Gas clouds absorb starlight at certain frequencies, which excite the gas atoms to higher
energy states. As the atoms return to lower energy states they then emit photons at the corre-
sponding wavelength. Thus we can determine from the spectrum of light what elements the gas
cloud is made of. In the same way the composition of stellar surfaces can be determined.

The earliest “cosmological observation” was that the night sky is dark. If the universe were
eternal and infinitely large, unchanging, static (not expanding, unlike in the steady state theory),
and similar everywhere, our eye would eventually meet the surface of a star in every direction.
Thus the entire night sky would be as bright as the Sun. This is called the Olbers’ paradox. The
Olbers’ paradox is explained away by the finite age of the universe: we can not see stars further
out than the distance light has travelled since the first stars were formed.21

1.7.3 Redshift and the Hubble law

Modern cosmology originated from the observation by Edwin Hubble22 (in about 1929) that
the redshifts of galaxies were proportional to their distance. See Fig. 3. The light from distant
galaxies is redder (has longer wavelength) when it arrives here. This redshift can be determined
with high accuracy from the spectral lines of the galaxy. These lines are caused by transitions
between different energy states of atoms, and thus their original wavelengths λ0 are known. The
redshift z is defined as

z =
λ− λ0
λ0

or 1 + z =
λ

λ0
(1.4)

where λ is the observed wavelength. The redshift is observed to be independent of wavelength.
The proportionality relation

z = H0d (1.5)

21The expansion of the universe also contributes: the redshift makes distant stars fainter, and the different
spacetime geometry also has an effect. Thus also the steady-state theory resolved Olbers’ paradox.

22This proportionality was actually discovered by Lemâıtre before Hubble, but he published in a relatively
unknown journal, so his discovery went unnoticed at the time.
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Figure 3: Left: The original Hubble diagram by Hubble. Right: A modern Hubble diagram (R.P. Kish-
ner, PNAS 101, 8 (2004)).

is called the Hubble law, or the Hubble–Lemâıtre law,23 and the proportionality constant H0 the
Hubble constant. Here d is the distance to the galaxy and z its redshift.

For small redshifts (z ≪ 1) the redshift can be interpreted as the Doppler effect due to the
relative motion of the source and the observer. The distant galaxies are thus receding from us
with the velocity

v = z. (1.6)

The further out they are, the faster they are receding. Astronomers often report the redshift in
velocity units (i.e., km/s). Note that 1 km/s = 1/299792.458 = 0.000003356. Since the distances
to galaxies are convenient to give in units of Mpc, the Hubble constant is customarily given in
units of km/s/Mpc, although clearly its dimension is just 1/time or 1/distance.

This is, however, not the proper way to understand the redshift. The galaxies are not
actually moving, but the distances between the galaxies are increasing because the intergalactic
space between the galaxies is expanding, in the manner described by general relativity. We
shall later derive the redshift from general relativity. It turns out that equations (1.5) and (1.6)
hold only at the limit z ≪ 1, and the general result, d(z), relating distance d and redshift z
is more complicated (discussed in Chapter 3). In particular, the redshift increases much faster
than distance for large z, reaching infinity at finite d. However, redshift is directly related to
the expansion. The easiest way to understand the cosmological redshift is that the wavelength
of traveling light expands with the universe. (We derive this result in Chapter 3.) Thus the
universe has expanded by a factor 1 + z during the time light traveled from an object with
redshift z to us.

While the redshift can be determined with high accuracy, it is difficult to determine the
distance d. See Fig. 3, right panel. The distance determinations are usually based on the
cosmic distance ladder. This means a series of relative distance determinations between more
nearby and faraway objects. The first step of the ladder is made of nearby stars, whose absolute
distance can be determined from their parallax, their apparent motion on the sky due to our
motion around the Sun. The other steps require “standard candles”, classes of objects with the
same absolute luminosity (radiated power), so that their relative distances are inversely related
to the square roots of their “brightness” or apparent luminosity (received flux density). Several
steps are needed, since objects that can be found close by are too faint to be observed from very
far away.

23In 2018 the International Astronomical Union voted to recommend remaining the Hubble law as the Hubble–
Lemâıtre law.
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An important standard candle is a class of variable stars called Cepheids. They are so bright
that they can be observed (with the Hubble Space Telescope) in other galaxies as far away as the
Virgo cluster of galaxies, more than 10 Mpc away. There are many Cepheids in the LMC, and
the distance to the LMC (about 50 kpc) is an important step in the distance ladder. For larger
distances supernovae (a particular type of supernovae, called Type Ia) are used as standard
candles.

Errors (inaccuracies) accumulate from step to step, so that cosmological distances, and thus
the value of the Hubble constant, are not known accurately. This uncertainty of distance scale
is reflected in many cosmological quantities. It is customary to give these quantities multiplied
by the appropriate power of h, defined by

H0 = h · 100 km/s/Mpc. (1.7)

Still in the 1980s different observers reported values ranging from 50 to 100 km/s/Mpc (h = 0.5
to 1).24

It was a stated goal of the Hubble Space Telescope (HST) to determine the Hubble constant
with 10% accuracy. As a result of some 10 years of observations the Hubble Space Telescope
Key Project to Measure the Hubble Constant gave as their result in 2001 as [3]

H0 = 72± 8 km/s/Mpc . (1.8)

Modern observations have narrowed down the range and some recent results are

H0 = 73.04 ± 1.04 km/s/Mpc [4]

H0 = 69.8± 1.9 km/s/Mpc [5] (1.9)

(h = 0.7304 ± 0.0104 or h = 0.698 ± 0.019). Here the uncertainties (±1.04 and ±1.9) represent
a 68% confidence range, i.e., it is estimated 68% probable that the true value lies in this range.
(Unless otherwise noted, we give uncertainties as 68% confidence ranges. If the probability distri-
bution is the so-called normal (Gaussian) distribution, this corresponds to the standard deviation
(σ) of the distribution, i.e., a 1σ error estimate.) As we see, results from different observers are
not all entirely consistent, so that the contribution of systematic effects to the probable error
may have been underestimated. The preponderance of the distance-ladder determinations of
H0 are consistent with the higher value of [4]. We discuss in Cosmology II (Chapter 9) how
CMB observations [6] lead to a, model-dependent, smaller value, H0 = 67.4 ± 0.5 km/s/Mpc;
and what this difference, the so-called Hubble tension, might mean. For Cosmology I purposes
we just note that the exact value of the Hubble constant is a topic of active research and debate,
but to single-digit precision we can use h = 0.7.

The largest observed redshifts of galaxies are of the order z ∼ 10. Thus the universe has
expanded by a linear factor of about ten (factor 10 for z = 9, factor 11 for z = 10) while the
observed light has been on its way. When the light left such a galaxy, the age of the universe was
only about 500 million years. At that time the first galaxies were just being formed. This upper
limit in the observations is, however, not due to there being no earlier galaxies; such galaxies are
just too faint due to both the large distance and the large redshift. In December 2021 NASA
launched a new space telescope, the James Webb Space Telescope25 (JWST), which is able to
see galaxies at higher redshifts than was possible with earlier telescopes. Before Webb, there
was only one reported observation of a galaxy with redshift z > 10 [7]. By July 2023, the record

24In fact, there were two “camps” of observers, one reporting values close to 50, the other close to 100, both
claiming error estimates much smaller than the difference.

25www.jwst.nasa.gov



1 INTRODUCTION 14

Figure 4: The most distant galaxy observed, JADES-GS-z13-0 with z = 13.2. When this light left the
galaxy, the universe was just 320 million years old. Figure from [8].

holder is galaxy JADES-GS-z13-0 with z = 13.2 [9] (see Fig. 4, JADES = JWST Advanced
Deep Extragalactic Survey).26

The Hubble constant is called a “constant”, since it is constant as a function of position. It
is, however, a function of time, H(t), in the cosmological time scale. H(t) is called the Hubble
parameter, and its present value is called the Hubble constant, H0. In cosmology, it is customary
to denote the present values of quantities with the subscript 0. Thus H0 = H(t0).

The galaxies are not exactly at rest in the expanding space. Each galaxy has its own peculiar
motion vgal, caused by the gravity of nearby mass concentrations (other galaxies). Neighboring
galaxies fall towards each other, orbit each other etc. Thus the redshift of an individual galaxy
is the sum of the cosmic and the peculiar redshift.

z = H0d+ n̂ · vgal (when z ≪ 1). (1.10)

(Here n̂ is the “line-of-sight” unit vector giving the direction from the observer towards the
galaxy.) Usually only the redshift is known precisely. Typically vgal is of the order 500 km/s.
(In large galaxy clusters, where galaxies orbit each other, it can be several thousand km/s; but
then one can take the average redshift of the cluster.) For faraway galaxies, H0r ≫ vgal, and
the redshift can be used as a measure of distance. It is also related to the age of the universe
at the observed time. Objects with a large z are seen in a younger universe (as the light takes
a longer time to travel from this more distant object).

1.7.4 Horizon

Because of the finite speed of light and the finite age of the universe, only a finite part of the
universe is observable. Our horizon is at that distance from which light has just had time to
reach us during the entire age of the universe. Were it not for the expansion of the universe,
the distance to this horizon dhor would equal the age of the universe, 14 billion light years
(4300 Mpc). The expansion complicates the situation; we shall calculate the horizon distance
later. For large distances the redshift grows faster than (1.5). At the horizon z → ∞, i.e.,
dhor = d(z = ∞). The universe has been transparent only for z < 1090 (after recombination),
so the “practical horizon”, i.e., the limit to what we can see, lies already at z ∼ 1090. The
distances d(z = 1090) and d(z = ∞) are close to each other; z = 4 lies about halfway from here
to horizon. The expansion of the universe complicates the concept of distance; the statements
above refer to the comoving distance, defined later.

26There are reports of higher redshifts observed by Webb, e.g., z = 16.7, but these are “high-redshift candi-
dates”, where the redshift is estimated from the color of the galaxy. The redshift z = 13.2 is the highest actually
confirmed by taking the spectrum of the galaxy.
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Figure 5: The distribution of galaxies from the Sloan Digital Sky Survey (SDSS) and the horizon. We
are at the center of this diagram. Each dot represents an observed galaxy. The empty sectors are regions
not surveyed. The figure shows fewer galaxies further out, since only the brightest galaxies can be seen
at large distances. This figure can be thought of as our past light cone seen from the “top” (compare to
Fig. 2). The red color represents the primordial plasma through which we cannot see. We see the inner
surface of this sphere as the cosmic microwave background (see Fig. 7). As time goes on, the horizon
recedes and we can see further out. The “Future comoving visibility limit” is how far one can eventually
see in the very distant future, assuming the “Concordance Model” for the universe (Sec. 3.3). Because
of the accelerated expansion of the universe it is not possible to reach the most distant galaxies we see
(beyond the circle marked “Unreachable”; assuming we start our travel now or later), even if traveling
at (arbitrarily close to) the speed of light. Fig. 6 zooms in to the center region marked with the dotted
circle. Figure from Gott et al: “Map of the Universe” (2005) [2].
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Figure 6: The distribution of galaxies from SDSS. This figure shows observed galaxies that are within
2◦ of the equator and closer than 858 Mpc. The empty sectors are regions not surveyed. Figure from
Gott et al: ”Map of the Universe” (2005) [2].

Thus the question of whether the universe is finite or infinite (in space) is somewhat mean-
ingless. In any case we can only observe a finite region, enclosed in the sphere with radius
dhor. Sometimes the word “universe” is used to denote just this observable part of the “whole”
universe. Then we can say that the universe contains some 1011 or 1012 galaxies and about
1023 stars. Over cosmological time scales the horizon of course recedes and parts of the universe
which are beyond our present horizon become observable. However, if the expansion keeps ac-
celerating, as the observations indicate it has been doing already for several billion years, the
observable region is already close to its maximum extent, and in the distant future galaxies
which are now observable will disappear from our sight by becoming too faint due to their ever
increasing redshift, even though they stay within our horizon.
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1.7.5 Optical astronomy and the large scale structure

There is a large body of data relevant to cosmology from optical astronomy. Counting the num-
ber of stars and galaxies we can estimate the matter density they contribute to the universe.
Counting the number density of galaxies as a function of their distance, we can try to deter-
mine whether the geometry of space deviates from Euclidean (as it might, according to general
relativity). Evolution effects complicate the latter, and this approach never led to conclusive
results.

From the different redshifts of galaxies within the same galaxy cluster we obtain their relative
motions, which reflect the gravitating mass within the system. The mass estimates for galaxy
clusters obtained this way are much larger than those obtained by counting the visible stars and
galaxies in the cluster, pointing to the existence of dark matter.

From the strengths ofspectral lines of stars and gas clouds we can determine the relative
amounts of different elements and their isotopes in the universe.

The distribution of galaxies in space and their relative velocities tell us about the large scale
structure of the universe. The galaxies are not distributed uniformly. There are galaxy groups
and clusters. Our own galaxy belongs to a small group of galaxies called the Local Group. The
Local Group consists of three large spiral galaxies: M31 (the Andromeda galaxy), M33 (the
Triangulum galaxy27 ; both M31 and M33 are named after the constellations they are located
in), and the Milky Way, and about 80 smaller (dwarf) galaxies. The nearest large cluster is
the Virgo Cluster. The grouping of galaxies into clusters is not as strong as the grouping of
stars into galaxies. Rather the distribution of galaxies is just uneven; with denser and more
sparse regions. The dense regions can be flat structures (“walls”) which enclose regions with a
much lower galaxy density (“voids”). See Fig. 6. The densest concentrations are called galaxy
clusters, but most galaxies are not part of any well defined cluster, where the galaxies orbit the
center of the cluster.

1.7.6 Radio astronomy

The sky looks very different to radio astronomy. There are many strong radio sources very far
away. These are galaxies which are optically barely observable. They are distributed isotropi-
cally, i.e., there are equal numbers of them in every direction, but there is a higher density of
them far away (at z > 1) than close by (z < 1). The isotropy is evidence of the homogeneity
of the universe at the largest scales – there is structure only at smaller scales. The dependence
on distance is a time evolution effect. It shows that the universe is not static or stationary, but
evolves with time. Some galaxies are strong radio sources when they are young, but become
weaker with age by a factor of more than 1000.

Cold gas clouds can be mapped using the 21 cm spectral line of hydrogen. The ground state
(n = 1) of hydrogen is split into two very close energy levels depending on whether the proton
and electron spins are parallel or antiparallel (the hyperfine structure). The separation of these
energy levels, the hyperfine structure constant, is 5.9µeV, corresponding to a photon wavelength
of 21 cm, i.e., radio waves. The redshift of this spectral line shows that redshift is independent
of wavelength (the same for radio waves and visible light), as it should be according to standard
theory.

1.7.7 Cosmic microwave background

At microwave frequencies the sky is dominated by the cosmic microwave background (CMB),
which is highly isotropic, i.e., the microwave sky appears glowing uniformly without any features,
unless our detectors are extremely sensitive to small contrasts. The electromagnetic spectrum

27Sometimes it is called the Pinwheel galaxy, but this name is also being used for M83, M99, and M101.
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Figure 7: The cosmic microwave background. This figure shows the CMB temperature variations over
the entire sky. The color scale shows deviations of −400µK to +400µK from the average temperature of
2.7255K. The plane of the milky way is horizontally in the middle. The fuzzy regions are those where
the CMB is obscured by our galaxy, or nearby galaxies (can you find the LMC?).



1 INTRODUCTION 19

of the CMB is the black body spectrum with a temperature of T0 = 2.7255 ± 0.0006 K [28]. In
fact, it follows the theoretical black body spectrum better than anything else we can observe or
produce. There is no other plausible explanation for its origin than that it was produced in the
Big Bang. It shows that the universe was homogeneous and in thermal equilibrium at the time
(z = 1090) when this radiation originated. The redshift of the photons causes the temperature
of the CMB to fall as (1 + z)−1, so that its original temperature was about T = 3000K.

The state of a system in thermal equilibrium is determined by just a small number of ther-
modynamic variables, in this case the temperature and density (or densities, when there are
several conserved particle numbers). The observed temperature of the CMB and the observed
density of the present universe allows us to fix the evolution of the temperature and the density
of the universe, which then allows us to calculate the sequence of events during the Big Bang.
That the early universe was hot and in thermal equilibrium is a central part of the Big Bang
paradigm, and it is often called the Hot Big Bang to spell this out.

With sensitive instruments a small anisotropy can be observed in the microwave sky. This
is dominated by the dipole anisotropy (one side of the sky is slightly hotter and the other side
colder), with an amplitude of 3362.1±1.0µK, or ∆T/T0 = 0.001234. This is a Doppler effect due
to the motion of the observer, i.e., the motion of the Solar System with respect to the radiating
matter at our horizon. The velocity of this motion is v = ∆T/T0 = 369.8 ± 0.1 km/s and it is
directed towards the constellation of Leo (galactic coordinates l = 264.02◦, b = 48.25◦; equatorial
coordinates RA 11h11m46s, Dec −6◦57′), near the autumnal equinox (where the ecliptic and the
equator cross on the sky) [11]. It is due to two components, the motion of the Sun around the
center of the Galaxy, and the peculiar motion of the Galaxy due to the gravitational pull of
nearby galaxy clusters28.

When we subtract the effect of this motion from the observations (and look away from the
plane of the Galaxy – the Milky Way also emits microwave radiation, but with a nonthermal
spectrum) the true anisotropy of the CMB remains, with an amplitude of about 3× 10−5, or 80
microkelvins.29 See Fig. 7. This anisotropy gives a picture of the small density variations in the
early universe, the “seeds” of galaxies. Theories of structure formation have to match the small
inhomogeneity of the order 10−4 at z ∼ 1090 and the structure observed today (z = 0).

1.8 Distance, luminosity, and magnitude

In astronomy, the radiated power L of an object, e.g., a star or a galaxy, is called its absolute
luminosity. The flux density l (power per unit area) of its radiation here where we observe it,
is called its apparent luminosity. Assuming Euclidean geometry, and that the object radiates
isotropically, these are related as

l =
L

4πd2
, (1.11)

28Sometimes it is asked whether there is a contradiction with special relativity here – doesn’t CMB provide
an absolute reference frame? There is no contradiction. The relativity principle just says that the laws of

physics are the same in the different reference frames. It does not say that systems cannot have reference frames
which are particularly natural for that system, e.g., the center-of-mass frame or the laboratory frame. For road
transportation, the surface of the Earth is a natural reference frame. In cosmology, CMB gives us a good “natural”
reference frame – it is closely related to the center-of-mass frame of the observable part of the universe, or rather,
a part of it which is close to the horizon (the last scattering surface). There is nothing absolute here; the different
parts of the plasma from which the CMB originates are moving with different velocities (part of the 3 × 10−5

anisotropy is due to these velocity variations); we just take the average of what we see. If there is something
surprising here, it is that these relative velocities are so small, of the order of just a few km/s; reflecting the
astonishing homogeneity of the early universe over large scales. We shall return to the question, whether these
are natural initial conditions, later, when we discuss inflation.

29The numbers refer to the standard deviation of the CMB temperature on the sky. The hottest and coldest
spots deviate some 4 or 5 times this amount from the average temperature.
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where d is our distance to the object. For example, the Sun has

L⊙ = 3.9× 1026 W d⊙ = 1.496 × 1011 m l⊙ = 1370W/m2 .

The ancients classified the stars visible to the naked eye into six classes according to their
brightness. The concept of magnitude in modern astronomy is defined so that it roughly matches
this ancient classification, but it is a real number, not an integer. The magnitude scale is
a logarithmic scale, so that a difference of 5 magnitudes corresponds to a factor of 100 in
luminosity. Thus a difference of 1 magnitude corresponds to a factor 1001/5 = 2.512. The
absolute magnitude M and the apparent magnitude m of an object are defined as

M ≡ −2.5 lg
L

L0

m ≡ −2.5 lg
l

l0
, (1.12)

where L0 and l0 are reference luminosities (lg ≡ log10). Note that the 2.512 and 2.5 here are
two different numbers; they are related by 2.5122.5 = 10. There are actually different magnitude
scales corresponding to different regions of the electromagnetic spectrum, with different reference
luminosities. The bolometric magnitude and luminosity refer to the power or flux integrated over
all frequencies, whereas the visual magnitude and luminosity refer only to the visible light. In
the bolometric magnitude scale L0 = 3.0× 1028 W. The reference luminosity l0 for the apparent
scale is chosen so in relation to the absolute scale that a star whose distance is d = 10 pc has
m =M (exercise: find the value of l0). From this, (1.11), and (1.12) follows that the difference
between the apparent and absolute magnitudes are related to distance as

m−M = −5 + 5 lg d(pc) (1.13)

This difference is called the distance modulus, and often astronomers just quote the distance
modulus, when they have determined the distance to an object. If two objects are known to
have the same absolute magnitude, but the apparent magnitudes differ by 5, we can conclude
that the fainter one is 10 times farther away (assuming Euclidean geometry).

For the Sun we have

M = 4.79 (visual)

M = 4.72 (bolometric)

and (1.14)

m = −26.78 (visual) ,

where the apparent magnitude is as seen from Earth.
Note that the smaller (or more negative) the magnitude number, the brighter the object.

This may be confusing at first; it is better not to use expressions like “higher magnitude” or
“greater magnitude” because it is not obvious which way this is intended; it is better to say
“brighter” or “fainter”.

What you will need from Chapter 1:

• The units introduced in Sec. 1.2

• Concepts of homogeneity and isotropy and the Copernican and Cosmological principles
(Sec. 1.4)

• Redshift, Hubble law, and Hubble constant (Sec. 1.7.3)
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• Concept of horizon (Sec. 1.7.4)

• Absolute and apparent luminosity and the magnitude scale (Sec. 1.8)

Exercises

The first three exercises are not based on these lecture notes. They should be doable with your
previous physics background.

Nuclear cosmochronometers. The uranium isotopes 235 and 238 have half-lives t1/2(235) =
0.704× 109 a ja t1/2(238) = 4.47× 109 a. The ratio of their abundances on Earth is 235U/238U = 0.00725.
When were they equal in abundance? The heavy elements were created in supernova explosions and
mixed with the interstellar gas and dust, from which the earth was formed. According to supernova
calculations the uranium isotopes are produced in ratio 235U/238U = 1.3 ± 0.2. What does this tell us
about the age of the Earth and the age of the Universe?

Olbers’ paradox.

1. Assume the universe is infinite, eternal, and unchanging (and has Euclidean geometry). For sim-
plicity, assume also that all stars are the same size as the sun, and distributed evenly in space.
Show that the line of sight meets the surface of a star in every direction, sooner or later. Use
Euclidean geometry.

2. Let’s put in some numbers: The luminosity density of the universe is 108 L⊙/Mpc3 (within a factor
of 2). With the above assumption we have then a number density of stars n∗ = 108Mpc−3. The
radius of the sun is r⊙ = 7 × 108m. Define r1/2 so that stars closer than r1/2 cover 50 % of the
sky. Calculate r1/2.

3. Let’s assume instead that stars have finite ages: they all appeared t⊙ = 4.6 × 109 a ago. What
fraction f of the sky do theycover? What is the energy density of starlight in the universe, in
kg/m3? (The luminosity, or radiated power, of the sun is L⊙ = 3.85× 1026W).

4. Calculate r1/2 and f for galaxies, using nG = 3× 10−3Mpc−3, rG = 10 kpc, and tG = 1010 a.

Newtonian cosmology. Use Euclidean geometry and Newtonian gravity, so that we interpret the
expansion of the universe as an actual motion of galaxies instead of an expansion of space itself. Consider
thus a spherical group of galaxies in otherwise empty space. At a sufficiently large scale you can treat this
as a homogeneous cloud (the galaxies are the cloud particles). Let the mass density of the cloud be ρ(t).
Assume that each galaxy moves according to Hubble’s law v(t, r) = H(t)r. The expansion of the cloud
slows down due to its own gravity. What is the acceleration as a function of ρ and r ≡ |r|? Express this as
an equation for Ḣ(t) (here the overdot denotes time derivative). Choose some reference time t = t0 and
define a(t) ≡ r(t)/r(t0). Show that a(t) is the same function for each galaxy, regardless of the value of
r(t0). Note that ρ(t) = ρ(t0)a(t)

−3. Rewrite your differential equation for H(t) as a differential equation
for a(t). You can solve H(t) also using energy conservation. Denote the total energy (kinetic + potential)
of a galaxy per unit mass by κ. Show that K ≡ −2κ/r(t0)

2 has the same value for each galaxy, regardless
of the value of r(t0). Relate H(t) to ρ(t0), K, and a(t). Whether the expansion continues forever, or
stops and turns into a collapse, depends on how large H is in relation to ρ. Find out the critical value
for H (corresponding to the escape velocity for the galaxies) separating these two possibilities. Turn the
relation around to give the critical density corresponding to a given “Hubble constant” H . What is this
critical density (in kg/m

3
) for H = 70km/s/Mpc?

Practice with natural units.

1. The Planck mass is defined as MPl ≡ 1√
8πG

, where G is Newton’s gravitational constant. Give

Planck mass in units of kg, J, eV, K, m−1, and s−1.
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2. The energy density of the cosmic microwave background is ργ = π2

15T
4 and its photon density is

nγ = 2
π2 ζ(3)T

3, where ζ is Riemann’s zeta function and ζ(3) = 1.20206. What is this energy
density in units of kg/m3 and the photon density in units of m−3, i) today, when T = 2.7255K, ii)
when the temperature was T = 1MeV? What was the average photon energy, and what was the
wavelength and frequency of such an average photon?

3. Suppose the mass of an average galaxy is mG = 1011 M⊙ and the galaxy density in the universe
is nG = 3 × 10−3Mpc−3. What is the galactic contribution to the average mass density of the
universe, in kg/m3?

4. The critical density for the universe is ρcr0 ≡ 3
8πGH

2
0 , where H0 is the Hubble constant, whose

value we take to be 70 km/s/Mpc. How much is the critical density in units of kg/m3 and in
MeV4? What fraction of the critical density is contributed by the microwave background (today),
by starlight (see earlier exercise above), and by galaxies?

Reference luminosity. Find the value of l0 for the bolometric scale.
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2 General Relativity

About this chapter: This chapter is short, but it is crucial for understanding the next (long)
chapter. We introduce the ideas of curved space and curved spacetime and describe how geo-
metrical quantities in them are calculated using the metric.

The general theory of relativity (Einstein 1915) is the theory of gravity. General relativity
(“Einstein’s theory”) replaced the previous theory of gravity, Newton’s theory. The fundamental
idea in (both special and general) relativity is that space and time form together a 4-dimensional
spacetime. The fundamental idea in general relativity is that gravity is manifested as curvature
of this spacetime. While in Newton’s theory gravity acts directly as a force between two bodies,
in Einstein’s theory the gravitational interaction is mediated by the spacetime. A massive
body curves the surrounding spacetime. This curvature then affects the motion of other bodies.
“Matter tells spacetime how to curve, spacetime tells matter how to move” [12]. From the
viewpoint of general relativity, gravity is not a force at all; if there are no (other) forces (than
gravity) acting on a body, we say the body is in free fall. A freely falling body is moving as
straight as possible in the curved spacetime, along a geodesic line. If there are (other) forces,
they cause the body to deviate from the geodesic line. It is important to remember that the
viewpoint is that of spacetime, not just space. For example, the orbit of Earth around the Sun
is curved (an ellipse) in space, but as straight as possible in spacetime.

If a spacetime is not curved, we say it is flat, which just means that it has the geometry of
Minkowski space (note the possibly confusing terminology: it is conventional to say “Minkowski
space”, although it is a spacetime). In the case of 2- or 3-dimensional (2D or 3D) space, “flat”
means that the geometry is Euclidean.

2.1 Curved 2D and 3D space

If you are familiar with the concept of curved space and how its geometry is given by the metric,
you can skip the following discussion of 2- and 3-dimensional spaces and jump to Sec. 2.3.

Ordinary human brains cannot visualize a curved 3-dimensional space, let alone a curved
4-dimensional spacetime. However, we can visualize some curved 2-dimensional spaces by con-
sidering them embedded in flat 3-dimensional space.30 So let us consider first a 2D space.
Imagine there are 2D beings living in this 2D space. They have no access to a third dimension.
How can they determine whether the space they live in is curved? By examining whether the
laws of Euclidean geometry hold. If the space is flat, then the sum of the angles of any triangle
is 180◦, and the circumference of any circle with radius r is 2πr. If by measurement they find
that this does not hold for some triangles or circles, then they can conclude that the space is
curved.

A simple example of a curved 2D space is the sphere. The sum of angles of any triangle on
a sphere is greater than 180◦, and the circumference of any circle is less than 2πr. Straight, i.e.,
geodesic, lines, e.g., sides of a triangle, on the sphere are sections of great circles, which divide
the sphere into two equal hemispheres. The radius of a circle is measured along the sphere
surface. See Fig. 8.

Note that the surface of a cylinder has Euclidean geometry, i.e., there is no way that 2D
beings living on it could conclude that it differs from a flat surface, and thus by our definition it

30This embedding is only an aid in visualization. A curved 2D space is defined completely in terms of its 2
independent coordinates, without any reference to a higher dimension, the geometry being given by the metric (a
part of the definition of the 2D space), an expression in terms of these coordinates. Some such curved 2D spaces
have the same geometry as some 2D surface in flat 3D space. We then say that the 2D space can be embedded
in flat 3D space. But other curved 2D spaces have no such corresponding surface, i.e., they can not be embedded
in flat 3D space.
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Figure 8: Cylinder and sphere.

is a flat 2D space. (Except that by traveling around the cylinder they could conclude that their
space has a strange topology).

In a similar manner we could try to determine whether the 3D space around us is curved,
by measuring whether the sum of angles of a triangle is 180◦ or whether a sphere with radius r
has surface area 4πr2. In fact, the space around Earth is curved due to Earth’s gravity, but the
curvature is so small that more sophisticated measurements than the ones described above are
needed to detect it.

2.2 The metric of 2D and 3D space

The tool to describe the geometry of space is the metric. The metric is given in terms of a
set of coordinates. The coordinate system can be an arbitrary curved coordinate system. The
coordinates are numbers which identify locations, but do not, by themselves, yet say anything
about physical distances. The distance information is in the metric. (In general, coordinates
are dimensionless numbers, but in some cases, see below, the connection between distance and
coordinate is so direct that it makes sense to assign the dimension of distance to the coordinates).

To introduce the concept of a metric, let us first consider Euclidean 2-dimensional space with
Cartesian coordinates x,y. A parameterized curve x(η), y(η), begins at η1 and ends at η2. See
Fig. 9. The length of the curve is given by

s =

∫

ds =

∫
√

dx2 + dy2 =

∫ η2

η1

√

x′2 + y′2dη , (2.1)

where x′ ≡ dx/dη, y′ ≡ dy/dη. Here ds =
√

dx2 + dy2 is the line element. The square of the
line element, the metric, is

ds2 = dx2 + dy2 . (2.2)

The line element has the dimension of distance. If our coordinates are dimensionless, we need to
include the distance scale in the metric. If the separation of neighboring coordinate lines, e.g.,
x = 1 and x = 2 is a (say, a = 1cm), then we have

ds2 = a2
(
dx2 + dy2

)
(2.3)

where a could be called the scale factor. (The other option is to use (2.2) and assign the
dimension of cm to the coordinates.) As a working definition for the metric, we can use that
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Figure 9: A parameterized curve in Euclidean 2D space with Cartesian coordinates.

the metric is an expression which gives the square of the line element in terms of the coordinate
differentials.

We could use another coordinate system on the same 2-dimensional Euclidean space, e.g.,
polar coordinates. Then the metric is

ds2 = a2
(
dr2 + r2dϕ2

)
, (2.4)

giving the length of a curve as

s =

∫

ds =

∫

a
√

dr2 + r2dϕ2 =

∫ η2

η1

a
√

r′2 + r2ϕ′2dη . (2.5)

In a similar manner, in 3-dimensional Euclidean space, the metric is

ds2 = dx2 + dy2 + dz2 (2.6)

in (dimensionful) Cartesian coordinates, and

ds2 = dr2 + r2dϑ2 + r2 sin2 ϑdϕ2 (2.7)

in spherical coordinates (where the r coordinate has the dimension of distance, but the angular
coordinates ϑ and ϕ are of course dimensionless).

Now we can go to our first example of a curved (2-dimensional) space, the sphere (the 2-
sphere). Let the radius of the sphere be a. For the two coordinates on this 2D space we can take
the angles ϑ and ϕ. We get the metric from the Euclidean 3D metric in spherical coordinates
by setting r ≡ a,

ds2 = a2
(
dϑ2 + sin2 ϑdϕ2

)
. (2.8)

The length of a curve ϑ(η), ϕ(η) on this sphere (see Fig. 10) is given by

s =

∫

ds =

∫ η2

η1

a

√

ϑ′2 + sin2 ϑϕ′2dη . (2.9)

For later application in cosmology, it is instructive to now consider a coordinate transforma-
tion r = sinϑ (this new coordinate r has nothing to do with the earlier r of 3D space, it is a
coordinate on the sphere growing in the same direction as ϑ, starting at r = 0 from the North
Pole (ϑ = 0)). Since now dr = cos ϑdϑ =

√
1− r2dϑ, the metric becomes

ds2 = a2
(

dr2

1− r2
+ r2dϕ2

)

. (2.10)
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Figure 10: Left: A parameterized curve on a 2D sphere with spherical coordinates. Right: The part of
the sphere covered by the coordinates in Eq. (2.10).

For r ≪ 1 (in the vicinity of the North Pole), this metric is approximately the same as Eq. (2.4),
i.e., it becomes polar coordinates on the “Arctic plain”, with scale factor a. Only as r gets
larger we begin to notice the deviation from flat geometry. Note that we run into a problem
when r = 1. This corresponds to ϑ = π/2 = 90◦, i.e. the “equator”. After this r = sinϑ
begins to decrease again, repeating the same values. Also, at r = 1, the 1/(1 − r2) factor in
the metric becomes infinite. We say we have a coordinate singularity at the equator. There is
nothing wrong with the space itself, but our chosen coordinate system applies only for a part of
this space, the region “north” of the equator.

For later reference, we do an arbitrary rescaling of the radial coordinate, r̃ = br, so that the
metric of the 2-sphere becomes

ds2 = ã2
(

dr̃2

1−Kr̃2
+ r̃2dϕ2

)

, (2.11)

where ã = a/b and K = 1/b2.

Example: What is the distance from the origin, s(ϑ) or s(ϕ), on a sphere? Since ϕ = const is a
great circle (straight line on a sphere) we calculate with fixed ϕ. Using (2.8),

s(ϑ) =

∫

ds = a

∫ ϑ

0

dϑ = aϑ . (2.12)

Using (2.10),

s(r) =

∫

ds = a

∫ r

0

dr√
1− r2

= a arcsin r . (2.13)

What is the area whose distance from the origin is between s and s + ds? The infinitesimal distance in
the ϑ direction is ds = adϑ and in the ϕ direction ds = a sinϑdϕ so that

dA = adϑ · a sinϑdϕ . (2.14)

The area is thus

A =

∫ 2π

0

adϕ

∫ ϑ(s+ds)

ϑ(s)

a sinϑdϑ = 2πa · a sinϑdϑ = 2πa · a sin(s/a)ds
a

= 2πa sin(s/a)ds . (2.15)

This approaches the Euclidean result 2πsds in the limit s≪ a. The area of the sphere is

A =

∫ 2π

0

adϕ

∫ π

0

a sinϑdϑ = 2πa · 2a = 4πa2 . (2.16)
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Figure 11: The light cone.

2.3 4D flat spacetime

Let us now return to the 4-dimensional spacetime. The coordinates of the 4-dimensional space-
time are (x0, x1, x2, x3), where x0 is a time coordinate (the 0, 1, 2, 3 here are indices, not
exponents). Some examples are “Cartesian” (t, x, y, z) and spherical (t, r, ϑ, ϕ) coordinates.
The coordinate system can be an arbitrary curved coordinate system. The coordinates do not,
by themselves, yet say anything about physical distances. The distance information is in the
metric. A Greek index is used to denote an arbitrary spacetime coordinate, xµ, where it is
understood that µ can have any of the values 0, 1, 2, 3. Latin indices are used to denote space
coordinates, xi, where it is understood that i can have any of the values 1, 2, 3.

The metric of the Minkowski space of special relativity is

ds2 = −dt2 + dx2 + dy2 + dz2, (2.17)

in Cartesian coordinates. In spherical coordinates it is

ds2 = −dt2 + dr2 + r2dϑ2 + r2 sin2 ϑ dϕ2, (2.18)

The fact that time appears in the metric with a different sign, is responsible for the special
geometric features of Minkowski space. (I am assuming you already have some familiarity with
special relativity.) There are three kinds of directions,

• timelike, ds2 < 0

• lightlike, ds2 = 0

• spacelike, ds2 > 0.

The lightlike directions form the observer’s future and past light cones.31 Light moves along
the light cone, so that everything we see lies on our past light cone. To see us as we are now, the
observer has to lie on our future light cone. As we move in time along our world line (path in
spacetime), we drag our light cones with us so that they sweep over the spacetime. The motion
of any massive body is always timelike.

31The light cone refers both to this set of directions and to the 3D surface in spacetime covered by light rays
to/from these directions from/to the reference point (observer).
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2.4 Curved spacetime

These features of the Minkowski space are inherited by the spacetime of general relativity.
However, spacetime is now curved, whereas in Minkowski space it is flat (i.e., not curved). The
(proper) length of a spacelike curve is ∆s ≡

∫
ds. Light moves along lightlike world lines, ds2 = 0,

massive objects along timelike world lines ds2 < 0. The time measured by a clock carried by the
object, the proper time, is ∆τ =

∫
dτ , where dτ ≡

√
−ds2, so that dτ2 = −ds2 > 0. The proper

time τ is a natural parameter for the world line, xµ(τ).
The four-velocity of an object is defined as

uµ =
dxµ

dτ
. (2.19)

The zeroth component of the 4-velocity, u0 = dx0/dτ = dt/dτ relates the proper time τ to the
coordinate time t, and the other components of the 4-velocity, ui = dxi/dτ , to coordinate velocity
vi ≡ dxi/dt = ui/u0. To convert this coordinate velocity into a physical velocity (with respect
to the coordinate system), we still need to use the metric, see below. Note that velocity is a
relative quantity: it is always relative to something; here, relative to the coordinate system.

In an orthogonal coordinate system the coordinate lines are everywhere orthogonal to each
other. The metric is then diagonal, of the form

ds2 = −a2dt2 + b2dx2 + c2dy2 + e2dz2 (2.20)

(where a, b, c, and e are, in general, functions of t, x, y, and z), meaning that it contains no
cross terms like dxdy. We shall only use orthogonal coordinate systems in this course. The
physical distance travelled in the x direction is then bdx, and the time measured by an observer
at rest in the coordinate system is adt, so that the physical velocity (in the x direction and with
respect to the coordinate system) is vphys = bdx/adt.

The three-dimensional subspace (“hypersurface”) t = const of spacetime is called the space
(or the universe) at time t, or a time slice of the spacetime. (It is possible to slice the same
spacetime in many different ways, i.e., to use coordinate systems with different t = const hyper-
surfaces. See Fig. 12. This means that the concept of simultaneity is relative: two spacetime
events may have the same time coordinate t value in one coordinate system, but a different
coordinate t′ value in another. However, in the next chapter we introduce a preferred slicing,
i.e., a preferred time coordinate.) The volume of a 3D region within this space given by some
range in the space coordinates is given by

V =

∫

dV , (2.21)

where the volume element is
dV = bce dxdydz , (2.22)

if the metric is (2.20).

2.5 Einstein equation

The idea that gravitation is curvature of spacetime and the geometry of spacetime can be
expressed with a metric, is only one part of general relativity (GR). To complete the theory one
must give the law that determines this geometry. In GR this is given by the Einstein equation,
which relates the curvature to the distribution of energy. The Einstein equation is discussed in
Appendix A (not required in this course). For a proper introduction to the Einstein equation one
should take the General Relativity course. One can also invent other metric theories of gravity
where the Einstein equation is replaced with something more complicated. General relativity is
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Figure 12: Two coordinate systems with different time slicings.

the simplest possibility and is supported by observations, except for the dark energy problem.
In Cosmology I we will need only the special case of the Einstein equation called the Friedmann
equations, introduced in the next chapter.

What you will need from Chapter 2:

• An understanding of the meaning of curved space and spacetime and how the spacetime
curvature, the coordinate system, and the metric are related to each other

• The meaning of and difference between 4-velocity, coordinate velocity, and physical velocity

• How to obtain distances, proper times, velocities, and volumes using the metric and coor-
dinates
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3 Friedmann–Robertson–Walker Universe

About this chapter: This long chapter is the most important chapter in the course. We use
a homogenous and isotropic approximation for the expanding universe, which leads us to the
Robertson–Walker metric. The whole chapter is essentially about working with this metric to
calculate all kinds of quantities related to this geometry of spacetime. Sec. 3.1 assumes just this
RW metric, whereas in Sec. 3.2 we assume General Relativity, which connects the expansion
to the energy content of the universe. Thus Sec. 3.1 would apply also to alternative theories
of gravity. This division means that some topics are covered twice (e.g., angular diameter /
luminosity distance), the second time with this additional information. We start by considering
the three possible geometries allowed by the RW metric, the flat, closed, and open universe.
In Sec. 3.2 we introduce a number of cosmological parameters, whose values will determine the
cosmological model. We also discuss how supernova data can be used to constrain the geometry
and expansion history of the universe to fix the values of these parameters. Finally in Sec. 3.3
we describe the simplest model that fits the observational data.

3.1 Kinematics

3.1.1 Robertson–Walker metric

We adopt now the cosmological principle, and discuss the homogeneous and isotropic model
for the universe. This is called the Friedmann–Robertson–Walker (FRW) or the Friedmann–
Lemâıtre–Robertson–Walker universe. Here the homogeneity refers to spatial homogeneity only,
so that the universe will still be different at different times.

Spatial homogeneity means that there exists a coordinate system whose t = const hyper-
surfaces are homogeneous. This time coordinate is called the cosmic time. Thus the spatial
homogeneity property selects a preferred slicing of the spacetime, reintroducing a separation
between space and time.

There is good evidence, that the Universe is indeed rather homogeneous (all places look
the same) and isotropic (all directions look the same) at sufficiently large scales (i.e., ignoring
smaller scale features), larger than 100 Mpc. (Recall the discussion of the cosmological principle
in Chapter 1.)

Homogeneity and isotropy mean that the curvature of spacetime must be the same every-
where and into every space direction, but it may change in time.32 It can be shown that the
metric can then be given (by a suitable choice of the coordinates) in the form

ds2 = −dt2 + a2(t)

[
dr2

1−Kr2
+ r2dϑ2 + r2 sin2 ϑ dϕ2

]

, (3.1)

the Robertson–Walker (RW) metric in spherical coordinates. Here ϕ ∈ [0, 2π), ϑ ∈ [0, π].
One can arrive at the space part of this metric by noting that the 2-sphere is obviously a

homogeneous and isotropic curved 2D space, and generalizing the metric of the 2-sphere, (2.11),
to a 3-sphere, and then allowing the constant K to take also negative values.

32If we drop the condition of isotropy, there are several different possible cosmological models. These spatially
homogeneous but anisotropic models are called Bianchi models, after the Bianchi classification. There are nine
classes, Bianchi I–IX, some of them with subclasses. The simplest is Bianchi I, where the geometry of the 3D
universe is flat, but it expands at different rates in different directions. There is no evidence to favor any Bianchi
model over the FRW. The FRW models are special cases of the Bianchi models, the limit where their anisotropy
goes to zero; so cosmological observations can be applied to the Bianchi models to put upper limits to the
anisotropy.
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Doing a coordinate transformation we can also write it in Cartesian coordinates (exercise) :

ds2 = −dt2 + a2(t)
dx2 + dy2 + dz2

[
1 + 1

4K (x2 + y2 + z2)
]2 , (3.2)

where x = r̃ sinϑ cosϕ, y = r̃ sinϑ sinϕ, z = r̃ cosϑ, and r̃ = (1 −
√
1−Kr2)/(12Kr). Usually the

spherical coordinates are more useful.

This is thus the metric of our universe, to first approximation, and we shall work with this
metric for a large part of this course.33 The time coordinate t is the cosmic time. Here K is a
constant, related to curvature of space, and a(t) is a function of time, related to expansion (or
possible contraction) of the universe. We call

Rcurv ≡ a(t)/
√

|K| (3.3)

the curvature radius of space (at time t).
The time-dependent factor a(t) is called the scale factor. When the Einstein equation is

applied to the RW metric, we will get the Friedmann equations, from which we can solve a(t).
This will be done in Sec. 3.2.34 For now, a(t) is an arbitrary function of the time coordinate
t. However, for much of the following discussion, we will assume that a(t) grows (the universe
expands) with time; and when we refer to the age of the universe, we assume that a(t) becomes
zero at some finite past, which we take as the origin of the time coordinate, t = 0.

We use the dot, ˙≡ d/dt, to denote derivatives with respect to cosmic time t and define

H ≡ ȧ/a . (3.4)

This quantity H = H(t) gives the expansion rate of the universe, and it is called the Hubble
parameter. Its present value H0 is the Hubble constant. (In cosmology it is customary to
denote the present values of quantities with the subscript 0.) The dimension of H is 1/time (or
velocity/distance). In time dt a distance gets stretched by a factor 1+Hdt (a distance L grows
with velocity HL).

Note that although the metric describes a homogeneous universe, the metric itself is not
explicitly homogeneous, because it depends also on the coordinate system in addition to the
geometry. (This is a common situation, just like the spherical coordinates of a sphere do not
form a homogeneous coordinate system, although the sphere itself is homogeneous.) However,
any physical quantities that we calculate from the metric are homogeneous and isotropic.

We notice immediately that the 2-dimensional surfaces t = r = const have the metric of a
sphere with radius ar. Since the universe is homogeneous, the location of the origin (r = 0) in
space can be chosen freely. We naturally tend to put ourselves at the origin, but for calculations
this freedom may be useful.

We have the freedom to rescale the radial coordinate r. For example, we can multiply all
values of r by a factor of 2, if we also divide a by a factor of 2 and K by a factor of 4. The
geometry of the spacetime stays the same, just the meaning of the coordinate r has changed:
the point that had a given value of r has now twice that value in the rescaled coordinate system.
There are two common ways to rescale:

1. Rescale r to make K equal to ±1 (unless K = 0). In this case K is usually denoted k, and
it has three possible values, k = −1, 0,+1. In this case r is dimensionless, and a(t) has
the dimension of distance. For k = ±1, a(t) becomes equal to Rcurv and is often denoted
R(t). Equations in this convention will be written in blue.

33That is, for the whole of Cosmology I. In Cosmology II we shall consider deviations from this homogeneity.
34I have adopted from Syksy the separation of this chapter into Kinematics (Sec. 3.1: RW metric only) and

Dynamics (Sec. 3.2: RW metric + Friedmann equations). This has the advantage that this Kinematics section
applies also to other metric theories of gravity than general relativity, which one may want to consider at some
point.
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2. Rescale a to be one at present35, a(t0) ≡ a0 = 1. In this case a(t) is dimensionless, whereas
r and K−1/2 have the dimension of distance. We will adopt this convention from Sec. 3.1.4
on.

Choosing one of these two scalings will simplify some of our equations. One must be careful about
the possible confusion resulting from comparing equations using different scaling conventions.

IfK = 0, the space part (t = const) of the Robertson–Walker metric is flat. The 3-metric (the
space part of the full metric) is that of ordinary Euclidean space written in spherical coordinates,
with the radial distance given by ar. The spacetime, however, is curved, since a(t) depends on
time, describing the expansion or contraction of space. We call this case the flat FRW model or
universe.

If K > 0, the coordinate system is singular at r = 1/
√
K. (Remember our discussion of the

2-sphere!) With the substitution (coordinate transformation) r = K−1/2 sin(K1/2χ) the metric
becomes

ds2 = −dt2 + a2(t)
{

dχ2 +K−1 sin2(K1/2χ)
[
dϑ2 + sin2 ϑ dϕ2

]}

. (3.5)

With the scaling choice K = k = 1 this simplifies to

ds2 = −dt2 + a2(t)
[
dχ2 + sin2 χdϑ2 + sin2 χ sin2 ϑ dϕ2

]
. (3.6)

The space part has the metric of a hypersphere (a 3-sphere), a sphere with one extra dimension.√
Kχ is a new angular coordinate, whose values range over 0–π, just like ϑ. The singularity at

r = 1/
√
K disappears in this coordinate transformation, showing that it was just a coordinate

singularity, not a singularity of the spacetime. The original coordinates covered only half of
the hypersphere, as the coordinate singularity r = 1/

√
K divides the hypersphere into two

halves. The curvature of the hypersphere is positive. Positive curvature means that the sum
of angles of any triangle is greater than 180◦ and that the area of a sphere with radius χ is
less than 4πχ2. This is a finite universe, with circumference 2πa/

√
K = 2πRcurv and volume

2π2K−3/2a3 = 2π2R3
curv, and we can think of Rcurv as the radius of the hypersphere. We call

this case the closed FRW model or universe.
If K < 0, we do not have a coordinate singularity, and r can range from 0 to ∞. The

substitution r = |K|−1/2 sinh(|K|1/2χ) is, however, often useful in calculations. The metric is
then

ds2 = −dt2 + a2(t)
[

dχ2 + |K|−1 sinh2(|K|1/2χ)
(
dϑ2 + sin2 ϑ dϕ2

)]

. (3.7)

The case K < 0 has negative spatial curvature. Negative curvature means that the sum of
angles of any triangle is less than 180◦ and that the area of a sphere with radius χ is greater
than 4πχ2. This universe is infinite, just like the case K = 0. We call this case the open FRW
model or universe.

The words “open” or “closed” do not refer to the similarly named concepts in topology.
They just come from the idea of the universe being infinite or finite. In principle it is possible
also for the flat and open universes to be finite, without having a boundary, if they have a
nontrivial topology analogous to the case of the cylinder surface discussed in Chapter 2. For the
flat universe this is easy to understand; but it is also possible for the open universe. There is no
evidence for such nontrivial topology for our universe, and we will ignore this possibility in this
course.

35In some discussions of the early universe, it may also be convenient to rescale a to be one at some particular
early time.
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Figure 13: The hypersphere. This figure is for K = k = 1. Consider the semicircle in the figure. It
corresponds to χ ranging from 0 to π. You get the (2-dimensional) sphere by rotating this semicircle
off the paper around the vertical axis by an angle ∆ϕ = 2π. You get the (3-dimensional) hypersphere
by rotating it twice, in two extra dimensions, by ∆ϑ = π and by ∆ϕ = 2π, so that each point makes
a sphere. Thus each point in the semicircle corresponds to a full sphere with coordinates ϑ and ϕ, and
radius (a/

√
K) sin

√
Kχ.

To handle all three curvature cases simultaneously, we define

fK(χ) ≡







K−1/2 sin(K1/2χ) , (K > 0)

χ , (K = 0)

|K|−1/2 sinh(|K|1/2χ) , (K < 0)

(3.8)

which allows us to write the RW metric as

ds2 = −dt2 + a2(t)

[

dχ2 + f2K(χ)
(
dϑ2 + sin2 ϑ dϕ2

)
]

, (3.9)

The RW metric (at a given time) has two associated length scales. The first is the curvature
radius, Rcurv ≡ a|K|−1/2. The second is given by the time scale of the expansion, the Hubble
time or Hubble length tH ≡ lH ≡ H−1, whose present value is

H−1
0 = 9.7781h−1 Gyr = 2997.92458h−1 Mpc . (3.10)

(Note that due to the definition of h, the digits 2997.92458 is just the speed of light in units of
100 km/s, which makes this value of lH easy to remember.) In the case K = 0 the universe is
flat, so the only length scale is the Hubble length.

The coordinates (t, r, ϑ, ϕ), (t, χ, ϑ, ϕ), or (t, x, y, z) of the RW metric are called comoving
coordinates. This means that the coordinate system follows the expansion of space, so that
the space coordinates of objects which do not move remain the same. The homogeneity of the
universe fixes a special frame of reference, the cosmic rest frame given by the above coordinate
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system, so that, unlike in special relativity, the concept “does not move” has a specific meaning.
The coordinate distance between two such objects stays the same, but the physical, or proper
distance between them grows with time as space expands. The time coordinate t, the cosmic
time, gives the time measured by such an observer at rest, at (r, ϑ, ϕ) = const .

It can be shown that the expansion causes the motion of an object in free fall to slow down
with respect to the comoving coordinate system. For nonrelativistic physical velocities v,

v(t2) =
a(t1)

a(t2)
v(t1). (3.11)

The peculiar velocity of a galaxy is its velocity with respect to the comoving coordinate system.

3.1.2 Redshift

Let us now ignore the peculiar velocities of galaxies (i.e., we assume they are = 0), so that they
will stay at fixed coordinate values (r, ϑ, ϕ), and find how their observed redshift z arises. We
set the origin of our coordinate system at galaxy O (observer). Let the r-coordinate of galaxy
A be rA. Since we assumed the peculiar velocity of galaxy A to be 0, the coordinate rA stays
constant with time.

Light leaves the galaxy at time t1 with wavelength λ1 and arrives at galaxy O at time t2
with wavelength λ2. It takes a time δt1 = λ1/c = 1/ν1 to send one wavelength and a time
δt2 = λ2/c = 1/ν2 to receive one wavelength (ν1 and ν2 are the frequencies, sent and received
waves per time). Follow now the two light rays sent at times t1 and t1 + δt1 (see figure). Along
the light rays t and r (or χ) change, ϑ and ϕ stay constant (this is clear from the symmetry of
the problem). Light obeys the lightlike condition

ds2 = 0 . (3.12)

We have thus

ds2 = −dt2 + a2(t)
dr2

1−Kr2
= −dt2 + a2(t)dχ2 = 0 (3.13)

⇒ dt

a(t)
=

−dr√
1−Kr2

= −dχ . (3.14)

Integrating this, we get for the first light ray,

∫ t2

t1

dt

a(t)
=

∫ rA

0

dr√
1−Kr2

=

∫ χA

0
dχ = χA , (3.15)

and for the second,

∫ t2+δt2

t1+δt1

dt

a(t)
=

∫ rA

0

dr√
1−Kr2

=

∫ χA

0
dχ = χA . (3.16)

The right hand sides of the two equations are the same, since the sender and the receiver have
not moved (they have stayed at r = rA and r = 0). Thus

0 =

∫ t2+δt2

t1+δt1

dt

a(t)
−
∫ t2

t1

dt

a(t)
=

∫ t2+δt2

t2

dt

a(t)
−
∫ t1+δt1

t1

dt

a(t)
=

δt2
a(t2)

− δt1
a(t1)

, (3.17)

and the time to receive one wavelength is

δt2 =
a(t2)

a(t1)
δt1. (3.18)
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Figure 14: The two light rays to establish the redshift.

As is clear from the derivation, this cosmological time dilation effect applies to observing any
event taking place in galaxy A. As we observe galaxy A, we see everything happening in “slow
motion”, slowed down by the factor a(t2)/a(t1), which is the factor by which the universe has
expanded since the light (or any electromagnetic signal) left the galaxy. This effect can be
observed, e.g., in the light curves of supernovae (their luminosity as a function of time).

For the redshift we get

1 + z ≡ λ2
λ1

=
δt2
δt1

=
a(t2)

a(t1)
. (3.19)

The redshift of a galaxy directly tells us how much smaller the universe was when the light left
the galaxy. The result is easy to remember: the wavelength expands with the universe.

Thus the redshift z is related to the value of a(t) and thus to the time t, the age of the
universe, when the light left the galaxy. We can thus use a or z as alternative time coordinates.
Their relation is

1 + z =
a0
a

or a =
a0

1 + z
⇒ da = − a0dz

(1 + z)2
⇒ da

a
= − dz

1 + z
. (3.20)

Note that while a grows with time, z decreases with time: z = ∞ at a = t = 0 and z = 0 at
t = t0. (More properly, z is a coordinate on our past light cone, so it corresponds to both a time
and a distance.)

3.1.3 Age-redshift relation

If the observed redshift of a galaxy is z, what was the age of the universe when the light left the
galaxy? Without knowing the function a(t) we cannot answer this and other similar questions,
but it is useful to derive general expressions in terms of a(t), z, and H(t). We get

H =
1

a

da

dt
⇒ dt =

da

aH
= − dz

(1 + z)H
, (3.21)

so that the age of the universe at redshift z is

t(z) =

∫ t

0
dt′ =

∫ ∞

z

dz′

(1 + z′)H
. (3.22)
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and the present age of the universe is

t0 ≡ t(z = 0) =

∫ ∞

0

dz′

(1 + z′)H
. (3.23)

The difference gives the light travel time, i.e., how far in the past we see the galaxy,

t0 − t(z) =

∫ z

0

dz′

(1 + z′)H
. (3.24)

3.1.4 Distance

In cosmology, the typical velocities of observers (with respect to the comoving coordinates) are
small, v < 1000 km/s, so that we do not have to worry about Lorentz contraction (or about the
velocity-related time dilation) and in the FRW model we can use the cosmic rest frame. The
expansion of the universe brings, however, other complications to the concept of distance. Do
we mean by the distance to a galaxy how far it is now (longer), how far it was when the observed
light left the galaxy (shorter), or the distance the light has traveled (intermediate)?

The proper distance (or “physical distance”) dp(t) between two objects36 is defined as their
distance measured along the hypersurface of constant cosmic time t. By comoving distance we
mean the proper distance scaled to the present value of the scale factor (or sometimes to some
other special time we choose as the reference time). If the objects have no peculiar velocity their
comoving distance at any time is the same as their proper distance today.

To calculate the proper distance dp(t) between galaxies (one at r = 0, another at r = rA) at
time t, we need the metric, since dp(t) =

∫ rA
0 ds. We integrate along the path t, ϑ, ϕ = const, or

dt = dϑ = dϕ = 0, so ds2 = a2(t)dχ2 = a2(t) dr2

1−Kr2
, and get

dp(t) = a(t)

∫ rA

0

dr√
1−Kr2

= a(t)

∫ χA

0
dχ

=







K−1/2a(t) arcsin(K1/2rA) (K > 0)

a(t) rA (K = 0)

|K|−1/2a(t) arsinh(|K|1/2rA) (K < 0)

≡ a(t)f−1
K (rA) = a(t)χA (3.25)

The functions fK(χ) and

f−1
K (r) ≡

∫ r

0

dr√
1−Kr2

=







K−1/2 arcsin(K1/2r) , (K > 0)

r , (K = 0)

|K|−1/2arsinh(|K|1/2r) . (K < 0)

(3.26)

convert between the two natural “unscaled” (i.e., you still need to multiply this distance by the
scale factor a) radial distance definitions for the RW metric:

χ = f−1
K (r) =

dp

a
, (3.27)

the proper distance measured along the radial line, and

r = fK(χ) = fK (dp/a) (3.28)

36or more generally between two points (r, ϑ,ϕ) on the t = const hypersurface. In relativity, proper length of
an object refers to the length of an object in its rest frame, so the use of the word ‘proper’ in ‘proper distance’ is
perhaps proper only when the objects are at rest in the FRW coordinate system. Nevertheless, we define it now
this way.



3 FRIEDMANN–ROBERTSON–WALKER UNIVERSE 37

Figure 15: Calculation of the distance-redshift relation.

which is related to the length of the circle and the area of the sphere at this distance with the
familiar 2πar and 4π(ar)2.

As the universe expands, the proper distance grows,

dp(t) = a(t)χ =
a0

1 + z
χ ≡ dc

1 + z
, (3.29)

where dc ≡ a0χ = dp(t0) is the present proper distance to r, or the comoving distance to r.
We adopt now the scaling convention a0 = 1, so that the coordinate χ becomes equivalent

to the comoving distance from the origin. The comoving distance between two different objects,
A and B, lying along the same line of sight, i.e., having the same ϑ and ϕ coordinates, is simply
χB − χA. Both fK and f−1

K have the dimension of distance (in this scaling convention). The
relation between the scale factor and redshift becomes simply

a =
1

1 + z
. (3.30)

Let us first derive the distance-redshift relation. See Fig. 15. We see a galaxy with redshift
z; how far is it? (We assume z is entirely due to the Hubble expansion, 1 + z = 1/a, i.e., we
ignore the contribution from the peculiar velocity of the galaxy or the observer).

Since for light,

ds2 = −dt2 + a2(t)
dr2

1−Kr2
= −dt2 + a2(t)dχ2 = 0, (3.31)

we have

dt = −a(t) dr√
1−Kr2

= −a(t)dχ ⇒
∫ t0

t1

dt

a(t)
=

∫ r

0

dr√
1−Kr2

= χ = dc . (3.32)

The comoving distance to redshift z is thus

dc(z) = χ(z) =

∫ t0

t1

dt

a(t)
=

∫ 1

1
1+z

da

a

1

da/dt
=

∫ z

0

dz′

H(z′)
. (3.33)

The proper distance at the time the light left the galaxy is

dp(z) =
1

1 + z

∫ z

0

dz′

H(z′)
. (3.34)
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The “distance light has traveled” (i.e., adding up the infinitesimal distances measured by a
sequence of observers at rest along the light path) is equal to the light travel time, Eq. (3.24). In
a monotonously expanding (or contracting) universe it is intermediate between dp(z) and dc(z).

We encounter the beginning of time, t = 0, at a = 0 or z = ∞. Thus the comoving distance
light has traveled during the entire age of the universe is

dchor = χhor =

∫ ∞

0

dz′

H(z′)
. (3.35)

This distance (or the sphere with radius dchor, centered on the observer) is called the horizon,
since it represent the maximum distance we can see, or receive any information from.

There are actually several different concepts in cosmology called the horizon. To be exact,
the one defined above is the particle horizon. Another horizon concept is the event horizon,
which is related to how far light can travel in the future. The Hubble distance H−1 is also often
referred to as the horizon (especially when one talks about subhorizon and superhorizon distance
scales).

3.1.5 Volume

The objects we observe lie on our past light cone, and the observed quantities are z, ϑ, ϕ, so these
are the observer’s coordinates for the light cone. What is the volume of space corresponding
to a range ∆z∆ϑ∆ϕ ? Note that the light cone is a lightlike surface, so its “volume” is zero.
Here we mean instead the volume that we get when we project a section of it onto the t =
const hypersurface crossing this section at a particular z (which is unique when ∆z = dz is
infinitesimal).

From Eq. (3.34), the proper distance corresponding to dz is dz/[(1 + z)H(z)]. Directly from
the RW metric, the area corresponding to dϑdϕ is ardϑ× ar sinϑdϕ, so that the proper volume
element becomes

dV p =
a2r2 sinϑ

(1 + z)H(z)
dzdϑdϕ =

a2r2

(1 + z)H(z)
dzdΩ (3.36)

and the comoving volume is

dV c = (1 + z)3dV =
r2

H(z)
dzdΩ , (3.37)

so that a comoving volume covering a solid angle Ω on the sky and extending from z1 to z2 is

V c =

∫

Ω
dΩ

∫ z2

z1

r2

H(z)
dz . (3.38)

These are the volume elements for counting the number density or comoving number density
of galaxies from observations. If the number of galaxies is conserved, in a homogeneous universe
their comoving number density should be independent of z. Thus, in principle, from such
observations one should be able to determineH(z). In practice this is made difficult by evolution
of galaxies with time, mergers of galaxies, and the fact that it is more difficult to observe galaxies
at larger z.

3.1.6 Angular diameter distance

Neither the proper distance dp, nor the coordinate r or χ of a galaxy are directly observable.
Observable quantities are, e.g., the redshift z, location on the sky (ϑ,ϕ) when the observer is at
r = 0, the angular diameter, and the apparent luminosity. We want to use the RW metric to
relate these observable quantities to the coordinates and actual distances.
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Figure 16: Defining the angular diameter distance.

The distance-redshift relation (3.33) obtained above would be nice if we already knew the
function a(t). We can turn the situation around and use an observed distance-redshift relation,
to obtain information about a(t), or equivalently, about H(z). But for that we need a different
distance-redshift relation, one where the “distance” is replaced by some directly observable
quantity.

Astronomers employ various such auxiliary distance concepts, like the angular diameter
distance or the luminosity distance. These would be equal to the true distance in Euclidean
non-expanding space.

To answer the question: “what is the physical size s of an object, whom we see at redshift
z subtending an angle ϑ on the sky?” we need the concept of angular diameter distance dA.

In Euclidean geometry (see Fig. 16),

s = ϑd or d =
s

ϑ
. (3.39)

Accordingly, we define

dA ≡ sp

ϑ
, (3.40)

where sp was the proper diameter of the object when the light we see left it, and ϑ is the observed
angle. For large-scale structures, which expand with the universe, we use the comoving angular
diameter distance dcA ≡ sc/ϑ, where sc = (1 + z)sp is the comoving diameter of the structure
and z is its redshift. Thus dcA = (1 + z)dA.

From the RW metric, the physical length sp corresponding to an angle ϑ is, from ds2 =
a2(t)r2dϑ2 ⇒ sp = a(t)rϑ. Thus

dA(z) = a(t)r =
r

1 + z
=

fK(χ)

1 + z
=

1

1 + z
fK

(
∫ 1

1
1+z

da

a

1

da/dt

)

=
1

1 + z
fK

(∫ z

0

dz′

H(z′)

)

(3.41)

The comoving angular diameter distance is then

dcA = r = fK

(
∫ 1

1
1+z

da

a

1

da/dt

)

= fK

(∫ z

0

dz′

H(z′)

)

. (3.42)

For the flat (K = 0) FRW model r = fK(χ) = χ, so that the angular diameter distance is
equal to the proper distance when the light left the object and the comoving angular diameter
distance is equal to the comoving distance.

For large distances (redshifts) the angular diameter distance may have the counterintuitive
property that after some z it begins to decrease as a function of z. Thus objects with are behind
other objects as seen from here will nevertheless have a smaller angular diameter distance. There
are two reasons for such behavior:

In a closed (K > 0) universe objects which are on the “other side” of the universe (the
3-sphere), i.e., with K1/2χ > π/2, will cover a larger angle as seen from here because of the
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spherical geometry (if we can see this far). This effect comes from the fK in Eq. (3.41). An
object at exactly opposite end (K1/2χ = π) would cover the entire sky as light from it would
reach us from every direction after traveling half-way around the 3-sphere. In our universe these
situations do not occur in practice, because lower limits to the size of the 3-sphere37 are much
larger than the distance light has traveled in the age of the Universe.

The second reason, which does apply to the observed universe, and applies only to dA, not
to dcA, is the expansion of the universe. An object, which does not expand with the universe,
occupied a much larger comoving volume in the smaller universe of the past. This effect is the
1/(1 + z) factor in Eq. (3.41), which for large z decreases faster than the other part grows. In
other words, the physical size of the 2-sphere corresponding to a given redshift z has a maximum
at some finite redshift (of the order z ∼ 1), and for larger redshifts it is again smaller. (The
same behavior applies to the proper distance dp(z).)

Suppose we have a set of standard rulers, objects that we know are all the same size sp,
observed at different redshifts. Their observed angular sizes ϑ(z) then give us the observed
angular diameter distance as dA(z) = sp/ϑ(z). This observed function can be used to determine
the expansion history a(t), or H(z).

3.1.7 Luminosity distance

In transparent Euclidean space, an object whose distance is d and whose absolute luminosity
(radiated power) is L would have an apparent luminosity l = L/4πd2. Thus we define the
luminosity distance of an object as

dL ≡
√

L

4πl
. (3.43)

Consider the situation in the RW metric. The absolute luminosity can be expressed as:

L =
number of photons emitted

time
× their average energy =

NγEem

tem
. (3.44)

If the observer (at present time, a0 = 1) is at a coordinate distance r from the source (note
how we now put the origin of the coordinate system at the source), the photons have at that
distance spread over an area

A = 4πr2 . (3.45)

The apparent luminosity can be expressed as:

l =
number of photons observed

time · area × their average energy =
NγEobs

tobsA
. (3.46)

The number of photons Nγ is conserved, but their energy is redshifted, Eobs = Eem/(1 + z).
Also, if the source is at redshift z, it takes a factor 1 + z longer to receive the photons ⇒ tobs =
(1 + z)tem. Thus,

l =
NγEobs

tobsA
=

NγEem

tem

1

(1 + z)2
1

4πr2
. (3.47)

From Eq. (3.43),

dL ≡
√

L

4πl
= (1 + z)r = (1 + z)dcA(z) = (1 + z)2dA(z) . (3.48)

Compared to the comoving angular diameter distance, dcA(z), we have a factor (1+z), which
causes dL to increase faster with z than dcA(z). There is one factor of (1 + z)1/2 from photon

37Observations tell us that the curvature of the Universe is very small, so that we have not been able to
determine which of the three geometries applies to it.
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redshift and another factor of (1 + z)1/2 from cosmological time dilation, both contributing
to making large-redshift objects dimmer. When compared to dA(z), there is another factor of
(1+z) from the expansion of the universe, which we discussed in Sec. 3.1.6, which causes distant
objects to appear larger on the sky, but does not contribute to their apparent luminosity. Thus
the surface brightness (flux density per solid angle) of objects decreases with redshift as

d2A/d
2
L = (1 + z)−4 (3.49)

(flux density l ∝ d−2
L , solid angle Ω ∝ d−2

A .)38 This makes it difficult to see high-redshift galaxies,
as they are extremely faint.

Suppose that we have a set of standard candles, objects that we know all have the same L.
From their observed redshifts and apparent luminosities we get an observed luminosity-distance-
redshift relation dL(z) =

√

L/4πl, which can be used to determine a(t), or H(z).

3.1.8 Hubble law

In Sec. 1 we introduced the Hubble law

z = H0d ⇒ d = H−1
0 z , (3.50)

which was based on observations (at small redshifts). Now that we have introduced the different
distance concepts, dp, dc, dA, d

c
A, dL, in an expanding universe, and derived exact formulae

(3.34, 3.33, 3.41, 3.42, 3.48) for them in the RW metric, we can see that for z ≪ 1 (when we
can approximate H(z) = H0) all of them give the Hubble law as an approximation, but all of
them deviate from it, in a different manner, for z ∼ 1 and larger.

3.1.9 Conformal time

In the comoving coordinates of Eqs. (3.1), (3.6), and (3.7), the space part of the coordinate
system is expanding with the expansion of the universe. It is often practical to make a cor-
responding change in the time coordinate, so that the “unit of time” (i.e., separation of time
coordinate surfaces) also expands with the universe. The conformal time η is defined by

dη ≡ dt

a(t)
, or η =

∫ t

0

dt′

a(t′)
. (3.51)

The RW metric acquires the form

ds2 = a2(η)

[

−dη2 + dr2

1−Kr2
+ r2

(
dϑ2 + sin2 ϑ dϕ2

)
]

, (3.52)

or with the other choice of the radial coordinate, χ,

ds2 = a2(η)

[

−dη2 + dχ2 + f2K(χ)
(
dϑ2 + sin2 ϑ dϕ2

)
]

, (3.53)

The form (3.53) is especially nice for studying radial (dϑ = dϕ = 0) light propagation,
because the lightlike condition ds2 = 0 becomes dη = ±dχ. In the end of the calculation one
may need to convert conformal time back to cosmic time to express the answer in terms of the
latter.

38In practical observations there is the additional issue that observations are made in some frequency band
(wavelenth range), and different redshifts bring different parts of the spectrum of the object within this band.
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3.2 Dynamics

3.2.1 Friedmann equations

The fundamental equation of general relativity is the Einstein equation, which relates the cur-
vature of spacetime to the distribution of matter and energy. When applied to the homogeneous
and isotropic case, i.e., the Robertson-Walker metric, it leads39 to the Friedmann equations40

(
ȧ

a

)2

+
K

a2
=

8πG

3
ρ (3.56)

ä

a
= −4πG

3
(ρ+ 3p) . (3.57)

(“Friedmann equation” in singular refers to Eq. (A.43).) On the left, we have the curvature
of spacetime, which in the RW metric appears as expansion of space given by H ≡ ȧ/a and
curvature of space given by K/a2. On the right, we have the energy density ρ and pressure p of
matter/energy. G = 6.674 30 ± 15× 10−11 m3/kgs2 is the gravitational constant, the same as in
Newton’s theory of gravity. Homogeneity implies the same density and pressure everywhere, so
that they depend on time alone,

ρ = ρ(t) , p = p(t) . (3.58)

Using the Hubble parameter

H ≡ ȧ/a ⇒ Ḣ =
ä

a
− ȧ2

a2
⇒ ä

a
= Ḣ +H2 (3.59)

we can write the Friedmann equations also as

H2 =
8πG

3
ρ− K

a2
(3.60)

Ḣ = −4πG(ρ + p) +
K

a2
. (3.61)

In general relativity, we do not have, in general, conservation of energy or momentum. The
theoretical physics viewpoint is that conservation laws result from symmetries; energy conserva-
tion follows from time-translation symmetry and momentum conservation from space-translation
symmetry. Unless the geometry of spacetime has such symmetries we do not have these con-
servation laws. In particular, expansion of the universe breaks time-translation symmetry and
therefore energy is not conserved. The homogeneity of the RW metric leads to a form of mo-
mentum conservation, ap = const , for particles moving in this metric.

However, the equivalence principle of general relativity requires that locally (at small scales
where we do not notice the curvature of spacetime), energy and momentum are conserved.
From this follows a law, called energy-momentum continuity, that applies at all scales. It can

39The Einstein equation and the derivation of the Friedmann equations from it are discussed in Appendix A.
40Including the cosmological constant Λ (the simplest possible modification of the Einstein equation, discussed

in Appendix A), these equations take the form

(

ȧ

a

)2

+
K

a2
− Λ

3
=

8πG

3
ρ (3.54)

ä

a
− Λ

3
= −4πG

3
(ρ+ 3p) . (3.55)

We shall not include Λ in these equations. Instead, we allow for the presence of vacuum energy ρvac, which has
the same effect.



3 FRIEDMANN–ROBERTSON–WALKER UNIVERSE 43

be derived from the Einstein equation. In the present case this becomes the energy continuity
equation

ρ̇ = −3(ρ+ p)
ȧ

a
. (3.62)

(Exercise: Derive this from the Friedmann equations!) Since isotropy requires that the fluid is
at rest, there is no corresponding equation for its momentum.

3.2.2 Critical density and density parameter

The Friedmann equation (3.60) connects the three quantities, the density ρ, the space curvature
K/a2, and the expansion rate H of the universe,

ρ =
3

8πG

(

H2 +
K

a2

)

≡ ρcr +
3K

8πGa2
. (3.63)

(Note that the curvature quantity K/a2 = 1/R2
curv is invariant under the r coordinate scaling

we discussed earlier.) We defined the critical density

ρcr ≡
3H2

8πG
, (3.64)

corresponding to a given value of the Hubble parameter.41 The critical density changes in time
as the Hubble parameter evolves. The present value of the critical density is given by the Hubble
constant as

ρcr0 ≡ ρcr(t0) ≡ 3H2
0

8πG
= 1.878 342 × 10−26h2 kg/m3

= 10.5367h2 GeV/m3 = 2.775 × 1011h2 M⊙/Mpc3 . (3.65)

For h = 0.7,
ρcr0 = 5.18GeV/m3 = 1.36 × 1011 M⊙/Mpc3 . (3.66)

The nature of the curvature then depends on the density ρ :

ρ < ρcr ⇒ K < 0 (3.67)

ρ = ρcr ⇒ K = 0 (3.68)

ρ > ρcr ⇒ K > 0 . (3.69)

Let us get a feeling of how large or small the critical density is today. The mass of a proton is about
1GeV, so critical density corresponds to 5 hydrogen atoms in a cubic meter. A typical mass of a galaxy is
of the order 1011 M⊙, so critical density corresponds to about one this size galaxy in a cubic megaparsec.
Compare these densities to what we know about the density in the solar neighborhood within our galaxy:
Wikipedia (List of nearest stars and brown dwarfs 13.1.2023) lists 110 stars (including Sun) within 20
light years (r = 6.13 pc) from the Solar System, with a total mass of 45.96M⊙. In addition the list
contains 20 brown dwarfs and two “sub-brown dwarfs or rogue planets”, with a total mass of less than
1M⊙. The volume within 20 light years is V = 965.8 pc3. For stars, I suppose we can assume the list is
complete, giving the local density of matter in stars

ρstars = 0.048M⊙/pc
3 . (3.70)

Peacock [36] writes in Sec. 12.3 about our neighborhood: “Including contributions from gas and dust
clouds yields a total density in luminous material of ρlum = 0.1M⊙/pc

3, see e.g. Freedman (1987)”

41We could have defined likewise a critical Hubble parameter Hcr corresponding to a given density ρ, but since,
of the above three quantities, the Hubble constant has usually been the best determined observationally, it has
been better to refer other quantities to it.
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and that dynamical determinations of the density “tend to give more mass that is seen directly, but the
discrepancy is a factor two at most, and may not exist”. Thus the local density within 20 light years is
0.1–0.2M⊙/pc

3 ∼ 0.7–1.5× 106ρcr0. Galaxies are strong mass concentrations and most of the universe
is intergalactic space with a much lower density.

The density parameter Ω is defined

Ω ≡ ρ

ρcr
(3.71)

(where all three quantities are functions of time). Thus Ω = 1 implies a flat universe, Ω < 1 an
open universe, and Ω > 1 a closed universe. The Friedmann equation can now be written as

Ω = 1 +
K

H2a2
⇒ Ωk(t) ≡ 1− Ω(t) = − K

H(t)2a(t)2
, (3.72)

a very useful relation. Here K is a constant, and the other quantities are functions of time Ω(t),
H(t), and a(t). The two length scales are thus related by

Rcurv =
H−1

√

|Ωk(t)|
. (3.73)

Note that if Ω < 1 (or > 1), it will stay that way. And if Ω = 1, it will stay constant, Ω = Ω0 = 1.
Observations suggest that the density of the universe today is close to critical, Ω0 ≈ 1, so that
Rcurv0 ≫ H−1

0 unless K = 0 (so that Rcurv = ∞). Writing in the present values, (3.72) and
(3.73) become

Ωk ≡ 1− Ω0 = − K

H2
0

and Rcurv0 =
H−1

0
√

|Ωk|
=

1
√

|K|
(3.74)

We defined a new notation Ωk to represent the deviation of Ω from 1, due to curvature. Note
that we write just Ωk for its present value (instead of Ωk0); if we mean the time-dependent
value 1 − Ω, we always write Ωk(t). We adopt this common custom since we will mostly refer
to the present value, and do not like to have multiple subscripts there. Note that a positive Ωk

corresponds to negative curvature and vice versa. (This sign convention is so that we have a
pleasing symmetry in the Friedmann equation, see Sec. 3.2.4, Eqs. 3.118, 3.119, 3.121.)

Newtonian cosmology. Newtonian gravity is known to be a good approximation to general relativity
for many situations, so we should be able to get something like the Friedmann equations from it, too.
Consider therefore a large spherically symmetric expanding homogeneous group of galaxies in otherwise
empty Euclidean space. Spherical symmetry implies that all motion is radial. Let r(t) be the radial
coordinate (distance from origin) of some galaxy. The velocity of the galaxy is then ṙ. Denote the total
mass of all galaxies within r by

M(r) ≡ 4π

3
r3ρ , (3.75)

where ρ is the mass density, assumed homogeneous, due to the galaxies. We know that in Newtonian
gravity the gravitational force at r due to a spherically symmetric mass distribution is equal to that of a
point mass M(r) located at r = 0 (the force due to the outer masses, beyond r, cancels). Therefore the
acceleration of the galaxy is

r̈ = −GM(r)

r2
= −4πG

3
ρr ⇒ r̈

r
= −4πG

3
ρ . (3.76)

Defining H ≡ ṙ/r gives

Ḣ +H2 =
r̈

r
= −4πG

3
ρ . (3.77)
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Choose now a reference time t0, denote r(t0) ≡ r0, and define

a(t) ≡ r(t)

r0
⇒ ȧ

a
= H(t) (3.78)

and
ä

a
= −4πG

3
ρ(t) . (3.79)

So far we considered the motion of some individual galaxy. Assume now as an initial condition that
H(t0) = H0 is the same for all galaxies (Hubble law). Since the differential equation (3.79) and the initial
conditions a(t0) = 1 and ȧ(t0) = H0 are the same for all galaxies, the solution a(t) will also be the same
for all galaxies. Therefore no galaxy will move past another and the “mass inside” for any particular
galaxy will stay constant

M(r) =
4π

3
ρa3r30 = const ⇒ ρ(t) ∝ a−3 . (3.80)

Thus the mass density decreases homogeneously. (There is an apparent circular argument here, since we
already assumed that ρ in (3.79) will stay homogenous. But we have now shown that this assumption
leads to a consistent solution; and since the solution must be unique, the assumption must be correct.)

The solution depends on the initial conditions H0 (related to kinetic energy) and ρ0 (related to
gravitational potential energy). Consider the situation from energy conservation. The total energy of an
individual galaxy is

E = 1
2mṙ

2 −m
GM(r)

r
= 1

2mṙ
2 − 4πG

3
mρr2 ≡ mκ = const , (3.81)

where m is the mass of the galaxy and

κ ≡ 1
2 ṙ

2 − 4πG

3
ρr2 = 1

2 ȧ
2r20 −

4πG

3
ρa2r20 (3.82)

is energy/mass. We get that

K ≡ −2κ

r20
= −ȧ2 + 8πG

3
ρa2 (3.83)

is the same for all galaxies. Dividing by a2 this energy conservation law becomes the Friedmann equation

(
ȧ

a

)2

=
8πG

3
ρ− K

a2
. (3.84)

Comparing (3.84) and (3.79) to (A.43) and (A.44) we note that the only apparent difference is that
there is no pressure p in (3.79). This is a difference between Newtonian gravity and general relativity:
in general relativity also pressure is a source of gravity. Besides this apparent difference there are fun-
damental conceptual differences: in the Newtonian description K referred to total (kinetic+potential)
energy of a galaxy and the space was Euclidian; in the relativistic description K gives the curvature of
space and the concept of gravitational potential energy does not exist. In the Newtonian description the
galaxies are moving; in the relativistic description the space is expanding. The Newtonian description
requires that the group of galaxies has an outer boundary, which has to be spherical. If this boundary,
beyond which there should be no galaxies, is far away, at r ≥ H−1, galaxies there would be moving faster
than the speed of light (with respect to the galaxies at the center). Even in the case where pressure is
negligible, so that the “Friedmann” equations are the same, these conceptual differences lead to different
physical results (e.g., redshift) due to the different spacetime geometry.

3.2.3 Equation of state

To solve the Friedmann equations, we need the equation of state that relates p and ρ. In general,
the pressure p of matter may depend also on other thermodynamic variables than the energy
density ρ. The equation of state is called barotropic if p is uniquely determimed by ρ, i.e.,
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p = p(ρ). Regardless of the nature of matter, in a homogeneous universe we have p = p(ρ) in
practice, if the energy density decreases monotonously with time, since p = p(t), ρ = ρ(t) and
we can invert the latter to get t(ρ), so that we can write p = p(t) = p(t(ρ)) ≡ p(ρ).

We define the equation-of-state parameter

w ≡ p

ρ
(3.85)

so that we can formally write the equation of state as

p = wρ , (3.86)

and the energy continuity equation as

ρ̇

ρ
= −3(1 + w)

ȧ

a
⇒ d ln ρ = −3(1 + w)d ln a , (3.87)

where, in general, w = w(t). Equation (3.87) can be formally integrated to

ρ

ρ0
= exp

{∫ 1

a
3[1 + w(a′)]

da′

a′

}

= exp

{∫ z

0
dz′

3[1 + w(z′)]

1 + z′

}

. (3.88)

The simplest case is the one where p ∝ ρ, so that

p = wρ , w = const , (3.89)

in which case the solution of (3.87) is

ρ = ρ0a
−3(1+w) . (3.90)

There are three such cases:

• “Matter” (w = 0) (called “matter” in cosmology, but “dust” in general relativity), mean-
ing nonrelativistic matter (particle velocities v ≪ 1), for which p≪ ρ, so that we can forget
the pressure, and approximate p = 0. From Eq. (3.62), d(ρa3)/dt = 0, or ρ ∝ a−3.

• “Radiation” (w = 1/3), meaning ultrarelativistic matter (where particle energies are
≫ their rest masses, which is always true for massless particles like photons), for which
p = ρ/3. From Eq. (3.62), d(ρa4)/dt = 0, or ρ ∝ a−4.

• Vacuum energy (w = −1) (or the cosmological constant), for which ρ = const (property
of the vacuum, a fundamental constant). From Eq. (3.62) follows the equation of state for
vacuum energy: p = −ρ. Thus a positive vacuum energy corresponds to a negative vacuum
pressure. You may be used to pressure being positive, but there is nothing unphysical
about negative pressure. In other contexts it is often called (positive) “tension” instead of
(negative) “pressure”.42

In the quantum field theory view, “vacuum” is the minimum energy density state of the
system. Therefore any other contribution to energy density is necessarily positive, but whether
the vacuum energy density itself needs to be nonnegative is less clear. Other physics except
general relativity is sensitive only to energy differencies and thus does not care about the value of

42In Chapter 4 we derive formulae for the pressures of different particle species in thermal equilibrium. These
always give a positive pressure. The point is that there we ignore interparticle forces. To make the pressure
from particles negative would require attractive forces between particles. But the vacuum pressure is not from
particles, it’s from the vacuum. If the dark energy is not just vacuum energy, it is usually thought to be some
kind of field. For fields, a negative pressure comes out more naturally than for particles.
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vacuum energy density. In general relativity it is a source of gravity, but cannot be distinguished
from modifying the law of gravity by adding to it a cosmological constant Λ = 8πGρvac that could
be negative just as well as positive. For simplicity we will here include the possible cosmological
constant in the concept of vacuum energy, and thus we should allow for negative vacuum energy
density also.

We know that the Universe contains ordinary, nonrelativistic matter. We also know that
there is radiation, especially the cosmic microwave background. In Chapter 4 we shall discuss
how the different known particle species behave as radiation in the early universe when it is very
hot, but as the universe cools, the massive particles change from ultrarelativistic (radiation) to
nonrelativistic (matter). During the transition period the pressure due to that particle species
falls from p ≈ ρ/3 to p ≈ 0. We shall discuss these transition periods in Chapter 4. In this
chapter we focus on the later evolution of the universe (after big bang nucleosynthesis, BBN).
Then the known forms of matter and energy in the universe can be divided into these two classes:
matter (p ≈ 0) and radiation (p ≈ ρ/3).43

We already revealed in Chapter 1 that the present observational data cannot be explained
in terms of known forms of particles and energy using known laws of physics, and therefore we
believe that there are other, unknown forms of energy in the universe, called “dark matter”
and “dark energy”. Dark matter has by definition negligible pressure, so that we can ignore
its pressure in the Friedmann equations. However, to explain the observed expansion history
of the universe, an energy component with negative pressure is needed. This we call dark
energy. We do not know its equation of state. The simplest possibility for dark energy is just
the cosmological constant (vacuum energy), which fits current data reasonably well, and would
then be positive. Therefore we shall carry on our discussion assuming three energy components:
matter, radiation, and vacuum energy. We shall later (at end of Sec. 3.2.6 and in Cosmology
II) comment on how much current observations actually constrain the equation of state for dark
energy.

If the universe contains several energy components

ρ =
∑

i

ρi with pi = wiρi (3.91)

without significant energy transfer between them, then each component satisfies the energy
continuity equation separately,

ρ̇i
ρi

= −3(1 + wi)
ȧ

a
. (3.92)

and, if wi = const ,
ρi ∝ a−3(1+wi) ⇒ ρi = ρi0a

−3(1+wi) . (3.93)

In the early universe there were times where such energy transfer was important, but after BBN
it was negligible, so then we have the above case with

ρ = ρr + ρm + ρvac with wr = 1/3 , wm = 0 , wvac = −1 . (3.94)

We can then arrange Eq. (A.43) into the form

(
ȧ

a

)2

= α2a−4 + β2a−3 −Ka−2 +
1

3
Λ , (3.95)

where α, β, K, and Λ = 8πGρvac are constants (α and β are temporary notation, which we
replace with standard cosmological quantities in Eq. 3.118). The four terms on the right are

43Except that we do not know the small masses of neutrinos. Depending on the values of these masses, neutrinos
may make this radiation-to-matter transition sometime during this “later evolution”.
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due to radiation, matter, curvature, and vacuum energy, in that order. As the universe expands
(a grows), different components on the right become important at different times. Early on,
when a was very small, the Universe was radiation-dominated. If the Universe keeps expanding
without limit, eventually the vacuum energy will become dominant (already it appears to be
the largest term). In the middle we may have matter-dominated and curvature-dominated eras.
In practice it seems the curvature of the Universe is quite small and therefore there never was
a curvature-dominated era, but there was a long matter-dominated era.

We know that the radiation component is insignificant at present, and we can ignore it in
Eq. (3.95), if we exclude the first few million years of the Universe from discussion. Conversely,
during those first few million years we can ignore the curvature and vacuum energy.

In the “inflationary scenario”, there was something resembling a very large vacuum energy
density in the very early universe (during a small fraction of the first second), which then
disappeared. So there may have been a very early “vacuum-dominated” era (inflation), discussed
in Cosmology II.

Let us now solve the Friedmann equation for the case where one of the four terms dominates.
The equation has the form

(
ȧ

a

)2

= α2a−n or a
n

2
−1 da = α dt. (3.96)

Integration gives
2

n
a
n
2 = αt, (3.97)

where we chose the integration constant so that a(t = 0) = 0. We get the three cases:

n = 4 radiation dominated a ∝ t1/2

n = 3 matter dominated a ∝ t2/3

n = 2 curvature dominated (K < 0) a ∝ t

The cases K > 0 and vacuum energy have to be treated differently (exercise).

Example: The Einstein–de Sitter universe. Consider the simplest case, Ω = 1 (K = 0) and
Λ = 0. The first couple of million years when radiation can not be ignored, makes an insignificant
contribution to the present age of the universe, so we ignore radiation also. We have now the matter-
dominated case. For the density we have

ρ = ρ0a
−3 = Ω0ρcr0a

−3 = ρcr0a
−3 . (3.98)

The Friedmann equation is now

(
ȧ

a

)2

=
8πG

3
ρcr0

︸ ︷︷ ︸

H2
0

a−3 ⇒ a1/2da = H0dt

⇒
∫ a2

a1

a1/2da = H0

∫ t2

t1

dt ⇒ 2

3
(a

3/2
2 − a

3/2
1 ) = H0(t2 − t1) .

Thus we get

t2 − t1 =
2

3
H−1

0

(

a
3/2
2 − a

3/2
1

)

=
2

3
H−1

0

[
1

(1 + z2)3/2
− 1

(1 + z1)3/2

]

(3.99)

where z is the redshift.

• Let t2 = t0 be the present time (z = 0). The time elapsed since t = t1 corresponding to redshift z
is

t0 − t =
2

3
H−1

0

(

1− a
3/2
1

)

= 2
3H

−1
0

[

1− 1

(1 + z)3/2

]

. (3.100)
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Figure 17: Left: The cycloid is the curve drawn by a point at the rim of a wheel. The development
angle ψ is the rotation angle of the wheel. Right: In the closed Friedmann model a(t) has the form of
a cycloid. Note that the horizontal axis is t, not ψ. The universe begins with a Big Bang at ψ = 0 and
ends with a Big Crunch at ψ = 2π.

• Let t1 = 0 and t2 = t(z) be the time corresponding to redshift z. The age of the universe
corresponding to z is

t =
2

3
H−1

0 a
3/2
2 =

2

3
H−1

0

1

(1 + z)3/2
= t(z). (3.101)

This is the age-redshift relation. For the present (z = 0) age of the universe we get

t0 =
2

3
H−1

0 . (3.102)

The Hubble constant is H0 ≡ h·100 km/s/Mpc = h/(9.78× 109 yr), or H−1
0 = h−1 · 9.78× 109 yr. Thus

t0 = h−1 · 6.52× 109yr =

{

9.3× 109 yr h = 0.7

13.0× 109 yr h = 0.5
(3.103)

The ages of the oldest stars appear to be at least about 12 × 109 years. Considering the HST value for
the Hubble constant (h = 0.72± 0.08), this model has an age problem.

Example: The closed Friedmann model.

The FRW models with ρ = ρm, so that ρ = ρ0a
−3, are called Friedmann models[13, 14]. The

Friedmann equation becomes

(
ȧ

a

)

=
8πG

3
ρ0a

−3 − K

a2
⇒ da

dt
=
√

Ω0H2
0a

−1 −K. (3.104)

There are three Friedmann models: open (K < 0), flat (K = 0), and closed (K > 0). (The flat case is the
Einstein–de Sitter universe.) Consider the closed one, where Ω0 > 1. The Friedmann equation is then

da

dt
=

√
K

√

C − a

a
, (3.105)

where C ≡ Ω0H
2
0/K = Ω0/|Ωk|. We see that the expansion stops when the scale factor reaches the value

amax = C = Ω0/(Ω0 − 1). The curvature radius (“radius of the universe”) is then

Rcurv,max =
amax√
K

= amax
H−1

0

|Ωk|
=

Ω0

(Ω0 − 1)3/2
H−1

0 . (3.106)

After that the universe begins to shrink and we need to take the negative root of the Friedmann equation,
i.e., add a minus sign to (3.105).
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The solution of (3.105) as a(t) is not an elementary function, but we can obtain it in parametrized
form a(ψ), t(ψ) by doing the substitution

a(ψ) = C sin2 1
2ψ = 1

2C(1 − cosψ) . (3.107)

Sticking (3.107) in both sides of (3.105) gives

C sin 1
2ψ cos 1

2ψ
dψ

dt
=

√
K

cos 1
2ψ

sin 1
2ψ

⇒ dt

dψ
=

C√
K

sin2 1
2ψ =

C

2
√
K

(1− cosψ) , (3.108)

which is easy to integrate to

t(ψ) =
C

2
√
K

(ψ − sinψ) . (3.109)

The parameter ψ is called development angle. The resulting curve
a(t) has the form of a cycloid, the path made by a point at the rim
of a wheel, ψ being the rotation angle of the wheel. The maximum
expansion is reached at ψ = π and the universe ends at ψ = 2π.
See Fig. 17. Note that since dt/dψ = a/

√
K, ψ is proportional to

the conformal time ψ =
√
Kη. Although a(t) is not an elementary

function, t(a) is: invert (3.107) for ψ(a) and stick it into (3.109).
For a radial light ray dt/a = dη = dχ = (1/

√
K)dψ so that

dψ =
√
Kdχ, and for a light ray starting at the origin at t = 0, we

simply have
√
Kχ = ψ, where

√
Kχ can be interpreted as an angular

coordinate on the hypersphere, going from 0 (origin) to π (opposite
end of the universe) or to 2π going the full circle around the universe.
This gives a nice interpretation of the development angle ψ. It is the
angle a photon, starting at t = 0, has had time to travel around the
universe. See figure on the right, which shows the entire history of the
universe, with two space dimensions suppressed, i.e., the hypersphere
of the universe at a given time is represented by a circle; and two light rays traveling in opposite direc-
tions. For the light ray to travel around the universe takes exactly the total duration of the universe from
beginning to end.

Exercise: The open Friedmann model. Find the corresponding results for K < 0.

Exercise: The de Sitter Universe. Solve the Friedmann equation for the vacuum-dominated
universe,

(
ȧ

a

)2

=
1

3
Λ . (3.110)

The Einstein Universe, the Lemâıtre Universe, and the Eddington Universe. The first
relativistic cosmological model is due to Einstein from 1917 [15]. Einstein originally believed the Universe
is static, i.e, ȧ = ä = 0. From the Friedmann equations we see that this leads to a closed universe with

K =
8πG

3
ρ and p = − 1

3ρ . (3.111)

Einstein was not considering exotic energy components with negative pressure and assumed the universe
was dominated by matter, so that p = 0. This forced him to modify his equations by adding the
cosmological constant Λ. In practice this is equivalent to introducing vacuum energy, so let us discuss the
Einstein Universe in these terms, assuming matter (with pm = 0) and vacuum energy (with pvac = −ρvac),
so that

ρ = ρm + ρvac and p = −ρvac . (3.112)

The second Friedmann equation then requires that

ρvac =
1
2ρm =

K

8πG
. (3.113)

The Einstein universe is an eternal, static, closed universe.
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The Einstein universe requires the perfect balance (3.113) between vacuum energy, matter, and
curvature. It is unstable to perturbations. The homogenous perturbations correspond to more general
FRW models with vacuum energy, matter, and curvature, where we do not have exactly this balance.
Suppose the universe is momentarily at rest, so that the first equation in (3.111) is satisfied, but ρvac < ρm.
The universe then begins to shrink, matter becoming more and more dominant over curvature and vacuum
energy. And if ρvac > ρm, the universe begins to expand (and the expansion accelerates), vacuum energy
becoming more and more dominant over curvature and matter.

When it was discovered that the universe was expanding, Einstein abandoned his cosmological con-
stant. However, Lemâıtre and Eddington proposed expanding cosmological models keeping the cosmolog-
ical constant. The Lemâıtre Universe is a more general cosmological model with vacuum energy, matter,
and positive curvature, which has a beginning with a = 0 at t = 0 and is initially matter dominated, so
that a ∝ t2/3. Later the curvature becomes important, slowing the expansion; but before the expansion
stops, vacuum energy becomes important, and begins to accelerate the expansion. The Lemâıtre Universe
has thus this “coasting period”, where the expansion is slow and the three ingredients are close to the
Einstein Universe balance

ρvac ≈ 1
2ρm ≈ K

8πGa2
. (3.114)

(in the Einstein Universe we had set a = 1). The closer we get to the balance, the longer is the coasting
period and the slower the expansion gets during it.

The Eddington Universe is the version of the Lemâıtre Universe where this balance is reached, i.e.,
the limit where the coasting period becomes infinitely long. This actually divides into two cases: The first
case begins like the Lemâıtre Universe, but the expansion will keep slowing so that the model approaches
asymptotically the Einstein model towards the infinite future. Eddington proposed the other case: the
Eddington Universe has an infinite past, where it was asymptotically close to the Einstein Universe, but is
evolving away from it with an accelerating expansion and in the far future it approaches asymptotically the
de Sitter exponential growth as both curvature and matter become negligible compared to the vacuum
energy. (Lemâıtre, Eddington, and de Sitter used the cosmological constant; I have translated the
discussion into vacuum energy terminology.)

3.2.4 Cosmological parameters

We divide the density into its matter, radiation, and vacuum components ρ = ρm + ρr + ρvac,
and likewise for the density parameter, Ω = Ωm(t) + Ωr(t) + ΩΛ(t), where Ωm(t) ≡ ρm/ρcr,
Ωr(t) ≡ ρr/ρcr, and ΩΛ(t) ≡ ρvac/ρcr ≡ Λ/3H2. Ωm(t), Ωr(t), and ΩΛ(t) are functions of time
(although ρvac is constant, ρcr is not). We follow the common practice where Ωm, Ωr, and ΩΛ

denote the present values of these density parameters, and we write Ωm(t), Ωr(t), and ΩΛ(t), if
we want to refer to their values at other times. Thus we write

Ω0 ≡ Ωm +Ωr +ΩΛ . (3.115)

We have both

Ωm +Ωr +ΩΛ +Ωk = 1 and Ωm(t) + Ωr(t) + ΩΛ(t) + Ωk(t) = 1 (3.116)

The present radiation density is relatively small, Ωr ∼ 10−4 (we shall calculate it in Chapter 4),
so that we usually write just

Ω0 = Ωm +ΩΛ. (3.117)

The radiation density is also known very accurately from the temperature of the cosmic mi-
crowave background, and therefore Ωr is not usually considered a cosmological parameter (in
the sense of an inaccurately known number that we try to fit with observations). The FRW
cosmological model is thus defined by giving the present values of the three cosmological param-
eters, H0, Ωm, and ΩΛ.



3 FRIEDMANN–ROBERTSON–WALKER UNIVERSE 52

We can now write the Friedmann equation as

H2 ≡
(
ȧ

a

)2

=
8πG

3
Ωrρcr0

︸ ︷︷ ︸

ΩrH2
0

a−4 +
8πG

3
Ωmρcr0

︸ ︷︷ ︸

ΩmH2
0

a−3 +ΩΛH
2
0 −K
︸︷︷︸

+ΩkH
2
0

a−2

= H2
0

(
Ωra

−4 +Ωma
−3 +Ωka

−2 +ΩΛ

)
. (3.118)

or
H(z) = H0E(z) , (3.119)

where

E(z) ≡
√

Ωr(1 + z)4 +Ωm(1 + z)3 +Ωk(1 + z)2 +ΩΛ . (3.120)

It may seem unnecessary to define a new symbol E(z) for a quantity that differs from H(z) by
just a constant factor, but this splits the problem of determining H(z) into determining H0 and
E(z), which are observationally different problems.

Observations favor the values h ∼ 0.7, Ωm ∼ 0.3, and ΩΛ ∼ 0.7. (We discussed the obser-
vational determination of H0 in Chapter 1. We shall discuss the observational determination of
Ωm and ΩΛ both in this chapter and later.)

Since the critical density is ∝ h2, it is often useful to use instead the “physical” or “reduced”
density parameters, ωm ≡ Ωmh

2, ωr ≡ Ωrh
2, which are directly proportional to the actual

densities in kg/m3. (An ωΛ turns out not be so useful and is not used.)

3.2.5 Age of the FRW universe

From (3.118) we get

da

dt
= H0

√

Ωra−2 +Ωma−1 +Ωk +ΩΛa2 . (3.121)

We shall later have much use for this convenient form of the Friedmann equation. Integrate
from it the time it takes for the universe to expand from a1 to a2, or from redshift z1 to z2,

∫ t2

t1

dt =

∫ a2

a1

da

da/dt
= H−1

0

∫ 1
1+z2

1
1+z1

da
√

Ωra−2 +Ωma−1 +Ωk +ΩΛa2
(3.122)

=

∫ z1

z2

dz

(1 + z)H(z)
= H−1

0

∫ z1

z2

dz
√

Ωr(1 + z)6 +Ωm(1 + z)5 +Ωk(1 + z)4 +ΩΛ(1 + z)2
.

This is integrable to an elementary function if two of the four terms under the root sign are
absent.

From this we get the age-redshift relation

t(z) =

∫ t

0
dt = H−1

0

∫ 1
1+z

0

da
√

Ωra−2 +Ωma−1 +Ωk +ΩΛa2
. (3.123)

(This gives t(z), that is, t(a). Inverting this function gives us a(t), the scale factor as a function
of time. Now a(t) is not necessarily an elementary function, even if t(a) is. Sometimes one can
get a parametric representation a(ψ), t(ψ) in terms of elementary functions.)

In Fig. 18 we have integrated Eq. (3.121) from the initial conditions a = 1, ȧ = H0, both
backwards and forwards from the present time t = t0 to find a(t) as a function of time.

For the present age of the universe we get

t0 =

∫ t0

0
dt = H−1

0

∫ 1

0

da
√

Ωra−2 +Ωma−1 +Ωk +ΩΛa2
. (3.124)
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Figure 18: The expansion of the universe a(t) for a) the matter-only universe ΩΛ = 0, Ωm = 0, 0.2,. . . ,1.8
(from top to bottom) b) the flat universe Ω0 = 1 (ΩΛ = 1 − Ωm), Ωm = 0, 0.05, 0.2, 0.4, 0.6, 0.8, 1.0,
1.05 (from top to bottom). The time axis gives H0(t− t0), i.e, 0.0 corresponds to the present time.

The simplest cases, where only one of the terms under the square root is nonzero, give:

radiation dominated (Ωr = Ω0 = 1): t0 =
1
2H

−1
0

matter dominated (Ωm = Ω0 = 1): t0 =
2
3H

−1
0

curvature dominated (Ω0 = 0): t0 = H−1
0

vacuum dominated (ΩΛ = Ω0 = 1): t0 = ∞ .

These results can be applied also at other times (by considering some other time to be the
“present time”), e.g., during the radiation-dominated epoch the age of the universe was related
to the Hubble parameter by t = 1

2H
−1 and during the matter-dominated epoch by t = 2

3H
−1

(assuming that we can ignore the effect of the earlier epochs on the age). Returning to the
present time, we know that Ωr is so small that ignoring that term causes negligible error.

Example: Age of the open universe. Consider now the case of the open universe (K < 0 or Ω0 < 1),
but without vacuum energy (ΩΛ = 0), and approximating Ωr ≈ 0. This is the open Friedmann model,
where Ω0 = Ωm and Ωk = 1 − Ωm. Integrating Eq. (3.124) with substitution (ψ corresponds to the
development angle of the closed universe)

a =
Ωm
Ωk

sinh2
ψ

2
⇒ da =

Ωm
Ωk

sinh
ψ

2
cosh

ψ

2
dψ (3.125)

gives for the age of the open universe

t(a) = H−1
0

∫ a

0

da√
Ωma−1 +Ωk

= H−1
0

Ωm

Ω
3/2
k

∫ ψ

0

sinh2
ψ

2
dψ

= 1
2H

−1
0

Ωm

Ω
3/2
k

∫ ψ

0

(coshψ − 1)dψ = 1
2H

−1
0

Ωm

Ω
3/2
k

(sinhψ − ψ) (3.126)

Since

a =
Ωm
Ωk

sinh2
ψ

2
=

Ωm
2Ωk

(coshψ − 1) (3.127)
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we have

ψ = arcosh

(

1 +
2Ωk
Ωm

a

)

and sinhψ =

√

cosh2 ψ − 1 = 2
Ωk
Ωm

√

a2 +
Ωm
Ωk

a (3.128)

so that

t(a) =
H−1

0√
Ωk

[√

a2 +
Ωm
Ωk

a− 1

2

Ωm
Ωk

arcosh

(

1 + 2
Ωk
Ωm

a

)]

, (3.129)

and, setting a = 1, we get for the present age of the universe

t0 = H−1
0

∫ 1

0

da√
1− Ωm +Ωma−1

= H−1
0

[
1

1− Ωm
− Ωm

2(1− Ωm)3/2
arcosh

(
2

Ωm
− 1

)]

. (3.130)

A special case of the open universe is the empty, or curvature-dominated, universe (Ωm = 0 and
ΩΛ = 0). Now the Friedmann equation says dx/dt = H0, or a = H0t, and t0 = H−1

0 .
From the cases considered so far we get the following table for the age of the universe:

Ωm ΩΛ t0
0 0 H−1

0

0.1 0 0.90H−1
0

0.3 0 0.81H−1
0

0.5 0 0.75H−1
0

1 0 (2/3)H−1
0

There are many ways of estimating the matter density Ωm of the universe, some of which are discussed
in Chapter 6. These estimates give Ωm ∼ 0.3. With Ωm = 0.3, ΩΛ = 0 (no dark energy), and the HST
Key Project value h = 0.72, we get t0 = 12.2× 109 years. This is about the same as the lowest estimates
for the ages of the oldest stars. Since it should take hundreds of millions of years for the first stars to
form, the open universe (or in general, a no-dark-energy universe, ΩΛ = 0) seems also to have an age
problem.

The cases (Ωm > 1, ΩΛ = 0) and (Ω0 = Ωm + ΩΛ = 1, ΩΛ > 0) are left as exercises. The
more general case (Ω0 6= 1, ΩΛ 6= 0) leads to elliptic functions.

3.2.6 Distance-redshift relation

From Eq. (3.33), the comoving distance to redshift z is

dc(z) =

∫ t0

t1

dt

a(t)
=

∫
da

a

1

da/dt
=

∫ z

0

dz′

H(z′)
. (3.131)

We have da/dt from Eq. (3.121), giving

dc(z) = H−1
0

∫ 1

1
1+z

da
√

ΩΛa4 +Ωka2 +Ωma+Ωr

= H−1
0

∫ z

0

dz′

E(z′)
. (3.132)

This is the distance-redshift relation.

How does the comoving distance depend on cosmological parameters. We can ignore Ωr,
since it makes such a small contribution. Noting that Ωk = 1 − Ω0 and Ωm = Ω0 − ΩΛ we write (3.132)
as

dc(z) = H−1
0

∫ 1

1
1+z

da
√

Ω0(a− a2)− ΩΛ(a− a4) + a2
. (3.133)
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Figure 19: The age of the universe as a function of Ωm and ΩΛ.
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Figure 20: The distance-redshift relation, Eq. (3.132), for a) the matter-only universe ΩΛ = 0, Ωm = 0,
0.2,. . . ,1.8 (from top to bottom) b) the flat universe Ω0 = 1 (ΩΛ = 1− Ωm), Ωm = 0, 0.05, 0.2, 0.4, 0.6,
0.8, 1.0, 1.05 (from top to bottom). The thick line in both cases is the Ωm = 1, ΩΛ = 0 model.

We see that it depends on three independent cosmological parameters, for which we have taken H0,
Ω0, and ΩΛ. In this parametrization, the distance at a given redshift is proportional to the Hubble
distance, H−1

0 . If we give the distance in units of H−1
0 , then it depends only on the two remaining

parameters, Ω0 and ΩΛ. If we increase Ω0 keeping ΩΛ constant (meaning that we increase Ωm), the
distance corresponding to a given redshift decreases. This is because the universe has expanded faster
in the past (see Fig. 18), so that there is less time between a given a = 1/(1 + z) and the present. The
distance to the galaxy with redshift z is shorter, because photons have had less time to travel. Whereas
if we increase ΩΛ with a fixed Ω0 (meaning that we decrease Ωm), we have the opposite situation and
the distance increases. Note that (a− a2) and (a− a4) are always positive since 0 < a ≤ 1.

If a galaxy (with some redshift z) has stayed at the same coordinate value r, i.e., it has no
peculiar velocity, then the comoving distance to it is equal to its present distance. The actual
distance to the galaxy at the time t1 the light left the galaxy is

dp1(z) =
dc(z)

1 + z
. (3.134)

We encounter the beginning of time, t = 0, at a = 0 or z = ∞. Thus the comoving distance
light has travelled during the entire age of the universe, the horizon distance, is

dchor = H−1
0

∫ 1

0

da
√

ΩΛa4 +Ωka2 +Ωma+Ωr

. (3.135)

The simplest cases44, where only one of the terms under the square root is nonzero, give:

44Of these cases, the strict forms of the two last ones, pure curvature (Ω0 = 0) and pure vacuum (ΩΛ = Ω0 = 1)
do not actually fit in the FRW framework, where the starting assumption was spatial homogeneity that formed
the basis of separation between time and space. This separation requires a physical quantity that evolves in time,
in practice the energy density ρ(t), so that the t = const slices can be defined as the ρ = const hypersurfaces. Now
in these two cases, ρ = const (either 0 or the vacuum value) also in time, and does not provide this separation.
These cases are called the Milne universe and the de Sitter space (or anti-de Sitter space for ρvac < 0) and are
discussed in the General Relativity course. For our purposes, we should instead consider these as limiting cases
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radiation dominated (Ωr = Ω0 = 1): dchor = H−1
0 = 2t0

matter dominated (Ωm = Ω0 = 1): dchor = 2H−1
0 = 3t0

curvature dominated (Ω0 = 0): dchor = ∞
vacuum dominated (ΩΛ = Ω0 = 1): dchor = ∞ .

These results can be applied also at other times, e.g., during the radiation-dominated epoch
the horizon distance was related to the Hubble parameter and age by dphor = H−1 = 2t and
during the matter-dominated epoch by dphor = 2H−1 = 3t (assuming that epoch had already
lasted long enough so that we can ignore the effect of the earlier epochs on the age and horizon
distance). Returning to the present time, we know that Ωr is so small that ignoring that term
causes negligible error.

Example: Distance and redshift in the flat matter-dominated universe. Let us look at the
simplest case, (Ωm,ΩΛ) = (1, 0) (with Ωr ≈ 0), in more detail. Now Eq. (3.132) is just

dc(z) = H−1
0

∫ 1

1
1+z

da

a1/2
= 2H−1

0

(

1− 1√
1 + z

)

. (3.136)

Expanding 1/
√
1 + z = 1− 1

2z +
3
8z

2 − 5
16z

3 · · · we get

dc(z) = H−1
0 (z − 3

4
z2 +

5

8
z3 − · · · ) (3.137)

so that for small redshifts, z ≪ 1 we get the Hubble law, z = H0d0. At the time when the light we see
left the galaxy, its distance was

dp1(z) =
1

1 + z
dc(z) = a(t)r = 2H−1

0

(
1

1 + z
− 1

(1 + z)3/2

)

(3.138)

= H−1
0 (z − 7

4
z2 +

19

8
z3 − · · · ) (3.139)

so the Hubble law is valid for small z independent of our definition of distance.
The distance dp(t) = a(t)r to the galaxy grows with the velocity ḋp = rȧ = raH , so that today

ḋp = rH0 = dcH0 = 2(1− 1/
√
1 + z). This equals 1 (the speed of light) at z = 3.

We note that dp1(z) has a maximum dp1(z) =
8
27H

−1
0 at z = 5

4 (1 + z = 9
4 ). This corresponds to the

comoving distance dc(z) = 2
3H

−1
0 . See Fig. 22. Galaxies that are further out were thus closer when the

light left, since the universe was then so much smaller.
The distance to the horizon in this simplest case is

dchor ≡ dc(z = ∞) = 2H−1
0 = 3t0. (3.140)

Effect of radiation. Consider the flat universe (Ωk = 0). Ignoring radiation, with Ωm = 0.3,
ΩΛ = 0.7, we get for the age of the universe, time since photon decoupling (z = 1090), time since z = 10,
horizon distance, distance to last scattering sphere, and distance to z = 10 (the most distant galaxies

where there is also a density component that is just very small (a nonzero Ωm or Ωr that is ≪ 1). Then this
other component necessarily becomes important in the early universe, as a → 0. This means that dhor is not ∞,
just very large. The same applies to the “infinite” age of the vacuum-dominated universe.
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Figure 21: The horizon as a function of Ωm and ΩΛ.
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observed):

t0 = H−1
0

∫ 1

0

da√
Ωma−1 +ΩΛa2

= 0.964099H−1
0

t0 − tdec = H−1
0

∫ 1

1/1091

da√
Ωma−1 +ΩΛa2

= 0.964066H−1
0

t0 − t(z = 10) = H−1
0

∫ 1

1/11

da√
Ωma−1 +ΩΛa2

= 0.930747H−1
0

dchor = H−1
0

∫ 1

0

da√
Ωma+ΩΛa4

= 3.30508H−1
0

dc(z = 1090) = H−1
0

∫ 1

1/1091

da√
Ωma+ΩΛa4

= 3.19453H−1
0

dc(z = 10) = H−1
0

∫ 1

1/11

da√
Ωma+ΩΛa4

= 2.20425H−1
0 . (3.141)

Include then radiation with Ωr = 0.000085 (we learn in Chapter 4 that this value corresponds to h = 0.7)
and subtract it from matter so that Ωm = 0.299915, ΩΛ = 0.7. Now we get

t0 = H−1
0

∫ 1

0

da√
Ωra−2 +Ωma−1 +ΩΛa2

= 0.963799H−1
0

t0 − tdec = H−1
0

∫ 1

1/1091

da√
Ωra−2 +Ωma−1 +ΩΛa2

= 0.963772H−1
0

t0 − t(z = 10) = H−1
0

∫ 1

1/11

da√
Ωra−2 +Ωma−1 +ΩΛa2

= 0.930586H−1
0

dchor = H−1
0

∫ 1

0

da√
Ωr +Ωma+ΩΛa4

= 3.244697H−1
0

dc(z = 1090) = H−1
0

∫ 1

1/1091

da√
Ωr +Ωma+ΩΛa4

= 3.17967H−1
0

dc(z = 10) = H−1
0

∫ 1

1/11

da√
Ωr +Ωma+ΩΛa4

= 2.20348H−1
0 . (3.142)

(All integrals were done numerically with WolframAlpha, although the first three in (3.141) could have
been done analytically.) The effect of radiation on these numbers is thus rather small compared to
accuracy of observations in cosmology.

Just like any planar map of the surface of Earth must be distorted, so is it for the curved
spacetime. Even in the flat-universe case, the spacetime is curved due to the expansion. Thus
any spacetime diagram is a distortion of the true situation. In Figs. 22 and 23 there are three
different ways of drawing the same spacetime diagram. In the first one the vertical distance is
proportional to the cosmic time t, the horizontal distance to the proper distance at that time,
dp(t). The second one is in the comoving coordinates (t, r), so that the horizontal distance is
proportional to the comoving distance dc (Note that for Ω = 1, i.e., K = 0, we have dc = r, see
Eq. (3.29)). The third one is in the conformal coordinates (η, r). This one has the advantage
that light cones are always at a 45◦ angle. This is thus the “Mercator projection”45 spacetime.

45The Mercator projection is a way of drawing a map of the Earth so that the points of compass correspond to
the same direction everywhere on the map, e.g., northeast and northwest are always 45◦ from the north direction.
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Figure 22: Spacetime diagrams for a flat matter-dominated universe giving a) the proper distance
(denoted here as d1(t) b) the comoving distance (denoted d0) from origin as a function of cosmic time.

Figure 23: Spacetime diagram for a flat matter-dominated universe in conformal coordinates.
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Figure 24: The angular diameter distance -redshift relation, Eq. (3.145), for a) the matter-only universe
ΩΛ = 0, Ωm = 0, 0.2,. . . ,1.8 (from top to bottom) b) the flat universe Ω0 = 1 (ΩΛ = 1 − Ωm), Ωm = 0,
0.05, 0.2, 0.4, 0.6, 0.8, 1.0, 1.05 (from top to bottom). The thick line in both cases is the Ωm = 1, ΩΛ = 0
model. Note how the angular diameter distance decreases for large redshifts, meaning that the object
that is farther away may appear larger on the sky. In the flat case, this is an expansion effect, an object
with a given size occupies a larger comoving volume in the earlier, smaller universe. In the matter-only
case, the effect is enhanced by space curvature effects for the closed (Ωm > 1) models.

3.2.7 Angular diameter distance

The comoving angular diameter distance is given by the coordinate r = fK(dc) = dcA so that
using the distance-redshift relation, Eq. (3.132), and dropping Ωr, we have

dcA(z) = fK

[
1

H0

∫ 1

1
1+z

da
√

ΩΛa4 +Ωka2 +Ωma

]

= H−1
0

1
√

|Ωk|
fk

(
√

|Ωk|
∫ z

0

dz′

E(z′)

)

, (3.143)

where we defined (note k instead of K)

fk(x) ≡







sin(x) , (K > 0)

x , (K = 0)

sinh(x) , (K < 0)

(3.144)

for the comoving angular diameter distance and

dA(z) = dcA(z)/(1 + z) =
1

1 + z
fK

[
1

H0

∫ 1

1
1+z

da
√

ΩΛa4 +Ωka2 +Ωma

]

, (3.145)

for the angular diameter distance. Note that here Ωk = 1− ΩΛ − Ωm.
For a flat universe the comoving angular diameter distance is equal to the comoving distance,

dcA(z) = dc(z) = H−1
0

∫ 1

1
1+z

da
√

ΩΛa4 +Ωma
(K = 0) . (3.146)

We shall later (in Cosmology II) use the angular diameter distance to relate the observed
anisotropies of the cosmic microwave background to the physical length scale of the density
fluctuations they represent. Since this length scale can be calculated from theory, their observed
angular size gives us information of the cosmological parameters.
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Figure 25: Same as Fig. 24, bur for the comoving angular diameter distance. Now the expansion effect
is eliminated. For the closed models (for Ωm > 1 in the case of ΩΛ = 0) even the comoving angular
diameter distance may begin to decrease at large enough redshifts. This happens when we are looking
beyond

√
Kχ = π/2, where the universe “begins to close up”. The figure does not go to high enough

z to show this for the parameters used. Note how for the flat universe the comoving angular diameter
distance is equal to the comoving distance (see Fig. 20).

3.2.8 Luminosity distance

From Eq. (3.48),

dL ≡
√

L

4πl
= (1 + z)r = (1 + z)dcA(z) = (1 + z)2dA(z)

As we discussed in Chapter 1, astronomers have the habit of giving luminosities as magni-
tudes. From the definitions of the absolute and apparent magnitude (lg ≡ log10),

M ≡ −2.5 lg
L

L0
, m ≡ −2.5 lg

l

l0
, (3.147)

and Eq. (3.43), we have that the distance modulus m−M is given by the luminosity distance
as

m−M = −2.5 lg
l

L

L0

l0
= 5 lg dL + 2.5 lg 4π

l0
L0

= −5 + 5 lg dL(pc) . (3.148)

(As explained in Chapter 1, the constants L0 and l0 are chosen so as to give the value −5 for
the constant term, when dL is given in parsecs, so that m = M for dL = 10pc.) For a set
of standard candles, all having the same absolute magnitude M , we find that their apparent
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Figure 26: Same as Fig. 24, bur for the luminosity distance. Note how the vertical scale now extends
to 10 Hubble distances instead of just 2, to have room for the much more rapidly increasing luminosity
distance.

magnitudes m should be related to their redshift z as

m(z) = M − 5 + 5 lg dL(pc)

= M − 5− 5 lgH0 + 5 lg

{

(1 + z)H0fK

(

H−1
0

∫ 1

1
1+z

dx
√

ΩΛx4 +Ωkx2 +Ωmx

)}

= M − 5− 5 lgH0 + 5 lg

{

(1 + z)

√

−K
Ωk

× (3.149)

×fK
[√

Ωk

−K

∫ 1

1
1+z

dx
√

ΩΛx4 +Ωkx2 +Ωmx

]}

= M − 5− 5 lgH0 + 5 lg

{

1 + z
√

|Ωk|
fk

(
√

|Ωk|
∫ 1

1
1+z

dx
√

ΩΛx4 +Ωkx2 +Ωmx

)}

= M − 5− 5 lgH0 + 5 lg

{

1 + z
√

|Ωk|
fk

(
√

|Ωk|
∫ z

0

dz′

E(z′)

)}

,

where we used (3.74).
We find that the Hubble constant H0 contributes only to a constant term in this magnitude-

redshift relation. If we just know that all the objects have the same M , but do not know the
value of M , we cannot use the observed m(z) to determine H0, since both M and H0 contribute
to this constant term. On the other hand, the shape of the m(z) curve depends only on E(z),
which depends on Ω0 and ΩΛ (see Fig. 28).

Type Ia supernovae (SNIa) are fairly good standard candles.46 Two groups, the Supernova
Cosmology Project47 and the High-Z Supernova Search Team48 were using observations of such
supernovae up to redshifts z ∼ 2 to try to determine the values of the cosmological parameters Ω0

and ΩΛ. In 1998 they announced [16, 17] that their observations are inconsistent with a matter-
dominated universe, i.e., with ΩΛ = 0. In fact their observations required that the expansion

46To be more precise, they are “standardizable candles”, i.e., their peak absolute magnitudes M vary, but these
are related to their observable properties in a way that can be determined from the data.

47http://supernova.lbl.gov/
48http://cfa-www.harvard.edu/cfa/oir/Research/supernova/HighZ.html, http://www.nu.to.infn.it/exp/all/hzsnst/
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Figure 27: Same as Fig. 24, bur for the magnitude-redshift relation. The constant M − 5 − 5 lgH0 in
Eq. (3.150), which is different for different classes of standard candles, has been arbitrarily set to 0.
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Figure 28: The difference between the magnitude-redshift relation of the different models in Fig. 27 from
the reference model Ωm = 1, ΩΛ = 0 (which appears as the horizontal thick line). The red (solid) lines
are for the matter-only (ΩΛ = 0) models and the blue (dashed) lines are for the flat (Ω0 = 1) models.
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Figure 29: Supernova Ia luminosity-redshift data. The top panel shows all supernovae of the data
set. The bottom panel show the averages from different redshift bins. The curves corresponds to three
different FRW cosmologies, and some alternative explanations: “dust” refers to the possibility that the
universe is not transparent, but some photons get absorbed on the way; “evolution” to the possibility
that the SNIa are not standard candles, but were different in the younger universe, so that M = M(z).
From Riess et al., astro-ph/0402512 [19].

of the universe is accelerating. This result was named the “Breakthrough of the Year” by
the Science magazine [18]. Later more accurate observations by these and other groups have
confirmed this result. This SNIa data is one of the main arguments for the existence of dark
energy in the universe.49 See Fig. 29 for SNIa data from 2004, and Fig. 30 for a determination
of Ωm and ΩΛ from this data. As you can see, the data is not good enough for a simultaneous
accurate determination of both Ωm and ΩΛ. But by assuming a flat universe, Ω0 = 1, Riess
et al. [19] found ΩΛ = 0.71+0.03

−0.05 (⇒ Ωm = 0.29+0.05
−0.03). (The main evidence for a flat universe,

Ω0 ≈ 1 comes from the CMB anisotropy, which we shall discuss later, in Cosmology II)
We have in the preceding assumed that the mysterious dark energy component of the uni-

verse is vacuum energy, or indistinguishable from a cosmological constant, so that pde = −ρde.
Making the assumption50 that the equation-of-state parameter wde ≡ pde/ρde for dark energy is a
constant, but not necessarily equal to −1, Riess et al. [19] found the limits −1.48 < wde < −0.72,
when they assumed a flat universe, and used an independent limit on Ωm from other cosmo-
logical observations. Update: A more recent analysis (Pantheon+ 2022) [20] of supernova data
gives tighter limits, wde = −0.89± 0.13, still consistent with vacuum energy (wde = −1).

One gets tighter constraints on wde and one can also constrain two-parameter equations of
state for dark energy (which have a better chance of approximating a realistic equation of state)
if one combines SNIa data with other cosmological data; but the use of this other data requires
also additional assumptions; we discuss this in Cosmology II.

Is the Universe a black hole? No, it is not. This question sometimes appears in popular discussion.

49The other main argument comes from combining CMB anisotropy and large-scale-structure data, and will be
discussed in Cosmology II.

50There is no theoretical justification for this assumption. It is just done for simplicity since the present data
is not good enough for determining a larger number of free parameters in the dark-energy equation of state to a
meaningful accuracy.
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Figure 30: Ωm and ΩΛ determined from the Supernova Ia data. Left: From Riess et al. (2004) [19].
The dotted contours are the old 1998 results [16]. Right: From Brout el al. (Pantheon+) (2022) [20].
Contours are 68% and 95% confidence limits. The SDSS DR16 (BAO) and Planck 2018 are other than
SNIa data that we will discuss in Cosmology II; their use require additional assumptions about cosmology.

For a critical density universe,

H2 =
8πG

3
ρ ⇒ ρ =

3

8πG
H2 , (3.150)

and the total energy (mass) inside a sphere with radius H−1 (Hubble distance) is

M = ρV =
1

2G
H−1 . (3.151)

The Schwarzschild radius for this mass is

rs = 2GM = H−1 . (3.152)

Thus one might conclude this sphere is a black hole or would collapse into one. However, the Schwarzschild
solution is a static vacuum solution; whereas the Universe is expanding and has a homogeneous positive
density, the same both inside and outside the sphere we considered. Thus the geometries are different,
and the Universe is not a black hole. The inside of a black hole appears completely different from our
Universe; in the Schwarzschild solution it is a shrinking spacetime that is infinite in one direction and
finite (a sphere) in two other directions, collapsing to a singularity in a finite time.

However, a universe may collapse: that is what happens for the closed Friedmann model, see Example
in Sec. 3.2.3. But this does not lead to a black hole: the entire universe collapses, leaving no outside.
For a black hole it is not essential to have a vacuum outside, and the formation of a black hole is not
a static situation; a sufficient overdensity may collapse into a black hole; what is essential is that we
have an inhomogeneity, an overdense region surrounded by lower density. In Cosmology II Sec. 8.5.2 we
discuss the situation where an otherwise critical-density universe has a spherical overdense region that
eventually collapses to form a black hole.
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Figure 31: The expansion law a(t) (Eq. 3.155) in the concordance model (ΩΛ = 0.7, Ωm = 0.3). The red
dashed line is the early-time approximation and the purple dashed line is the late-time approximation.
The solid vertical line is the present time t0, the two dotted vertical lines are tacc and teq.

Currently the simplest cosmological model that fits all cosmological observations reasonably
well is the ΛCDM model, also called the Concordance Model [22] (since it fits different kinds of
observations) or the standard model of cosmology (since it is often now assumed in studies that
relate to cosmology but focus on other questions than the cosmological model). In the name,
Λ stands for the cosmological constant, i.e., dark energy is assumed to be vacuum energy and
to dominate the energy density of the universe today, and CDM for cold dark matter, which is
assumed to make up most of the matter in the universe.

The ΛCDM model includes a number of assumptions related to primordial perturbations, i.e.,
deviations from the homogeneous FRW model, that we will discuss in Cosmology II, but for the
present discussion the relevant part of the ΛCDM model is that the “unperturbed” homogeneous
“background” model, a good approximation for large distance scales, is the flat FRW universe
with Ω0 = 1 ≈ ΩΛ+Ωm and ΩΛ ≈ 0.7, Ωm ≈ 0.3. Often the term “Concordance Model” is used
for this FRW model, and the term ΛCDM model is used when also the other assumptions are
included. We adopt this usage.

The expansion law a(t) of the Concordance Model is solved from

da

dt
= H0

√

Ωma−1 +ΩΛa2 , (3.153)

which is easier to integrate from

t(a) = H−1
0

∫ a

0

da
√

Ωma−1 +ΩΛa2
= H−1

0

∫ a

0

a1/2da
√

Ωm +ΩΛa3

=
2

3
H−1

0

1√
ΩΛ

∫ y

0

dy
√

1 + y2
=

2

3
H−1

0

1√
ΩΛ

arsinh

[√

ΩΛ

Ωm
a3/2

]

, (3.154)

where we used the substitution y =
√

ΩΛ/Ωm a
3/2. Inverting this, we have the expansion law

a(t) =

(
Ωm

ΩΛ

)1/3

sinh2/3
(
3
2

√

ΩΛH0t
)

. (3.155)
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At early times, t ≪ (2/3
√
ΩΛ)H

−1
0 , the expansion is decelerating and a ∝ t2/3 (the matter-

dominated era):

a(t) ≈
(
9Ωm

4

)1/3

H
2/3
0 t2/3 . (3.156)

At late times, t ≫ (2/3
√
ΩΛ)H

−1
0 , the expansion is exponential and accelerating (the vacuum-

dominated era):

a(t) ≈
(

Ωm

4ΩΛ

)1/3

e
√
ΩΛH0t , (3.157)

with a time scale (“e-folding time”) of H0
−1/

√
ΩΛ. See Fig. 31.

From above, the age-redshift relation is

t(z) =
2

3
H−1

0

1√
ΩΛ

arsinh

[√

ΩΛ

Ωm
(1 + z)−3/2

]

, (3.158)

and the present age of the universe is

t0 =
2

3
H−1

0

1√
ΩΛ

arsinh

√

ΩΛ

Ωm
(3.159)

In the concordance model, there are two energy-density components, ρvac = const and ρm ∝
a−3, so that ρ = ρvac + ρm and p = −ρvac. From the second Friedmann equation

ä

a
= −4πG

3
(ρ+ 3p) = −4πG

3
(ρm − 2ρvac) (3.160)

we see that the deceleration turns into accelaration when ρvac =
1
2ρm. Since

ρvac
ρm

=
ΩΛ

Ωm

(
a

a0

)3

= sinh2
(
3
2

√

ΩΛH0t
)

, (3.161)

we get that this happens when

a =
1

1 + z
=

(
Ωm

2ΩΛ

)1/3

and tacc =
2

3
H−1

0

1√
ΩΛ

arsinh
1√
2
. (3.162)

The vacuum and matter energy densities become equal later, when

a =
1

1 + z
=

(
Ωm

ΩΛ

)1/3

and teq =
2

3
H−1

0

1√
ΩΛ

arsinh(1) . (3.163)

Here

arsinh
1√
2
= 0.65848 and arsinh(1) = 0.88137 . (3.164)

For ΩΛ = 0.7 and Ωm = 0.3,

arsinh

√

ΩΛ

Ωm
= arsinh(1.5275) = 1.2099 (3.165)

and
tacc = 0.5247H−1

0 teq = 0.7023H−1
0 t0 = 0.9641H−1

0 . (3.166)
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In the concordance model the distance-redshift relation appears not to have a closed form in
terms of elementary functions, so we need to integrate it numerically. The (comoving) distance
to the horizon is

dchor = H−1
0

∫ 1

0

da
√

ΩΛa4 +Ωma
. (3.167)

which for ΩΛ = 0.7 and Ωm = 0.3 gives dchor = 3.305H−1
0 .

These results are modified somewhat by inclusion of the effect of radiation (Ωr ≈ 10−4),
which requires integrating also t(a) numerically.

Planck 2018 best-fit concordance model. The best-fit ΛCDM model to the final release of
Planck satellite data (we discuss this in Cosmology II; see p. 14, Table I, Plik best-fit in [6]) has

Ωm = 0.3158 Ωr = 9.232× 10−5 H0 = 67.32 km/s/Mpc (3.168)

(and ΩΛ = 1− Ωm − Ωr).
51 52 The Hubble distance and time are then

H−1
0 = 4453.2Mpc = 14.525× 109 yr . (3.169)

Including the effect of Ωr, we need to integrate also the age-redshift relation numerically. The age of the
universe is

t0 = 0.9499H−1
0 = 13.797Gyr . (3.170)

For the redshift when acceleration began, one now has to solve (since we included Ωr) a fourth-order
equation

ä

a
= −4πG

3
(ρ+ 3p) = −4πG

3
(ρm + 2ρr − 2ρvac) = ρcr0(Ωma

−3 + 2Ωra
−4 − 2ΩΛ) = 0

⇒ 2Ωr +Ωma− 2ΩΛa
4 = 0

(done conveniently with WolframAlpha), to get

aacc =
1

1 + zacc
= 0.6136 (zacc = 0.63) and tacc = 0.5306H−1

0 = 7.707Gyr , (3.171)

i.e., the expansion began to accelerate 6.09 billion years ago. Matter density was equal to vacuum-energy
density at

aeq =
1

1 + zeq
= 0.7729 (zeq = 0.29) and teq = 0.7100H−1

0 = 10.313Gyr , (3.172)

i.e., 3.48 billion years ago. The (comoving) horizon distance (to z = ∞) is

dhor = 3.1767H−1
0 = 14.146Mpc = 46.14× 109 light years . (3.173)

The comoving distance to the last scattering sphere (z = 1090) is

dls = 3.1138H−1
0 = 13.867Mpc = 45.23× 109 light years . (3.174)

The time scale of the future exponential expansion is H0
−1/

√
ΩΛ = 17.561× 109 years, meaning that the

universe will expand by a factor of e ≈ 2.7 in 17.6 billion years and by a factor of e10 ≈ 22000 in 175.6
billion years.

51This does not mean that Planck has determined these parameters to this accuracy. There are other nearby
parameter value combinations that fit the data almost as well. The Planck 2018 determination of these parameters
(assuming the ΛCDM model) is Ωm = 0.3153 ± 0.0073 and H0 = 67.36 ± 0.54, where the uncertainty range
represents 68% confidence. Note that the best-fit model does not lie at the center of these ranges.

52We cheat here a little bit, by using the value of Ωr corresponding to three massless neutrino species; whereas
the Planck best-fit model assumed one massive neutrino species with mν = 0.06 eV, so that this neutrino species
counts today as matter (and is included in the Ωm = 0.3158, where it contributes about 0.0014). A truly accurate
treatment would include the change of this species from radiation into matter as the universe expands. It is more
accurate to include it also in Ωr at all times than not to include it there at all, since Ωr is much more important
at early times.
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We provide a table of different quantities (age and comoving distance) as a function of
redshift for the Planck 2013 (the first data release) best-fit model in Table 1. Table 2 is for
our reference model h = 0.7, ΩΛ = 0.7 and Table 3 for the Planck 2018 best-fit model [6]. The
reason for giving them with so many digits in the table is that one can then take differences
between the values for different redshifts.

The distant future in the concordance model has interesting properties because of the accel-
erating expansion:

1. Distant galaxies will recede from us faster and faster, with the result that it is not possible
to travel from here to the most distant galaxies (“Unreachable” in Fig. 32) we can observe
now, even if it there were means to travel with speeds arbitrarily close to the speed of
light. Also light rays from here will never reach those galaxies, and similarly, light rays
sent from those galaxies today will never reach us.

2. The (comoving) horizon distance dchor will approach asymptotically a maximum value (the
“Future comoving visibility limit” in Fig. 32). Galaxies beyond that will never become
observable from here. We already see a sizable fraction of that part of the universe that
will ever become observable from here. Instead, because the redshifts of distant galaxies
will keep increasing with time, eventually they will disappear from sight because they will
become so faint (they will still stay within the horizon, since their dc stays constant, and
dchor does not decrease with time). The relevant time scale here is of course cosmological;
we are referring to a future tens of billions of years from today.

But remember that this holds if we assume the concordance model. Since we do not know
the true nature of dark energy, we do not know if the concordance model will apply, or be a
good approximation to reality, in the distant future. So in reality the distant future is unknown
and could be completely different.

Future comoving visibility limit. The comoving distance traveled by a light ray since t = 0 until
t = ∞ is

dc =

∫

dχ =

∫ ∞

0

dt

a(t)
=

(
ΩΛ

Ωm

)1/3
2

3
√
ΩΛH0

∫ ∞

0

sinh−2/3 x dx

= Ω
−1/6
Λ Ω−1/3

m

Γ(16 )Γ(
1
3 )

3
√
π

H−1
0 = 2.8044Ω

−1/6
Λ Ω−1/3

m H−1
0 . (3.175)

With Ωm = 0.3 this gives dc = 4.4457H−1
0 . The integral was done by converting it to the Euler B

function

B(p, q) ≡
∫ 1

0

tp−1(1 − t)q−1 dt =
Γ(p)Γ(q)

Γ(p+ q)
(3.176)

by the substitution t = tanh2 x, which gives

∫ ∞

0

sinhµ x dx = 1
2

∫ 1

0

tµ/2−1/2(1− t)−µ/2−1 = 1
2B
(
µ
2 + 1

2 ,−
µ
2

)
=

Γ(µ2 + 1
2 )Γ(−

µ
2 )

2Γ(12 )
(3.177)

where Γ(12 ) =
√
π.

3.4 Vacuum Energy, Dark Energy, Anthropic Principle, and the Multiverse

The simplest explanation for the accelerated expansion of the universe is vacuum energy, or
alternatively, a cosmological constant. Theoretical cosmologists, however, usually find this un-
satisfactory, because of its unnaturally small observed value,

ρvac ≈ 6.4× 10−27 kg/m3 ≈ 5.8 × 10−10 J/m3 ≈ (2.3meV)4 . (3.178)
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Figure 32: We had this figure already in Chapter 1, but let us look at it again. The figure is in comoving
coordinates, so the galaxies do not move in time, except for their peculiar velocity. As time goes on the
horizon recedes and we can see further out. The “Future comoving visibility limit” is how far one can
eventually see in the very distant future, assuming the “Concordance Model” for the universe (Sec. 3.3).
Because of the accelerated expansion of the universe it is not possible to reach the most distant galaxies
we see (beyond the circle marked “Unreachable”), even if traveling at (arbitrarily close to) the speed of
light, assuming we start today or later. Figure from Gott et al: “Map of the Universe” (2005) [2].
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Quantum field theory predicts zero-point fluctuations for all Fourier modes of all quantum
fields. Adding up their contributions to vacuum energy depends on how high frequencies or
wave numbers we extend this up to. Extending it all the way to Planck scale, gives an estimate
for the vacuum energy density that is 120 orders of magnitude larger than the observed value.
We can expect unknown physics above the 1 TeV scale; but extending the vacuum fluctuation
contributions to the 1 TeV scale still gives a “prediction” 60 orders of magnitude too large. We
might postulate a negative cosmological constant that cancels the effect of most, but not all, of
this positive vacuum energy, but this explanation would require a fine-tuning to, e.g., 60 digits.
Many theorists would find preferable an exact cancellation due to some unknown symmetry
principle, and another explanation for the acceleration of the universe. Such an explanation
could be a new energy field, called dark energy, which is not vacuum energy, but would have
properties not very much different from it; with a hope that eventually we would find a dynamical
explanation for its observed density.

One way to try to explain the small value of the cosmological constant / vacuum energy starts
from the realization that if it were much larger, we could not exist: the expansion of the universe
would have started to accelerate much earlier, preventing formation of galaxies. Suppose there
is no fundamental principle that determines the value of the cosmological constant. Then its
observed value could be a selection effect: we can only observe such values of natural constants
that are compatible with our existence. This is called the anthropic principle.53 The operation of
the anthropic principle becomes more tangible, if we combine it with the idea of the multiverse:
that there are many, possible an infinite number of, different universes, with different values
of fundamental constants. Life, and observers, only occur in those of these universes, which
provide suitable conditions for their development. These universes could be different parts of
an enormous connected multiverse, or completely separate from each other.

What you will need from Chapter 3:

• An understanding of the geometry of the flat, closed, and open model of the universe
(Sec. 3.1.1)

• How to use the RW metric, to calculate redshifts, times, distances, and volumes (Sec. 3.1)

• The different distance concepts: proper distance, comoving distance, angular diameter
distance, luminosity distance (Sec. 3.1)

• The different radial coordinates r and χ to use in the RWmetric; their relation to comoving
distance and angular diameter distance (Sec. 3.1.1)

• Friedmann equations (Sec. 3.2.1)

• Energy-continuity equation (Sec. 3.2.1)

• Critical density and cosmological parameters: Hubble constant, density parameters, equation-
of-state parameter (Secs. 3.2.1 – 3.2.4)

• Different ways of writing the Friedmann equation (Secs. 3.2.1 – 3.2.4)

• How to use the Friedmann equations and cosmological parameters to solve a(t) or t(a) and
dc(t) or dc(z) (Secs. 3.2.3 – 3.2.6)

53There are other formulations of the anthropic principle in the literature; some of which appear rather extreme.
Invoking, or even mentioning, the anthropic principle is disliked by many physicists: they view it as obscure
philosophy, not real physics. Indeed, anthropic predictions usually remain vague, not quantified: one would have
to make unjustified assumptions to actually derive a probability distribution for the observed values of such
“anthropically determined” constants.
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• Radiation-dominated, matter-dominated, and vacuum-dominated epochs (Secs. 3.2.3 –
3.2.6)

• How to use supernova data to determine cosmological parameters (Sec. 3.2.8)

• A feeling for the time and distance scales of the universe we live in (Secs. 3.3)
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Age and distance in the Planck 2013 best-fit concordance model

z t (Gyr) t0 − t (H−1
0 ) dc (H−1

0 ) dc (Mpc) dc (Gyr)

0 13.83 0 0 0 0
0.1 12.47 0.0930 0.0976 436 1.421
0.2 11.30 0.1737 0.1902 849 2.770
0.3 10.27 0.2439 0.2779 1241 4.046
0.4 9.38 0.3051 0.3605 1610 5.250
0.5 8.60 0.3589 0.4384 1957 6.384
0.6 7.91 0.4062 0.5117 2284 7.450
0.7 7.30 0.4480 0.5806 2592 8.454
0.8 6.76 0.4850 0.6454 2881 9.397
0.9 6.28 0.5180 0.7064 3154 10.285
1 5.85 0.5475 0.7638 3409 11.121
1.5 4.27 0.6562 1.0061 4492 14.650
2 3.27 0.7243 1.1922 5322 17.359
2.5 2.61 0.7699 1.3397 5981 19.507
3 2.14 0.8020 1.4597 6517 21.255
4 1.54 0.8436 1.6449 7343 23.951
5 1.17 0.8687 1.7823 7957 25.952
6 0.928 0.8853 1.8894 8435 27.511
7 0.760 0.8969 1.9758 8821 28.769
8 0.636 0.9053 2.0474 9141 29.811
9 0.543 0.9117 2.1080 9411 30.694
10 0.471 0.9167 2.1602 9644 31.454
20 0.178 0.9368 2.4553 10962 35.752
100 0.0164 0.9479 2.8741 12831 41.850
1000 0.000430 0.948955 3.1051 13863 45.213
1089 0.000375 0.948959 3.1090 13880 45.271

Table 1: The cosmological parameters assumed here are ΩΛ = 0.6830, Ωm = 0.3169, Ωr = 9.323× 10−5,
H0 = 67.15 km/s/Mpc. Credit: Elina Palmgren.
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Age and distance in our reference model

z t (Gyr) t0 − t (H−1
0 ) dc (H−1

0 ) dc (Mpc) dc (Mpc/h) dc (Gyr) H H dL (H−1
0 )

0.0 13.463 0.0 0.0 0.0 0.0 0.0 70.0 70.0 0.0
0.1 12.162 0.0932 0.0977 418.5 292.9 1.365 73.4 66.7 0.1075
0.2 11.031 0.1741 0.1907 816.7 571.7 2.664 77.3 64.4 0.2288
0.3 10.045 0.2447 0.2789 1194.4 836.1 3.896 81.6 62.8 0.3625
0.4 9.181 0.3065 0.3623 1551.5 1086.1 5.061 86.4 61.7 0.5072
0.5 8.422 0.3609 0.441 1888.6 1322.0 6.16 91.6 61.1 0.6615
0.6 7.753 0.4087 0.5152 2206.3 1544.4 7.196 97.2 60.8 0.8243
0.7 7.161 0.4511 0.5851 2505.6 1753.9 8.172 103.2 60.7 0.9946
0.8 6.636 0.4888 0.6509 2787.6 1951.3 9.092 109.6 60.9 1.1716
0.9 6.167 0.5223 0.7129 3053.2 2137.3 9.959 116.3 61.2 1.3545
1.0 5.748 0.5523 0.7714 3303.7 2312.6 10.775 123.3 61.6 1.5428
1.1 5.372 0.5792 0.8266 3540.0 2478.0 11.546 130.6 62.2 1.7358
1.2 5.033 0.6035 0.8787 3763.2 2634.3 12.274 138.2 62.8 1.9331
1.3 4.727 0.6254 0.928 3974.3 2782.0 12.963 146.0 63.5 2.1344
1.4 4.449 0.6453 0.9746 4174.1 2921.9 13.615 154.1 64.2 2.3391
1.5 4.197 0.6633 1.0189 4363.6 3054.5 14.232 162.5 65.0 2.5472
1.6 3.967 0.6798 1.0608 4543.3 3180.3 14.819 171.1 65.8 2.7582
1.7 3.757 0.6949 1.1007 4714.2 3299.9 15.376 179.9 66.6 2.972
1.8 3.564 0.7087 1.1387 4876.8 3413.7 15.906 189.0 67.5 3.1884
1.9 3.387 0.7214 1.1749 5031.7 3522.2 16.411 198.2 68.4 3.4071
2.0 3.223 0.7331 1.2094 5179.4 3625.6 16.893 207.7 69.2 3.6281
2.1 3.072 0.7439 1.2423 5320.5 3724.3 17.353 217.4 70.1 3.8511
2.2 2.933 0.7539 1.2738 5455.4 3818.8 17.793 227.2 71.0 4.0762
2.3 2.803 0.7631 1.3039 5584.5 3909.1 18.215 237.3 71.9 4.303
2.4 2.682 0.7718 1.3328 5708.2 3995.7 18.618 247.5 72.8 4.5316
2.5 2.57 0.7798 1.3605 5826.9 4078.8 19.005 257.9 73.7 4.7619
3.0 2.109 0.8128 1.4838 6354.8 4448.4 20.727 312.4 78.1 5.9353
3.5 1.771 0.837 1.5866 6795.1 4756.6 22.163 370.8 82.4 7.1398
4.0 1.513 0.8555 1.674 7169.1 5018.4 23.383 432.9 86.6 8.3698
4.5 1.312 0.8698 1.7493 7491.8 5244.2 24.435 498.3 90.6 9.6211
5.0 1.152 0.8813 1.8151 7773.7 5441.6 25.355 566.9 94.5 10.8908
6.0 0.915 0.8983 1.9251 8244.9 5771.4 26.892 713.1 101.9 13.476
7.0 0.749 0.9102 2.014 8625.3 6037.7 28.132 870.4 108.8 16.1116
8.0 0.627 0.9189 2.0876 8940.5 6258.4 29.161 1038.0 115.3 18.7881
9.0 0.535 0.9255 2.1499 9207.3 6445.1 30.031 1215.4 121.5 21.4987
10.0 0.464 0.9306 2.2035 9436.9 6605.9 30.78 1402.0 127.5 24.2383
11.0 0.407 0.9347 2.2502 9637.2 6746.1 31.433 1597.4 133.1 27.0029
12.0 0.361 0.938 2.2915 9813.9 6869.8 32.009 1801.1 138.5 29.7896
13.0 0.323 0.9407 2.3283 9971.4 6979.9 32.523 2013.0 143.8 32.5956
14.0 0.291 0.943 2.3613 10112.8 7078.9 32.984 2232.6 148.8 35.4191
15.0 0.264 0.9449 2.3911 10240.7 7168.5 33.401 2459.7 153.7 38.2583
16.0 0.241 0.9465 2.4183 10357.1 7250.0 33.781 2694.1 158.5 41.1116
17.0 0.221 0.948 2.4432 10463.7 7324.6 34.129 2935.6 163.1 43.978
18.0 0.204 0.9492 2.4661 10561.7 7393.2 34.449 3184.0 167.6 46.8562
19.0 0.189 0.9503 2.4873 10652.3 7456.6 34.744 3439.0 172.0 49.7453
20.0 0.175 0.9513 2.5069 10736.4 7515.5 35.018 3700.6 176.2 52.6446
100.0 0.0162 0.9626 2.9376 12581.1 8806.7 41.035 39466.6 390.8 296.6988
1000.0 0.000425 0.963767 3.1753 13599.2 9519.5 44.356 1376106.7 1374.7 3178.5241
1090.0 0.000368 0.963771 3.1796 13617.5 9532.3 44.415 1581329.7 1449.4 3468.9642
∞ 0 0.963797 3.2446 13895.7 9727.0 45.322

Table 2: The cosmological parameters assumed here are H0 = 70.0 km/s/Mpc (H−1
0 = 4.283Mpc),

ΩΛ = 0.7, Ωr = 4.18 × 10−5h−2 = 8.53 × 10−5, Ωm = 1 − ΩΛ − Ωr. The Hubble parameters H and
H = H/(1 + z) are given in units of km/s/Mpc.
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Age and distance in in the Planck 2018 best-fit concordance model

z t (Gyr) t0 − t (H−1
0 ) dc (H−1

0 ) dc (Mpc) dc (Mpc/h) dc (Gyr) H H dL (H−1
0 )

0.1 12.446 0.0931 0.0976 434.6 292.6 1.417 70.8 64.3 0.1074
0.2 11.274 0.1737 0.1903 847.2 570.4 2.763 74.7 62.2 0.2283
0.3 10.255 0.2439 0.2779 1237.7 833.2 4.037 79.0 60.8 0.3613
0.4 9.364 0.3052 0.3607 1606.1 1081.2 5.238 83.8 59.9 0.5049
0.5 8.583 0.359 0.4386 1953.1 1314.8 6.37 89.1 59.4 0.6579
0.6 7.895 0.4064 0.5119 2279.6 1534.6 7.435 94.7 59.2 0.819
0.7 7.288 0.4482 0.5809 2586.7 1741.4 8.437 100.7 59.2 0.9875
0.8 6.749 0.4853 0.6457 2875.6 1935.8 9.379 107.0 59.5 1.1623
0.9 6.27 0.5183 0.7068 3147.4 2118.8 10.266 113.7 59.8 1.3428
1.0 5.841 0.5478 0.7642 3403.4 2291.2 11.101 120.7 60.3 1.5285
1.1 5.457 0.5742 0.8184 3644.7 2453.6 11.888 127.9 60.9 1.7187
1.2 5.111 0.598 0.8696 3872.5 2606.9 12.631 135.5 61.6 1.9131
1.3 4.799 0.6195 0.9179 4087.7 2751.8 13.332 143.3 62.3 2.1112
1.4 4.517 0.639 0.9636 4291.3 2888.9 13.997 151.3 63.1 2.3127
1.5 4.26 0.6566 1.0069 4484.2 3018.7 14.626 159.6 63.8 2.5174
1.6 4.026 0.6728 1.048 4667.2 3141.9 15.223 168.2 64.7 2.7249
1.7 3.812 0.6875 1.0871 4841.0 3258.9 15.79 176.9 65.5 2.9351
1.8 3.615 0.701 1.1242 5006.3 3370.3 16.329 185.9 66.4 3.1477
1.9 3.435 0.7134 1.1596 5163.8 3476.3 16.842 195.0 67.3 3.3627
2.0 3.269 0.7248 1.1933 5313.9 3577.3 17.332 204.4 68.1 3.5798
2.1 3.116 0.7354 1.2255 5457.3 3673.8 17.8 214.0 69.0 3.7989
2.2 2.974 0.7452 1.2562 5594.3 3766.1 18.247 223.7 69.9 4.0199
2.3 2.842 0.7542 1.2857 5725.4 3854.4 18.674 233.6 70.8 4.2427
2.4 2.72 0.7627 1.3139 5851.1 3938.9 19.084 243.7 71.7 4.4672
2.5 2.606 0.7705 1.3409 5971.6 4020.1 19.477 254.0 72.6 4.6933
3.0 2.138 0.8027 1.4613 6507.3 4380.7 21.225 307.9 77.0 5.845
3.5 1.795 0.8264 1.5615 6953.9 4681.4 22.681 365.6 81.3 7.027
4.0 1.534 0.8443 1.6467 7333.2 4936.7 23.918 426.9 85.4 8.2336
4.5 1.33 0.8584 1.7202 7660.4 5157.0 24.985 491.5 89.4 9.461
5.0 1.168 0.8695 1.7844 7946.2 5349.4 25.918 559.3 93.2 10.7062
6.0 0.927 0.8861 1.8916 8423.8 5670.9 27.475 703.6 100.5 13.2413
7.0 0.758 0.8977 1.9782 8809.3 5930.4 28.733 858.8 107.4 15.8253
8.0 0.636 0.9062 2.0499 9128.8 6145.5 29.775 1024.3 113.8 18.4492
9.0 0.542 0.9126 2.1106 9399.1 6327.5 30.657 1199.4 119.9 21.1063
10.0 0.47 0.9176 2.1629 9631.8 6484.1 31.415 1383.5 125.8 23.7916
11.0 0.412 0.9215 2.2084 9834.8 6620.8 32.077 1576.4 131.4 26.5014
12.0 0.366 0.9247 2.2487 10013.8 6741.3 32.661 1777.5 136.7 29.2325
13.0 0.327 0.9274 2.2845 10173.3 6848.7 33.182 1986.6 141.9 31.9827
14.0 0.295 0.9296 2.3166 10316.6 6945.1 33.649 2203.3 146.9 34.7497
15.0 0.267 0.9315 2.3458 10446.2 7032.4 34.072 2427.5 151.7 37.532
16.0 0.244 0.9331 2.3722 10564.2 7111.8 34.457 2658.9 156.4 40.3282
17.0 0.224 0.9345 2.3965 10672.2 7184.5 34.809 2897.2 161.0 43.137
18.0 0.206 0.9357 2.4188 10771.6 7251.4 35.133 3142.4 165.4 45.9574
19.0 0.191 0.9368 2.4394 10863.3 7313.2 35.432 3394.1 169.7 48.7884
20.0 0.178 0.9377 2.4585 10948.5 7370.5 35.71 3652.3 173.9 51.6294
100.0 0.0164 0.9488 2.8782 12817.4 8628.7 41.806 38962.8 385.8 290.6998
1000.0 0.000429 0.949888 3.1097 13848.0 9322.5 45.167 1362060.1 1360.7 3112.7597
1090.0 0.000371 0.949892 3.1138 13866.5 9334.9 45.227 1565505.2 1434.9 3397.1543
∞ 0 0.949918 3.1767 14146.7 46.140

Table 3: The cosmological parameters assumed here are H0 = 67.32 km/s/Mpc, ΩΛ = 0.6841, Ωr =
4.18× 10−5h−2 = 9.223× 10−5, Ωm = 1− ΩΛ − Ωr. The Hubble parameters H and H = H/(1 + z) are
given in units of km/s/Mpc.
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4 Thermal history of the Early Universe

About this chapter: This chapter is the second most important chapter in the course. It
focuses on the early universe (from the first small fraction of a second to about 400 000 years),
which was filled with the primordial plasma. We cannot see through this primordial plasma, so
we cannot make direct observations, but we can use thermodynamics to calculate what happens.
Thus we begin with a short review of relativistic thermodynamics / statistical physics. Then
we discuss the events in chronological order, starting from the EW transition and ending with
photon decoupling and the Dark Age. However, we skip the Big Bang Nucleosynthesis, which
is discussed in Chapter 5.

4.1 Relativistic thermodynamics

As we look out in space we can see the history of the universe unfolding in front of our telescopes.
However, at redshift z = 1090 our line of sight hits the last scattering surface, from which the cos-
mic microwave background (CMB) radiation originates. This corresponds to t = 370 000 years.
Before that the universe was not transparent, so we cannot see further back in time, into the
early universe. As explained in Sec. 3, we can ignore curvature and vacuum/dark energy in the
early universe and concern ourselves only with radiation and matter. The isotropy of the CMB
shows that matter was distributed homogeneously in the early universe, and the spectrum of the
CMB shows that this matter, the “primordial soup” of particles, was in thermodynamic equilib-
rium. Therefore we can use thermodynamics to calculate the history of the early universe. As
we shall see, this calculation leads to predictions (especially the BBN, big bang nucleosynthesis)
testable by observation. We shall now discuss the thermodynamics of the primordial soup.

From elementary quantum mechanics we are familiar with the “particle in a box”. Let us
consider a cubic box, whose edge is L (volume V = L3), with periodic boundary conditions.
Solving the Schrödinger equation gives us the energy and momentum eigenstates, where the
possible momentum values are

~p =
h

L
(n1x̂+ n2ŷ + n3ẑ) (ni = 0,±1,±2, . . .) , (4.1)

where h is the Planck constant. (The wave function will have an integer number of wavelengths
in each of the three directions.) The state density in momentum space (number of states /
∆px∆py∆pz) is thus

L3

h3
=
V

h3
, (4.2)

and the state density in the 6-dimensional phase space {(~x, ~p)} is 1/h3. If the particle has g
internal degrees of freedom (e.g., spin),

density of states =
g

h3
=

g

(2π)3

(

~ ≡ h

2π
≡ 1

)

. (4.3)

This result is true even for relativistic momenta. The state density in phase space is independent
of the volume V , so we can apply it for arbitrarily large systems (e.g., the universe).

For much of the early universe, we can ignore the interaction energies between the particles.
Then the particle energy is (according to special relativity)

E(~p) =
√

p2 +m2 , (4.4)

where p ≡ |~p| (momentum, not pressure!), and the states available for the particles are the free
particle states discussed above.
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Particles fall into two classes, fermions and bosons. Fermions obey the Pauli exclusion
principle: no two fermions can be in the same state. Bosons have integer spin, s = 0, 1, 2, . . . ,
and fermions have half-integer spin, s = 1

2 ,
3
2 , . . . A particle with spin s has g = 2s + 1 spin-

related internal degrees of freedom; massless particles are an exception: although photons have
spin 1 they have only g = 2.

In thermodynamic equilibrium the distribution function, or the expectation value f of the
occupation number of a state, depends only on the energy of the state. According to statistical
physics, it is

f(~p) =
1

e(E−µ)/T ± 1
(4.5)

where + is for fermions and − is for bosons. (For fermions, where f ≤ 1, f gives the probability
that a state is occupied.) This equilibrium distribution has two parameters, the temperature T ,
and the chemical potential µ. The temperature is related to the energy density in the system
and the chemical potential is related to the number density n of particles in the system. Note
that, since we are using the relativistic formula for the particle energy E, which includes the
mass m, it is also “included” in the chemical potential µ. Thus in the nonrelativistic limit, both
E and µ differ from the corresponding quantities of nonrelativistic statistical physics by m, so
that E − µ and the distribution functions remain the same.

If there is no conserved particle number in the system (e.g., a photon gas), then µ = 0 in
equilibrium.

The particle density in phase space is the density of states times their occupation number,

g

(2π)3
f(~p). (4.6)

We get the particle density in (ordinary 3D) space by integrating over the momentum space.
Thus we find the following quantities:

number density n =
g

(2π)3

∫

f(~p)d3p (4.7)

energy density ρ =
g

(2π)3

∫

E(~p)f(~p)d3p (4.8)

pressure p =
g

(2π)3

∫ |~p|2
3E

f(~p)d3p . (4.9)

The contribution of a momentum state to pressure. Where does (4.9) come from? Pressure is
force per area. Suppose a surface with area A is perpendicular to, say, the x direction. When a particle
with momentum ~p is reflected from the surface, its momentum changes by 2px. Force is momentum change
per time. How many particles with momentum ~p hit the surface in time ∆t? These particles come from
volume Avx∆t, where vx = px/E is their velocity component towards the surface. Thus total momentum
change is [g/(2π)3]f(~p)2Avx∆tpx = [g/(2π)3]f(~p)2Ap2x∆t/E, and force per area is [g/(2π)3]f(~p)2p2x/E.
In kinetic equilibrium the momentum distribution is isotropic, so when integrating over all momentum
directions, the average of p2x is |~p|2/3. Moreover, for half of the momentum values the velocity is away
from the surface, not towards it, canceling the factor 2. We see that the number 3 in (4.9) comes from
the number of space dimensions.

Different particle species i have different masses mi; so the preceding is applied separately to
each particle species. If particle species i has the above distribution for some µi and Ti, we say
the species is in kinetic equilibrium. If the system is in thermal equilibrium, all species have the
same temperature, Ti = T . If the system is in chemical equilibrium (“chemistry” here refers to
reactions where particles change into other species), the chemical potentials of different particle
species are related according to the reaction formulas. For example, if we have a reaction

i+ j ↔ k + l , (4.10)
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then
µi + µj = µk + µl . (4.11)

Thus all chemical potentials can be expressed in terms of the chemical potentials of conserved
quantities, e.g., the baryon number chemical potential, µB. There are thus as many independent
chemical potentials, as there are independent conserved particle numbers. For example, if the
chemical potential of particle species i is µi, then the chemical potential of the corresponding
antiparticle is −µi. We can also have a situation that some reactions are in chemical equilibrium
but others are not.

Thermodynamic equilibrium refers to having all these equilibria, but I will also use the term
more loosely to refer to some subset of them.

As the universe expands, T and µ change, so that energy continuity and particle number
conservation are satisfied. In principle, an expanding universe is not in equilibrium. The expan-
sion is however sufficiently slow compared to particle interaction rates, so that the particle soup
usually has time to settle close to local equilibrium. (And since the universe is homogeneous, the
local values of thermodynamic quantities are also global values). Although the expansion was
faster in the early universe than later, the interaction rates were much higher because of higher
density and higher particle energies, so that we can have equilibrium in the early universe, but
not later.

From the remaining numbers of fermions (electrons and nucleons) in the present universe,
we can conclude that in the early universe we had |µ| ≪ T when T ≫ m. (We don’t know the
chemical potential of neutrinos, but it is usually assumed to be small too). If the temperature is
much greater than the mass of a particle, T ≫ m, the ultrarelativistic limit, we can approximate
E =

√

p2 +m2 ≈ p.
For |µ| ≪ T and m≪ T , we approximate µ = 0 and m = 0 to get the following formulae

n =
g

(2π)3

∫ ∞

0

4πp2dp

ep/T ± 1
=







3

4π2
ζ(3)gT 3 fermions

1

π2
ζ(3)gT 3 bosons

(4.12)

ρ =
g

(2π)3

∫ ∞

0

4πp3dp

ep/T ± 1
=







7

8

π2

30
gT 4 fermions

π2

30
gT 4 bosons

(4.13)

p =
g

(2π)3

∫ ∞

0

4
3πp

3dp

ep/T ± 1
=

1

3
ρ ≈







1.0505nT fermions

0.9004nT bosons .
(4.14)

For the average particle energy we get

〈E〉 = ρ

n
=







7π4

180ζ(3)
T ≈ 3.15137T fermions

π4

30ζ(3)
T ≈ 2.70118T bosons .

(4.15)

In the above, ζ is the Riemann zeta function, and ζ(3) ≡∑∞
n=1(1/n

3) = 1.202057.
If the chemical potential µ = 0, there are equal numbers of particles and antiparticles. If

µ 6= 0, we find for fermions in the ultrarelativistic limit T ≫ m (i.e., for m = 0, but µ 6= 0) the
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“net particle number”

n− n̄ =
g

(2π)3

∫ ∞

0
dp 4πp2

(
1

e(p−µ)/T + 1
− 1

e(p+µ)/T + 1

)

=
gT 3

6π2

(

π2
(µ

T

)

+
(µ

T

)3
)

(4.16)

and the total energy density

ρ+ ρ̄ =
g

(2π)3

∫ ∞

0
dp 4πp3

(
1

e(p−µ)/T + 1
+

1

e(p+µ)/T + 1

)

=
7

8
g
π2

15
T 4

(

1 +
30

7π2

(µ

T

)2
+

15

7π4

(µ

T

)4
)

. (4.17)

Note that the last forms in Eqs. (4.16) and (4.17) are exact, not just truncated series. (The
difference n−n̄ and the sum ρ+ ρ̄ lead to a nice cancellation between the two integrals. We don’t
get such an elementary form for the individual n, n̄, ρ, ρ̄, or the sum n + n̄ and the difference
ρ− ρ̄ when µ 6= 0.)

In the nonrelativistic limit, T ≪ m and T ≪ m − µ, the typical kinetic energies are much
below the mass m, so that we can approximate E = m + p2/2m. The second condition, T ≪
m − µ, leads to occupation numbers ≪ 1, a dilute system. This second condition is usually
satisfied in cosmology when the first one is. (It is violated in systems of high density, like white
dwarf stars and neutrons stars.) We can then approximate

e(E−µ)/T ± 1 ≈ e(E−µ)/T , (4.18)

so that the boson and fermion expressions become equal,54 and we get (exercise)

n = g

(
mT

2π

)3/2

e−
m−µ
T (4.19)

ρ = n

(

m+
3T

2

)

(4.20)

p = nT ≪ ρ (4.21)

〈E〉 = m+
3T

2
(4.22)

n− n̄ = 2g

(
mT

2π

) 3
2

e−
m

T sinh
µ

T
. (4.23)

In the general case, where neither T ≪ m, nor T ≫ m, the integrals don’t give elementary
functions, but n(T ), ρ(T ), etc. need to be calculated numerically for the region T ∼ m.55

By comparing the ultrarelativistic (T ≫ m) and nonrelativistic (T ≪ m) limits we see that
the number density, energy density, and pressure of a particle species falls exponentially as
the temperature falls below the mass of the particle. What happens is that the particles and
antiparticles annihilate each other. (Other reactions may also be involved, and if these particles
are unstable, also their decay contributes to their disappearance.) At higher temperatures
these annihilation reactions are also constantly taking place, but they are balanced by particle-
antiparticle pair production. At lower temperatures the thermal particle energies are no more
sufficient for pair production. This particle-antiparticle annihilation takes place mainly (about
80%) during the temperature interval T = m→ 1

6m. See Fig. 33. It is thus not an instantaneous
event, but takes several Hubble times (H−1, not H−1

0 ).

54This approximation leads to what is called Maxwell–Boltzmann statistics; whereas the previous exact formulae
give Fermi–Dirac (for fermions) and Bose–Einstein (for bosons) statistics.

55If we use Maxwell–Boltzmann statistics, i.e., we drop the term ±1, the integrals give modified Bessel functions,
e.g., K2(m/T ), and the error is often less than 10%.
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Figure 33: The fall of energy density of a particle species, with mass m, as a function of temperature
(decreasing to the right).

4.2 Primordial soup

We shall now apply the thermodynamics discussed in the previous section to the evolution of
the early universe.

The primordial soup initially consists of all the different species of elementary particles.
Their masses range from the heaviest known elementary particle, the top quark (m = 173 GeV)
down to the lightest particles, the electron (m = 511 keV), the neutrinos (m = ?) and the
photon (m = 0). In addition to the particles of the standard model of particle physics (given in
Table 1), there must be other, so far undiscovered, species of particles, at least those that make
up the CDM. As the temperature falls, the various particle species become nonrelativistic and
annihilate at different times.

Another central theme is decoupling : as the number densities and particle energies fall with
the expansion, some reaction rates become too low to keep up with the changing equilibrium and
therefore some quantities are “frozen” at their pre-decoupling values. We will encounter neutrino
and photon decoupling later in this chapter; decoupling is also important in BBN (Chapter 5)
and for dark matter (Chapter 6).
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Table 1: The particles in the standard model of particle physics

Particle Data Group, 2022

Quarks t 172.69 ± 0.30GeV t̄ spin=1
2 g = 2 · 3 = 6

b 4.16–4.21GeV b̄ 3 colors
c 1.27 ± 0.02GeV c̄
s 90–102MeV s̄
d 4.50–5.15MeV d̄
u 1.90–2.65MeV ū

72

Gluons 8 massless bosons spin=1 g = 2 16

Leptons τ− 1776.86 ± 0.12MeV τ+ spin=1
2 g = 2

µ− 105.658MeV µ+

e− 510.999 keV e+

12
ντ < 1.1 eV ν̄τ spin=1

2 g = 1
νµ < 1.1 eV ν̄µ
νe < 1.1 eV ν̄e

6

Electroweak W+ 80.377 ± 0.012GeV W− spin=1 g = 3
gauge bosons Z0 91.1876±0.0021GeV

γ 0 (< 1× 10−18 eV) g = 2
11

Higgs boson (SM) H0 125.25 ± 0.17GeV spin=0 g = 1 1

gf = 72 + 12 + 6 = 90
gb = 16 + 11 + 1 = 28

The mass limits for neutrinos come from a direct laboratory upper limit for νe and evidence from neutrino
oscillations that the differences in neutrino masses are much smaller. We can use cosmology to put tighter
limits to neutrino masses. Neutrinos are special in that the antineutrino is just the other spin state of
the neutrino. Therefore we put g = 1 for their internal degrees of freedom when we count antineutrinos
separately.

According to the Friedmann equation the expansion of the universe is governed by the total
energy density

ρ(T ) =
∑

ρi(T ) ,

where i runs over the different particle species. Since the energy density of relativistic species
is much greater than that of nonrelativistic species, it suffices to include the relativistic species
only. (This is true in the early universe, during the radiation-dominated era, but not at later
times. Eventually the rest masses of the particles left over from annihilation begin to dominate
and we enter the matter-dominated era.) Thus we have

ρ(T ) =
π2

30
g∗(T )T

4, (4.24)

where

g∗(T ) = gb(T ) +
7

8
gf (T ),
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Figure 34: The functions g∗(T ) (solid), g∗p(T ) (dashed), and g∗s(T ) (dotted) calculated for the
standard model particle content. In reality the drop at the QCD transition is not as sharp as
drawn, because we have ignored the effect of particle interactions, which becomes strong near
the transition.

and gb =
∑

i gi over relativistic bosons and gf =
∑

i gi over relativistic fermions. These results
assume thermal equilibrium. For pressure we have p(T ) ≈ 1

3ρ(T ).
The above is a simplification of the true situation: Since the annihilation takes a long time,

often the annihilation of some particle species is going on, and the contribution of this species
disappears gradually. Using the exact formula for ρ we define the effective number of degrees of
freedom g∗(T ) by

g∗(T ) ≡
30

π2
ρ

T 4
. (4.25)

We can also define

g∗p(T ) ≡
90

π2
p

T 4
≈ g∗(T ) . (4.26)

These can then be calculated numerically (see Figure 1).
We see that when there are no annihilations taking place, g∗p = g∗ = const ⇒ p = 1

3ρ ⇒
ρ ∝ a−4 and ρ ∝ T 4, so that T ∝ a−1. Later in this chapter we shall calculate the T (a) relation
more exactly (including the effects of annihilations).

For T > mt = 173 GeV, all known particles are relativistic. Adding up their internal degrees
of freedom we get

gb = 28 gluons 8×2, photons 2, W± and Z0 3×3, and Higgs 1

gf = 90 quarks 12×6, charged leptons 6×2, neutrinos 3×2

g∗ = 106.75.

The electroweak (EW) transition56 took place close to this time (Tc ∼ 100 GeV). It appears

56This is usually called the electroweak phase transition, but the exact nature of the transition is not known.
Technically it may be a cross-over rather than a phase transition, meaning that it occurs over a temperature
range rather than at a certain critical temperature Tc.
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that g∗ was the same before and after this transition. Going to earlier times and higher temper-
atures, we expect g∗ to get larger than 106.75 as new physics (new unknown particle species)
comes to play.57

Let us now follow the history of the universe starting at the time when the EW transition
has already happened. We have T ∼ 100 GeV, t ∼ 20 ps, and the t quark annihilation is on the
way. The Higgs boson and the gauge bosons W±, Z0 annihilate next. At T ∼ 10 GeV, we have
g∗ = 86.25. Next the b and c quarks annihilate and then the τ meson, so that g∗ = 61.75.

4.3 QCD transition

Before s quark annihilation would take place, something else happens: the QCD transition
(also called the quark–hadron transition). This takes place at T ∼ 150 MeV, t ∼ 20 µs. The
temperature and thus the quark energies have fallen so that the quarks lose their so-called
asymptotic freedom, which they have at high energies. The interactions between quarks and
gluons (the strong nuclear force, or the color force) become important (so that the formulae for
the energy density in Sec. 4.1 no longer apply) and soon a phase transition takes place. There
are no more free quarks and gluons; the quark-gluon plasma has become a hadron gas. (The
“plasma”/“gas” aspect here refers to the color force; electromagnetically the primordial soup is
still a plasma.) The quarks and gluons have formed bound three-quark systems, called baryons,
and quark-antiquark pairs, called mesons. The lightest baryons are the nucleons: the proton
and the neutron. The lightest mesons are the pions: π±, π0. Baryons are fermions, mesons are
bosons.

There are very many different species of baryons and mesons, but all except pions are non-
relativistic below the QCD transition temperature. Thus the only particle species left in large
numbers are the pions, muons, electrons, neutrinos, and the photons. For pions, g = 3, so now
g∗ = 17.25. (Protons and neutrons are left in small numbers, because there were slightly more
nucleons them antinucleons. We can ignore them for now, but will return to them in Sec. 4.8.)

Table 2: History of g∗(T )

T ∼ 200 GeV all present 106.75

T ∼ 100 GeV EW transition (no effect)

T < 170 GeV top annihilation 96.25

T < 80 GeV W±, Z0, H0 86.25

T < 4 GeV bottom 75.75

T < 1 GeV charm, τ− 61.75

T ∼ 150 MeV QCD transition 17.25 (u,d,s,g→ π±,0, 47.5 → 3)

T < 100 MeV π±, π0, µ− 10.75 e±, ν, ν̄, γ left

T < 500 keV e− annihilation (7.25) 2 + 5.25(4/11)4/3 = 3.36

This table gives what value g∗(T ) would have after the annihilation of a particle species is over assuming
the annihilation of the next species had not begun yet. In reality they overlap in many cases. The
temperature value at the left is the approximate mass of the particle in question and indicates roughly

57A popular form of such new physics is supersymmetry, which provides supersymmetric partners, whose spin
differ by 1

2
, for the known particle species, so that fermions have supersymmetric boson partners and bosons have

supersymmetric fermion partners. Since these partners have not been so far observed, supersymmetry must be
broken, allowing these partners to have much higher masses. In the minimal supersymmetric standard model
(MSSM) the new internal degrees of freedom are as follows: Spin-0 bosons (scalars): sleptons 9 · 2 = 18, squarks
6 · 2 · 2 · 3 = 72 (although there is only one spin degree instead of 2, there is another degree of freedom, so that
we get the same 18+72 as for leptons and quarks), and a new complex Higgs doublet 2 · 2 = 4. Spin- 1

2
fermions:

neutralinos 4 · 2 = 8, charginos 2 · 2 · 2 = 8 (two charge degrees and two spin degrees), and gluinos 8 · 2 = 16. This
gives g∗ = 106.75 + 94 + 7

8
· 32 = 228.75. Other supersymmetric models have somewhat more degrees of freedom

but some of the new degrees of freedom may be very heavy (1010 . . . 1016 GeV).[23]
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when annihilation begins. The temperature is much smaller when the annihilation is over. Therefore top
annihilation is placed after the EW transition. The top quark receives its mass in the EW transition, so
annihilation only begins after the transition.

4.4 Neutrino decoupling and electron-positron annihilation

Soon after the QCD transition, pions and muons annihilate and for T = 20 MeV → 1 MeV,
g∗ = 10.75. Next the electrons annihilate, but to discuss the e+e−-annihilation we need more
physics.

So far we have assumed that all particle species have the same temperature, i.e., the inter-
actions among the particles are able to keep them in thermal equilibrium. Neutrinos, however,
feel the weak interaction only. The weak interaction is actually not so weak when particle en-
ergies are close to the masses of the W± and Z0 bosons, which mediate the weak interaction.
But as the temperature falls, the weak interaction becomes rapidly weaker and weaker. Finally,
close to T ∼ 1 MeV, the neutrinos decouple, after which they move practically freely without
interactions.

The momentum of a freely moving neutrino redshifts as the universe expands,

p(t2) = (a1/a2)p(t1) . (4.27)

From this follows that neutrinos stay in kinetic equilibrium. This is true in general for ultrarel-
ativistic (m ≪ T ⇒ p = E) noninteracting particles. Let us show this:

At time t1 a phase space element d3p1dV1 around momentum ~p1 contains

dN =
g

(2π)3
f(~p1, t1)d

3p1dV1 (4.28)

particles, where

f(~p1, t1) =
1

e(p1−µ1)/T1 ± 1

is the distribution function at time t1. At time t2 these same dN particles58 are in a phase space
element d3p2dV2 around momentum ~p2 = (a1/a2)~p1. Now how is the distribution function at t2,
given by

g

(2π)3
f(~p2, t2) =

dN

d3p2dV2
,

related to f(~p1, t1)? Since d3p2 = (a1/a2)
3d3p1 and dV2 = (a2/a1)

3dV1, we have

dN =
g

(2π)3
d3p1 dV1

e(p1−µ1)/T1 ± 1
(dN evaluated at t1)

=
g

(2π)3
(a2a1 )

3d3p2 (
a1
a2
)3dV2

e
(
a2
a1
p2 − µ1)/T1 ± 1

(rewritten in terms of
p2, dp2, and dV2)

(4.29)

=
g

(2π)3
d3p2 dV2

e
(p2−

a1
a2
µ1)/

a1
a2
T1 ± 1

=
g

(2π)3
d3p2 dV2

e(p2−µ2)/T2 ± 1
(defining µ2 and T2) ,

where µ2 ≡ (a1/a2)µ1 and T2 ≡ (a1/a2)T1. Thus the particles keep the shape of a thermal
distribution; the temperature and the chemical potential just redshift ∝ a−1. (Exercise: For
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Figure 35: The expansion of the universe increases the volume element dV and decreases the momentum
space element d3p so that the phase space element d3pdV stays constant.

nonrelativistic particles, m ≫ T ⇒ E = m + p2/2m, there is a corresponding, but different
result. Derive this.)

Thus for as long as T ∝ a−1 for the particle soup, the neutrino distribution evolves exactly
as if it were in thermal equilibrium with the soup, i.e., Tν = T . However, annihilations will cause
a deviation from T ∝ a−1. The next annihilation event is the electron-positron annihilation.

The easiest way to obtain the relation between the temperature T and the scale factor a is
to use entropy conservation.

From the fundamental equation of thermodynamics,

E = TS − pV +
∑

µiNi

we have

s =
ρ+ p−∑µini

T
, (4.30)

for the entropy density s ≡ S/V . Since |µi| ≪ T , and the relativistic species dominate, we
approximate

s =
ρ+ p

T
=







7π2

180 gT
3 fermions

2π2

45 gT
3 bosons .

(4.31)

Adding up all the relativistic species and allowing now for the possibility that some species
may have a kinetic temperature Ti, which differs from the temperature T of those species which
remain in thermal equilibrium, we get

ρ(T ) =
π2

30
g∗(T )T

4

s(T ) =
2π2

45
g∗s(T )T

3 , (4.32)

58Actually they are not exactly the same particles, just an equal number of them, since because of their
velocities, particles are moving in and out of the comoving volume element, but because of homogeneity, an equal
number moves in and out.
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where now

g∗(T ) =
∑

bos

gi

(
Ti
T

)4

+
7

8

∑

fer

gi

(
Ti
T

)4

g∗s(T ) =
∑

bos

gi

(
Ti
T

)3

+
7

8

∑

fer

gi

(
Ti
T

)3

, (4.33)

and the sums are over all relativistic species of bosons and fermions.
If some species are “semirelativistic”, i.e., m = O(T ), ρ(T ) and s(T ) are to be calculated

from the integral formulae in Sec. 4.1, and Eq. (4.32) defines g∗(T ) and g∗s(T ).
For as long as all species have the same temperature and p ≈ 1

3ρ, we have

g∗s(T ) ≈ g∗(T ). (4.34)

The electron annihilation, however, forces us to make a distinction between g∗(T ) and g∗s(T ).
According to the second law of thermodynamics the total entropy of the universe never

decreases; it either stays constant or increases. An increase in entropy is always related to a
deviation from thermodynamic equilibrium. It turns out that any entropy production in the
various known processes in the universe is totally insignificant compared to the total entropy of
the universe59, which is huge, and dominated by the relativistic species. Thus it is an excellent
approximation to treat the expansion of the universe as adiabatic, so that the total entropy stays
constant, i.e.,

d(sa3) = 0. (4.35)

This now gives us the relation between a and T ,

g∗s(T )T
3a3 = const. (4.36)

We shall have much use for this formula.
In the electron annihilation g∗s changes from

g∗s = g∗ = 2 + 3.5 + 5.25 = 10.75 (4.37)

γ e± ν

to

g∗s = 2 + 5.25

(
Tν
T

)3

, (4.38)

where
T 3
ν a

3 = const = T 3a3(before annihilation). (4.39)

(since the neutrinos have decoupled, Tν redshifts Tν ∝ a−1). As the number of relativistic
degrees of freedom is reduced, energy density and entropy are transferred from electrons and
positrons to photons, but not to neutrinos, in the annihilation reactions

e+ + e− → γ + γ.

The photons are thus heated (the photon temperature does not fall as much) relative to neutri-
nos.

59There may be exceptions to this in the very early universe, most notably inflation, where essentially all the
entropy of the universe supposedly was produced.
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Figure 36: The evolution of the energy density, or rather, g∗(T ), and its different components through
electron-positron annihilation. Since g∗(T ) is defined as ρ/(π2T 4/30), where T is the photon temperature,
the photon contribution appears constant. If we had plotted ρ/(π2T 4

ν /30) ∝ ρa4 instead, the neutrino
contribution would appear constant, and the photon contribution would increase at the cost of the
electron-positron contribution, which would better reflect what is going on.

Dividing Eq. (4.36) with Eq. (4.39) we get that

g∗s(T )

(
T

Tν

)3

= const

or (Eqs. (4.37) and (4.38))

10.75 = 2

(
T

Tν

)3

+ 5.25 (before = after)

from which we solve the neutrino temperature after e+e−-annihilation,

Tν =

(
4

11

)1
3
T = 0.71377T

g∗s(T ) = 2 + 5.25 · 4

11
= 3.909 (4.40)

g∗(T ) = 2 + 5.25

(
4

11

)4
3

= 3.363.

To be more precise, neutrino decoupling was not complete when e+e−-annihilation began;
so that some of the energy and entropy leaked to the neutrinos. Therefore the neutrino energy
density after e+e−-annihilation is about 1.5% higher (at a given T ) than the above calculation
gives. The neutrino distribution also deviates slightly from kinetic equilibrium. In the above

5.25 =
21

4
=

7

4
Nν , (4.41)
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where Nν = 3 is the number of neutrino species. To correct for the additional energy density
we define an effective number of neutrino species Neff by

ρν ≡ Neff
7

8

(
4

11

)4/3

ργ (4.42)

after e+e−-annihilation. After many years of hard work by theorists it has been calculated that
[25, 26, 6]

Neff ≈ 3.046 . (4.43)

This replaces 5.25 by 7
4Neff = 5.3305 in the above, so that

g∗s(T ) = 2 + 5.3305 · 4

11
= 3.938

g∗(T ) = 2 + 5.3305

(
4

11

)4
3

= 3.384 .

These relations remain true for the photon+neutrino background as long as the neutrinos stay
ultrarelativistic (mν ≪ T ). It used to be the standard assumption that neutrinos are massless
or that their masses are so small that they can be ignored, in which case the above relation
would apply even today, when the photon (the CMB) temperature is T = T0 = 2.7255 K =
0.2349 meV, giving the neutrino background the temperature Tν0 = 0.71377·2.7255 K = 1.945 K
= 0.1676 meV today. However, neutrino oscillation experiments suggest a neutrino mass in the
meV range, so that the neutrino background could be nonrelativistic today. In any case, the
CMB (photon) temperature keeps redshifting as T ∝ a−1, so we can use Eq. (4.36) to relate the
scale factor a and the CMB temperature T , keeping g∗s(T ) = 3.938 all the way to the present
time (and into the future).

Regardless of the question of neutrino masses, these relativistic backgrounds do not dominate
the energy density of the universe any more today (photons + neutrinos still dominate the
entropy density), as we shall discuss in Sec. 4.8.

4.5 Time scale of the early universe

The curvature term K/a2 and dark energy can be ignored in the early universe, so the metric is

ds2 = −dt2 + a2(t)
[
dr2 + r2dϑ2 + r2 sin2 ϑ dϕ2

]
. (4.44)

and the Friedmann equation is

H2 =

(
ȧ

a

)2

=
8πG

3
ρ(T ) =

8πG

3

π2

30
g∗(T )T

4. (4.45)

To integrate this equation exactly we would need to calculate numerically the function g∗(T )
with all the annihilations60. For most of the time, however, g∗(T ) is changing slowly, so we can
approximate g∗(T ) = const. Then T ∝ a−1, ρ ∝ a−4, and H ∝ a−2. This is the radiation-
dominated universe for which we found in Chapter 3 that t = 1

2H
−1 and dphor = 2t = H−1. Thus

in the radiation-dominated early universe the distance to the horizon is equal to the Hubble
length and we get the relation

t =
1

2
H−1 =

√

45

16π3G

T−2

√
g∗

= 0.301g
−1/2
∗

mPl

T 2
=

2.4√
g∗

(
T

MeV

)−2

s (4.46)

60During electron annihilation one needs to calculate g∗s(T ) also, to get Tν(T ), needed for g∗(T ).



4 THERMAL HISTORY OF THE EARLY UNIVERSE 90

between the age of the universe t and the temperature T . Here

mPl ≡
1√
G

= 1.2209 × 1019 GeV

is the Planck mass.61 Thus
a ∝ T−1 ∝ t1/2.

Except for a few special stages (like the QCD transition) the error from ignoring the time-
dependence of g∗(T ) is small, since the time scales of earlier events are so much shorter, so the
approximate result, Eq. (4.46), will be sufficient for us, as far as the time scale is concerned,
when we use for each time t the value of g∗ at that time. But for the relation between a and T ,
we need to use the more exact result, Eq. (4.36). Table 4 gives the times of the different events
in the early universe.

4.6 Neutrino masses

The observed phenomenon of neutrino oscillations, where neutrinos change their flavor (i.e.,
whether they are νe, νµ, or ντ ) periodically, is an indication of differences in the neutrino masses
and therefore the neutrinos cannot all be massless. The oscillation phenomenon is a quantum
mechanical effect, and is due to the mass eigenstates of neutrinos (a quantum state with definite
mass) not being the same as the flavor eigenstates (a quantum state with definite flavor). The
key point is that how the period of oscillation depends on the neutrino energy is related to
a difference in mass squared, ∆m2, between these mass eigenstates. There are two different
observed oscillation phenomena, solar neutrino oscillations (neutrinos coming from the Sun,
produced as νe) and atmospheric neutrino oscillations (neutrinos produced as νµ and νe in the
atmosphere by cosmic rays), and they provide a measurement of two differences:

∆m2
21 ≡ m2

2 −m2
1 ≈ 7.5× 10−5 eV2 (solar)

|∆m2
31| ≡ |m2

3 −m2
1| ≈ |∆m2

32| ≈ 2.5 × 10−3 eV2 (atmospheric) . (4.47)

Two of the mass eigenstates, labeled m1 and m2, are thus close to each other and m1 < m2;
but we do not know whether the third mass eigenstate has a larger or smaller mass. These two
possibilities are called the normal (m1 < m2 < m3) and inverted (m3 < m1 < m2) hierarchies.
The neutrino mixing matrix, which relates the mass and flavor eigenstates, is not known well,
but it appears that m2 is a roughly equal mixture of all three flavors, and if we have the normal
hierarchy, m3 is mostly νµ and ντ .[24]

Since we have a laboratory upper limit m < 1.1 eV for νe, the smallest of these mass eigen-
states must be < 1.1 eV. (Measurement of the mass of a neutrino flavor projects the flavor state
into a mass state, giving m1, m2, or m3 with different probabilities; the upper limit presumably
refers to the mass expectation value of the flavor state.) To have an idea what these ∆m2

mean for neutrino masses, consider three possibilities for the lowest mass eigenstate: m = 0,
m = 100meV, and m = 1.1 eV. This gives Table 3 and we conclude that the sum of the three
neutrino masses must lie between ∼ 0.06 eV and ∼ 3.3 eV, and that if we have the inverted hier-
archy, it should be at least 0.1 eV. The smallest possibility, wherem1 ≪ m2 and

∑
mi = 0.06 eV,

is perhaps the most natural one and is considered as part of the standard model of cosmology
(and the other possibilities are “extensions” of this standard model).

61Another common definition for Planck mass, which we shall call the reduced Planck mass, is

MPl ≡
1√
8πG

= 2.4353 × 1018 GeV
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Normal Inverted
m1 m2 m3

∑
mi m3 m1 m2

∑
mi

0 8.7meV 50meV 59meV 0 50meV 50.7meV 101meV
100meV 100.4meV 112meV 312meV 100meV 111.8meV 112.1meV 324meV
1.1 eV 1.1 eV 1.1 eV 3.3 eV 1.1 eV 1.1 eV 1.1 eV 3.3 eV

Table 3: Possibilities for neutrino masses.

We found in Sec. 4.4 that if neutrinos would have stayed relativistic, they would have tem-
perature Tν0 = 0.1676meV today; but that wold require neutrino masses to be smaller than this.
We see from Table 3 that this is possible for the lightest neutrino mass state. The other two
are nonrelativistic today. If the lowest mass state has m > 1meV, all three are nonrelativistic
today. Nonrelativistic neutrinos are counted as matter.

4.7 Matter-radiation equality

Check numbers in this section!

In cosmological terminology relativistic particles are called radiation and nonrelativistic par-
ticles are called radiation. In the early universe the energy density of radiation is much higher
than that of matter, since when particles become nonrelativistic, most of them are annihilated
by their antiparticles, and only the small residual excess of particles over antiparticles is left
over (with the exception of neutrinos, which become nonrelativistic much later than the other
massive particles). However, since the energy densities are diluted by expansion as ρr ∝ a−4 and
ρm ∝ a−3, eventually the radiation energy density will become smaller than the matter density
and the universe moves from the radiation-dominated era to the matter-dominated era. Let us
find the time teq when this happens, i.e, when ρr = ρm. Since

ρm = ρm0a
−3 and ρr = ρr0a

−4 (4.48)

this should happen when a = aeq ≡ Ωr/Ωm. However, this assumes that (4.48) is exact, so
it does not allow for a particle species becoming nonrelativistic between aeq and the present,
which happens for neutrinos. However, we can get around this problem by considering a reference
universe where neutrinos are massless, so they will remain radiation. We denote with ∗ quantities
in the reference universe which differ from those of the true universe.

While the starlight is more visible to us than the cosmic microwave background, its average
energy density and photon number density in the universe is much less. Thus the photon density
is essentially given by the CMB. The number density of CMB photons today (T0 = 2.7255 K) is

nγ0 =
2ζ(3)

π2
T 3
0 = 410.727 photons/cm3 (4.49)

and the energy density is

ργ0 = 2
π2

30
T 4
0 = 2.70118T0nγ0 = 4.64509 × 10−31kg/m3 . (4.50)

Since the critical density is

ρcr0 =
3H2

0

8πG
= h2 · 1.8783 × 10−26kg/m3 (4.51)

we get for the photon density parameter

Ωγ ≡ ργ0
ρcr0

= 2.4730 × 10−5h−2 . (4.52)
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In the reference universe with massless neutrinos the neutrino energy density today is

ρ∗ν0 =
7Neff

4

π2

30
T 4
ν0 =

7Neff

8

(
4

11

) 4
3

ργ0 , (4.53)

where Neff = 3.046 is the effective number of neutrino species. Thus the neutrino density
parameter is

Ω∗
ν =

7Neff

8

(
4

11

) 4
3

Ωγ = 0.6918Ωγ = 1.7107 × 10−5h−2 , (4.54)

and the total radiation density parameter is

Ω∗
r = Ωγ +Ω∗

ν = 4.1837 × 10−5h−2 ∼ 10−4 . (4.55)

The matter density parameter Ω∗
m of the reference universe differs from that of the true universe

Ωm by not including non-relativistic neutrinos.
The combination Ωih

2 is often denoted by ωi, so we have

ωγ = 2.4730 × 10−5 (4.56)

ω∗
ν = 1.7107 × 10−5 (4.57)

ω∗
r = ωγ + ω∗

ν = 4.1837 × 10−5 . (4.58)

These quantities are determined by T0 and Neff , and are independent of h.
In case all neutrinos species are nonrelativistic today,

ρν0 =

3∑

ν=1

mνnν0 =
3

11
nγ0

∑

mν ⇒ Ων =

∑
mν

h2 94.14 eV
, (4.59)

and Ωm = Ω∗
m + Ων . With the laboratory upper limit

∑
mν . 3.3 eV and h ≈ 0.7, we get

Ων . 0.07.
Assuming all neutrino species were still relativistic at matter-radiation equality, this equality

corresponds to

aeq =
Ω∗
r

Ω∗
m

= 4.1837 × 10−5(Ω∗
m)−1h−2 . (4.60)

For Ω∗
m = 0.3, h = 0.7, this gives aeq = 2.846 × 10−4 or zeq = 3513, and Teq = (1 + zeq)T0 =

9574K = 0.825 eV, Tν,eq = (4/11)1/3 T0 = 0.589 eV. We see that Tν,eq is close to the upper
limit of neutrino masses. We later discuss cosmological constraints for neutrino masses that
give a tighter upper limit, below Tν,eq, so that the assumption of neutrinos being relativistic
at matter-radiation equality appears valid, and also the upper limit to Ων becomes an order of
magnitude smaller, comparable to the accuracy we can determine Ωm from observations, so that
the distinction between Ωm and Ω∗

m becomes insignificant except for high-precision work.
Let us now find the time of matter-radiation equality teq: Radiation and matter energy

densities behaved like a−4 and a−3 from the end of electron-positron annihilation until the
heaviest neutrino species became nonrelativistic. We assume that teq was before the latter event
but so much after the former event that we can ignore the effect of the different behaviour before
it on teq. The we can write the Friedmann equation (3.118) as

(
ȧ

a

)2

= H2
0

(
Ω∗
ra

−4 +Ω∗
ma

−3 +Ωka
−2 +ΩΛ

)

≈ H2
0

(
Ω∗
ra

−4 +Ω∗
ma

−3
)

= H2
0 Ω

∗
m

(
a−3 + aeqa

−4
)
. (4.61)
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The approximation is justified, since we will integrate from a = 0 to a = aeq ≪ 1 so that the
last two terms remain negligible compared to the first two, and thus teq does not depend on Ωk

or ΩΛ. Thus
ada√
aeq + a

= H0

√

Ω∗
mdt (4.62)

so that (integrate by parts)

teq =
H−1

0
√

Ω∗
m

∫ aeq

0

ada√
aeq + a

=
2

3

(

2−
√
2
)

a3/2eq

H−1
0

√
Ω∗
m

≈ 0.3905
(Ω∗

r)
3/2

(Ω∗
m)2

H−1
0 ≈ (Ω∗

mh
2)−2 1024 a . (4.63)

For Ω∗
m = 0.3, h = 0.7 we have teq = 47400 a.

4.8 Baryonic matter

Well before matter-radiation equality the early universe was dominated by the relativistic par-
ticles, and we could forget the nonrelativistic particles when considering the dynamics of the
universe. We followed one species after another becoming nonrelativistic and disappearing from
the picture, until only photons (the cosmic background radiation) and neutrinos were left, and
even the latter of these had stopped interacting.

We now return to the question what happened to the nucleons and the electrons. We found
that they annihilated with their antiparticles when the temperature fell below their respective
rest masses. For nucleons, the annihilation began immediately after they were formed in the
QCD phase transition. There were however slightly more particles than antiparticles, and this
small excess of particles was left over. (This must be so since we observe electrons and nucleons
today). This means that the chemical potential µB associated with baryon number differs from
zero (is positive). Baryon number is a conserved quantity. Since nucleons are the lightest
baryons, the baryon number resides today in nucleons (protons and neutrons; since the proton
is lighter than the neutron, free neutrons have decayed into protons, but there are neutrons in
atomic nuclei, whose mass/baryon is even smaller). The Universe is electrically neutral,62 and
the negative charge lies in the electrons, the lightest particles with negative charge. Therefore
the number of electrons must equal the number of protons.

The number densities etc. of the electrons and the nucleons we get from the equations of
Sec. 4.1. But what is the chemical potential µ in them? For each species, we get µ(T ) from the
conserved quantities.63 Nucleons are baryons and since baryon number is a conserved quantity,
nBV ∝ nBa

3 stays constant, we get the baryon number density

nB = nN − nN̄ = np + nn − np̄ − nn̄ (4.64)

from the conservation law as
nB ∝ a−3 , (4.65)

without having to resort to chemical potentials; those will only be needed when we ask how nB
is separated into np, nn, np̄, and nn̄ (see Chapter 5).

62The Universe must be electrically neutral to high accuracy, since the electromagnetic interaction is almost
forty orders of magnitude stronger than gravity, and yet we see the dynamics of the objects in the universe
dominated by gravity (objects with the same sign of net electric charge should repulse each other; we do not
observe such at large scales).

63In general, the recipe to find how the thermodynamical parameters, temperature and the chemical poten-
tials, evolve in the expanding FRW universe, is to use the conservation laws of the conserved numbers, entropy
conservation, and energy continuity, to find how the number densities and energy densities must evolve. The
thermodynamical parameters will then evolve to satisfy these requirements.
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Let us define the parameter η, the baryon-photon ratio today,

η ≡ nB(t0)

nγ(t0)
. (4.66)

From observations we know that η = 10−10–10−9. It is related to the baryon density parameter
Ωb by

64

η ≡ nB
nγ

=
Ωbρcr0
mNnγ0

=
Ωb

mNnγ0

3H2
0

8πG

= 273.8 × 10−10ωb = 1.457 × 1018
(

ρb0

kgm−3

)

. (4.67)

Here ρb0 is the average density of ordinary, or baryonic, matter today, Ωb ≡ ρb0/ρcr0 is the
baryon density parameter, and ωb ≡ Ωbh

2 .
After electron annihilation nγ ∝ a−3, so we get

nB(T ) = ηnγ = η
2ζ(3)

π2
T 3 for T ≪ me , (4.68)

and for all times (as long as the universe expands adiabatically and the baryon number is
conserved), using Eqs. (4.36), (4.65), and (4.68),

nB(T ) = η
2ζ(3)

π2
g∗s(T )

g∗s(T0)
T 3 . (4.69)

For T < 10 MeV we have in practice

nN̄ ≪ nN and nN ≡ nn + np = nB .

We shall later (Chapter 5) discuss big bang nucleosynthesis—how the protons and neutrons
formed atomic nuclei. Approximately one quarter of all nucleons (all neutrons and roughly the
same number of protons) form nuclei (A > 1) and three quarters remain as free protons. Let
us denote by n∗p and n∗n the number densities of protons and neutrons including those in nuclei
(free or inside atoms), whereas we shall use np and nn for the number densities of free protons
and neutrons. Thus we write instead

n∗N ≡ n∗n + n∗p = nB .

In the same manner, for T < 10 keV we have

ne+ ≪ ne− and ne− = n∗p .

At this time (T ∼ 10 keV → 1 eV) the universe contains a relativistic photon and neutrino
background (“radiation”) and nonrelativistic free electrons, protons, and nuclei (“matter”).

64To relate η accurately to ωb we have to decide what value to use for mN . The most precise determination for
ωb is from the effect of baryon-photon acoustic oscillations on the CMB (Chapter 9) before photon decoupling.
At that time the baryonic matter was about 75% protons and 25% helium. Proton mass is mp = 938.272MeV
and helium nucleus mass divided by four (i.e., mass per nucleon) is 931.995MeV. Electrons are included in the
concept of baryonic matter, so that we have to add me = 0.511MeV for each proton, and half of this to each
nucleon in a helium nucleus. Helium atoms form earlier than hydrogen atoms, but atomic binding energies are
so small that we can ignore them. This gives an average baryonic mass mN ≈ 937.068MeV per nucleon. Fusion
reactions in the later universe will decrease this value somewhat, but the effect is smaller than the effect of helium
formation in BBN.
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The above discussion is in terms of the known particle species. Today there is much indirect
observational evidence for the existence of what is called cold dark matter (CDM), which is
supposedly made out of some yet undiscovered species of particles (this is discussed in Chapter
6). The CDM particles should be very weakly interacting (they decouple early, earlier than
neutrinos, probably near or before the QCD transition), and their energy density contribution
should be small during the T . GeV part of the radiation-dominated era, so they do not affect
the above discussion much. They become nonrelativistic early (T > GeV) and they are supposed
to dominate the matter density of the universe (there appears to be about five times as much
mass in CDM as in baryons). Thus the CDM causes the universe to become matter-dominated
earlier than if the matter consisted of nucleons and electrons only. The CDM will be important
later when we discuss (in Cosmology II) the formation of structure in the universe.

4.9 Recombination

Radiation (photons) and matter (electrons, protons, and nuclei) remained in thermal equilibrium
for as long as there were lots of free electrons. When the temperature became low enough the
electrons and nuclei combined to form neutral atoms (recombination), and the density of free
electrons fell sharply. The photon mean free path grew rapidly and became longer than the
horizon distance. Thus the universe became transparent. Photons and matter decoupled, i.e.,
their interaction was no more able to maintain them in thermal equilibrium with each other.
After this, by T we refer to the photon temperature. Today, these photons are the CMB,
and T = T0 = 2.7255K. (After photon decoupling, the matter temperature fell at first faster
than the photon temperature, but structure formation then heated up the matter to different
temperatures at different places.)

To simplify the discussion of recombination, let us forget other nuclei than protons. (In
reality over 90% (by number) of the nuclei are protons, and almost all the rest are 4He nuclei;
4He recombines earlier but this is not enough to make the universe transparent). Let us denote
the number density of free protons by np, free electrons by ne, and hydrogen atoms by nH.
Since the universe is electrically neutral, np = ne. The conservation of baryon number gives
nB = np + nH. From Sec. 4.1 we have

ni = gi

(
miT

2π

)3/2

e
µi−mi

T . (4.70)

For as long as the reaction
p+ e− ↔ H+ γ (4.71)

is in chemical equilibrium the chemical potentials are related by µp + µe = µH (since µγ = 0).
Using this we get the relation

nH =
gH
gpge

npne

(
meT

2π

)−3/2

eB/T , (4.72)

between the number densities. Here B = mp + me − mH = 13.6 eV is the binding energy of
hydrogen. The numbers of internal degrees of freedom are gp = ge = 2, gH = 4. Outside the
exponent we approximated mH ≈ mp. Defining the fractional ionization

x ≡ np
nB

⇒ nH
npne

=
(1− x)

x2nB
. (4.73)

Using (4.68), Eq. (4.72) becomes

1− x

x2
=

4
√
2 ζ(3)√
π

η

(
T

me

)3/2

eB/T , (4.74)
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Figure 37: Recombination. In the top panel the dashed curve gives the equilibrium ionization fraction
as given by the Saha equation. The solid curve is the true ionization fraction, calculated using the actual
reaction rates (original calculation by Peebles). You can see that the equilibrium fraction is followed at
first, but then the true fraction lags behind. The bottom panel shows the free electron number density
ne and the photon mean free path λγ . The latter is given in comoving units, i.e., the distance is scaled
to the corresponding present distance. This figure is for η = 8.22× 10−10. (Figure by R. Keskitalo.)

the Saha equation for ionization in thermal equilibrium. When B ≪ T ≪ me, the RHS ≪ 1 so
that x ∼ 1, and almost all protons and electrons are free. As temperature falls, eB/T grows, but
since both η and (T/me)

3/2 are ≪ 1, the temperature needs to fall to T ≪ B, before the whole
expression becomes large (∼ 1 or ≫ 1).

The ionization fraction at first follows the equilibrium result of Eq. (4.74) closely, but as this
equilibrium fraction begins to fall rapidly, the true ionization fraction begins to lag behind. As
the number densities of free electrons and protons fall, it becomes more difficult for them to find
each other to “recombine”, and they are no longer able to maintain chemical equilibrium for the
reaction (4.71). To find the correct ionization evolution, x(t), requires then a more complicated
calculation involving the reaction cross section of this reaction. See Figs. 37 and 38.

Although the equilibrium formula is thus not enough to give us the true ionization evolution,
its benefit is twofold:

1. It tells us when recombination begins. While the equilibrium ionization changes slowly,
it is easy to stay in equilibrium. Thus things won’t start to happen until the equilibrium
fraction begins to change a lot.

2. It gives the initial conditions for the more complicated calculation that will give the true
evolution.

A similar situation holds for many other events in the early universe, e.g., big bang nucleosyn-
thesis.

The recombination is not instantaneous. Let us define the recombination temperature Trec
as the temperature where x = 0.5. Now Trec = T0(1 + zrec) since 1 + z = a−1 and the photon
temperature falls as T ∝ a−1. (Since η ≪ 1, the energy release in recombination is negli-
gible compared to ργ ; and after photon decoupling photons travel freely maintaining kinetic
equilibrium with T ∝ a−1.)
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Figure 38: Same as Fig. 37, but with a logarithmic scale for the ionization fraction, and the time
(actually redshift) scale extended to present time (z = 0 or 1 + z = 1). You can see how a residual
ionization x ∼ 10−4 remains. This figure does not include the reionization which happened at around
z ∼ 10. (Figure by R. Keskitalo.)

We get (for η ∼ 10−9)

Trec ∼ 0.3 eV

zrec ∼ 1300.

You might have expected that Trec ∼ B. Instead we found Trec ≪ B. The main reason for this is
that η ≪ 1. This means that there are very many photons for each hydrogen atom. Even when
T ≪ B, the high-energy tail of the photon distribution contains photons with energy E > B so
that they can ionize a hydrogen atom.

The photon decoupling takes place somewhat later, at Tdec ≡ (1+zdec)T0, when the ionization
fraction has fallen enough. We define the photon decoupling time to be the time when the photon
mean free path exceeds the Hubble distance. The numbers are

Tdec ≈ 2974K ∼ 0.256 eV

zdec ≈ 1090.

The decoupling means that the recombination reaction can not keep the ionization fraction on
the equilibrium track, but instead we are left with a residual ionization of x ∼ 10−4.

A long time later (z ∼ 10) the first stars form, and their radiation reionizes the gas that is
left in interstellar space. The gas has now such a low density however, that the universe remains
transparent.

Exercise: Transparency of the universe. We say the universe is transparent when the photon
mean free path λγ is larger than the Hubble length lH = H−1, and opaque when λγ < lH . The photon
mean free path is determined mainly by the scattering of photons by free electrons, so that λγ = 1/(σTne),
where ne = xn∗

e is the number density of free electrons, n∗
e is the total number density of electrons, and

x is the ionization fraction. The cross section for photon-electron scattering is independent of energy
for Eγ ≪ me and is then called the Thomson cross section, σT = 8π

3 (α/me)
2, where α is the fine-

structure constant. In recombination x falls from 1 to 10−4. Show that the universe is opaque before
recombination and transparent after recombination. (Assume the recombination takes place between
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Figure 39: The CMB frequency spectrum measured by the FIRAS instrument on the COBE satellite
[27]. This first spectrum from FIRAS is based on just 9 minutes of measurements. The CMB temperature
estimated from it was T = 2.735±0.060K. The current estimate is T = 2.7255±0.0006K (68% confidence)
[28].

z = 1300 and z = 1000. You can assume a matter-dominated universe—see below for parameter values.)
The interstellar matter gets later reionized (to x ∼ 1) by the light from the first stars. What is the earliest
redshift when this can happen without making the universe opaque again? (You can assume that most
(∼ all) matter has remained interstellar). Calculate for Ωm = 1.0 and Ωm = 0.3 (note that Ωm includes
nonbaryonic matter). Use ΩΛ = 0, h = 0.7 and η = 6× 10−10.

Exercise: Energy density ratios at photon decoupling. Find the energy density ratios ρm/ρr
(matter and radiation) and ρb/ργ (baryons and photons) at the time when the cosmic microwave back-
ground was formed (1 + z = 1091), in terms of the cosmological parameters Ω∗

m, Ωb, and h, assuming
neutrinos were still relativistic then. Give the numerical answer, not just the equations.

The photons in the cosmic background radiation have thus traveled without scattering
through space all the way since we had T = Tdec = 1091T0. When we look at this cosmic
background radiation we thus see the universe (its faraway parts near our horizon) as it was at
that early time. Because of the redshift, these photons which were then largely in the visible part
of the spectrum, have now become microwave photons, so this radiation is now called the cosmic
microwave background (CMB). It still maintains the kinetic equilibrium distribution. This was
confirmed to high accuracy by the FIRAS (Far InfraRed Absolute Spectrophotometer) instru-
ment on the COBE (Cosmic Background Explorer) satellite in 1989. John Mather received the
2006 Physics Nobel Prize for this measurement of the CMB frequency (photon energy) spectrum
(see Fig. 39).65

We shall now, for a while, stop the detailed discussion of the history of the universe at these
events, recombination and photon decoupling. The universe is about 400 000 years old now.
What will happen next, is that the structure of the universe (galaxies, stars) begins to form, as
gravity begins to draw matter into overdense regions. Before photon decoupling the radiation
pressure from photons prevented this. But before going to the physics of structure formation
(discussed in Cosmology II) we shall discuss some earlier events (big bang nucleosynthesis, . . . )
in more detail.

65He shared the Nobel Prize with George Smoot, who got it for the discovery of the CMB anisotropy with the
DMR instrument on the same satellite. The CMB anisotropy will be discussed in Cosmology II.



4 THERMAL HISTORY OF THE EARLY UNIVERSE 99

Electroweak Transition T ∼ 100 GeV t ∼ 20 ps
QCD Transition T ∼ 150 MeV t ∼ 20µs
Neutrino Decoupling T ∼ 1 MeV t ∼ 1 s
Electron-Positron Annihilation T < me ∼ 0.5 MeV t ∼ 10 s
Big Bang Nucleosynthesis T ∼ 50–100 keV t ∼ 10 min
Matter-Radiation Equality T ∼ 0.8 eV ∼ 9000 K t ∼ 60000 yr
Recombination + Photon Decoupling T ∼ 0.3 eV ∼ 3000 K t ∼ 370000 yr

Table 4: Early universe events.

4.10 The Dark Age

How would the universe after recombination appear to an observer with human eyes? At first
one would see a uniform red glow everywhere, since the wavelengths of the CMB photons are in
the visible range. (It would also feel rather hot, 3000 K). As time goes on this glow gets dimmer
and dimmer as the photons redshift towards the infrared, and after a few million years it gets
completely dark, as the photons become invisible infrared (heat) radiation. There are no stars
yet. This is often called the dark age of the universe. It lasts several hundred million years.
While it lasts, it gradually gets cold. In the dark, however, masses are gathering together. And
then, one by one, the first stars light up.

The decoupling of photons from baryonic matter (electrons, protons, nuclei, ions, atoms)
is actually very asymmetric, since there are over 109 photons for each nucleus. The photon
decoupling redshift z = 1090 is when photons decouple from baryons. After that, most photons
will never scatter. However, some do, and these are enough to keep the temperature of the
baryonic matter the same as photon temperature down to z ∼ 200. After that, the decoupling
is complete also from the baryonic point of view.66 The baryonic matter (mainly hydrogen and
helium gas) remains in internal kinetic equilibrium, but its temperature Tb falls now as a−2

(momentum redshifts as a−1, and for nonrelativistic particles kinetic energy is p2/2m and mean
kinetic energy is related to temperature by 〈Ek〉 = 3T/2). So at z ∼ 20, the baryon temperature
is only a few K, about 1/10 of the photon temperature then. This is their coldest moment, since
sometime after z ∼ 20 the first stars form and begin to heat up the interstellar gas.

It seems that the star-formation rate peaked between redshifts z = 1 and z = 2. Thus
the universe at a few billion years was brighter than it is today, since the brightest stars are
short-lived, and the galaxies were closer to each other then.67

What you will need from Chapter 4:

• The concepts of phase space, state density in phase spece, distribution function, chemical
potential, temperature, kinetic/thermal/chemical equilibrium (Sec. 4.1)

• Difference between fermions and bosons (Sec. 4.1)

• Ultrarelativistic and non-relativistic limits and particle-antiparticle annihilation (Sec. 4.1)

• The effective number of degrees of freedom: g∗(T ), g∗p(T ), and g∗s(T ) (Secs. 4.2 and 4.4)

66There is a similar asymmetry in neutrino decoupling. From the neutrino point of view, the decoupling
temperature is T ∼ 3MeV, from the baryonic point of view T ∼ 0.8MeV.

67To be fair, galaxies seen from far away are rather faint objects, difficult to see with the unaided eye. In fact,
if you were suddenly transported to a random location in the present universe, you might not be able to see
anything. Thus, to enjoy the spectacle, our hypothetical observer should be located within a forming galaxy, or
equipped with a good telescope.
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• EW transition, QCD transition, neutrino decoupling, electron-positron annihilation, BBN,
matter-radiation equality, recombination, photon decoupling, and when they take place

• Under what conditiojs free-streaming particles stay in kinetic equilibrium (Sec. 4.4)

• The relation between scale factor and temperature (Sec. 4.4)

• Time scale of the early universe (Sec. 4.5)

• The relation between baryon number density and temperature (Sec. 4.8)

• What do we know about neutrino masses (Sec. 4.6)

• How to derive the Saha equation (Sec. 4.9)

• What do we mean by recombination and photon decoupling (Sec. 4.9)

• What was the dark age of the Universe: when was it and what happened during it
(Sec. 4.10)

• How to relate quantities in the present universe to those of the early universe, e.g., how
to calculate the time and temperature of matter-radiation equality from cosmological pa-
rameters describing the present universe (Sec. ??)



5 BIG BANG NUCLEOSYNTHESIS 101

5 Big Bang Nucleosynthesis

About this chapter: We now return to something that we skipped over in the previous
chapter. Big Bang Nucleosynthesis (BBN) took place (soon) after neutrino decoupling and
electron-positron annihilation and (well) before matter-radiation equality and recombination,
but it is a topic large and complicated enough to deserve a chapter of its own; and it is better to
discuss recombination first, because recombination is like a simplified version of BBN. The first
half of the chapter, Secs. 5.1–5.5 is quantitative, leading to a prediction of primordial helium
abundance, and you should study it with enough attention that you can then reproduce the
calculations. The remaining half discusses the production of the other light elements in BBN,
which is more complicated to calculate, so therefore we only give a qualitative discussion with
some graphs showing the quantitative. The chapter ends with comparison to observations, which
allows us to determine the value of the free parameter in BBN, the present baryon/photon ratio
η, or equivalently, the reduced baryon density parameter ωb.

One quarter (by mass) of the baryonic matter in the universe is helium. Heavier elements
make up a few per cent. The rest, i.e., the major part, is hydrogen.

The building blocks of atomic nuclei, the nucleons, or protons and neutrons, formed in the
QCD transition at T ∼ 150MeV and t ∼ 20µs. The protons are hydrogen (1H) nuclei.

Elements (their nuclei) heavier than helium, and also some of the helium, have mostly been
produced by stars in different processes (see Fig. 40). However, the amount of helium and the
presence of significant amounts of the heavier hydrogen isotope, deuterium (2H), in the universe
cannot be understood by these astrophysical mechanisms. It turns out that 2H, 3He, 4He, and
a significant part of 7Li, were mainly produced already in the big bang, in a process we call Big
Bang Nucleosynthesis (BBN).

The nucleons and antinucleons annihilated each other soon after the QCD transition, and
the small excess of nucleons left over from annihilation did not have a significant effect on the
expansion and thermodynamics of the universe until much later (t ∼ teq = Ω−2

m h−41000 a), when
the universe became matter-dominated. The ordinary matter in the present universe comes from
this small excess of nucleons. Let us now consider what happened to it in the early universe. We
shall focus on the period when the temperature fell from T ∼ 10MeV to T ∼ 10 keV (t ∼ 10ms
– few h).

5.1 Equilibrium

The total number of nucleons stays constant due to baryon number conservation. This baryon
number can be in the form of protons and neutrons or atomic nuclei. Weak nuclear reactions
may convert neutrons and protons into each other and strong nuclear reactions may build nuclei
from them.

During the period of interest the nucleons and nuclei are nonrelativistic (T ≪ mp). The
proton and neutron masses are

mp = 938.272MeV and mn = 939.565MeV . (5.1)

Assuming thermal equilibrium we have

ni = gi

(
miT

2π

)3/2

e
µi−mi

T (5.2)

for the number density of nucleus type i. If the nuclear reactions needed to build nucleus i (with
mass number A and charge Z) from the nucleons,

(A− Z)n + Zp ↔ i ,
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Figure 40: Astronomy Picture of the Day, 2017 October 24 (https://apod.nasa.gov/apod/
ap171024.html: ”Explanation: The hydrogen in your body, present in every molecule of water, came
from the Big Bang. There are no other appreciable sources of hydrogen in the universe. The carbon in
your body was made by nuclear fusion in the interior of stars, as was the oxygen. Much of the iron in your
body was made during supernovas of stars that occurred long ago and far away. The gold in your jewelry
was likely made from neutron stars during collisions that may have been visible as short-duration gamma-
ray bursts or gravitational wave events. Elements like phosphorus and copper are present in our bodies
in only small amounts but are essential to the functioning of all known life. The featured periodic table is
color coded to indicate humanity’s best guess as to the nuclear origin of all known elements. The sites of
nuclear creation of some elements, such as copper, are not really well known and are continuing topics of
observational and computational research.”) In more scientific terms: During most of their lifetime (the
main sequence phase), stars are powered by nuclear fusion of hydrogen into helium in their cores. When
hydrogen is exhausted in the core they begin to fuse helium into heavier elements (the giant phase). How
far this proceeds depends on the mass of the star. In the heaviest stars fusion proceeds all the way to
iron (56Fe). Beyond iron, fusion will no longer produce energy, since 56Fe maximizes binding energy per
nucleon. Heavier elements are thus produced in processes which need an energy source to power them.
Some of the energy released by nuclear fusion in the stellar cores goes into production of these heavier
elements in the giant phase. When the fusion energy is exhausted the star “dies”: lighter stars collapse
into white dwarfs, heavier stars explode—this explosion is called a supernova. A supernova begins with
a collapse as the pressure produced by the fusion longer supports the outer parts. This brings in and
raises the temperature of unburnt nuclear fuel from the outer parts. The fusion of this material and the
gravitational energy from the collapse release a lot of energy in a short time causing the explosion, which
is one source of heavier elements. Also white dwarfs may become supernovae later, if they accrete more
mass from companion stars. In all these dying/exploding cases, the outer parts of the stars are ejected
and mix into the interstellar material. In a supernova explosion of a massive star the inner part collapses
into a neutron star. Collisions of these neutron stars are another source of heavy elements. The main type
of nuclear reaction responsible for the production of the heavier elements beyond iron is neutron capture.
Since neutrons are neutral it is easy for them to penetrate a nucleus and raise the mass number of the
nucleus. The resulting new nucleus may be unstable so that it will β decay, i.e, the neutron releases an
electron (and an antineutrino) and becomes a proton. In a slow neutron capture process (s-process) this
decay happens before another neutron is captured, and in a rapid neutron capture process (r-process)
many neutrons are captured before such decay. Heavy elements are produced by the s-process in the
giant phase where fusion reactions provide the required energetic neutrons. The r-process requires a high
density of neutrons. It is thought that the main site for the r-process is provided by collisions of neutron
stars. Beryllium and boron are mainly produced by cosmic rays breaking up heavier nuclei in interstellar
space (cosmic ray spallation).
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occur at sufficiently high rate to maintain chemical equilibrium, we have

µi = (A− Z)µn + Zµp (5.3)

for the chemical potentials. Since for free nucleons

np = 2

(
mpT

2π

)3/2

e
µp−mp

T

nn = 2

(
mnT

2π

)3/2

e
µn−mn

T , (5.4)

we can express ni in terms of the neutron and proton densities,

ni = giA
3
2 2−A

(
2π

mNT

) 3
2
(A−1)

nZp n
A−Z
n eBi/T , (5.5)

where
Bi ≡ (A− Z)mn + Zmp −mi (5.6)

is the binding energy of the nucleus. Here we have approximated mp ≈ mn ≈ mi/A outside the
exponent, and denoted it by mN (“nucleon mass”).

AZ B(MeV) B/A(MeV) g

2H 2.2245 1.11 3
3H 8.4820 2.83 2
3He 7.7186 2.57 2
4He 28.2970 7.07 1
6Li 31.9965 5.33 3
7Li 39.2460 5.61 4
7Be 37.6026 5.37 1

12C 92.1631 7.68 1
56Fe 492.2623 8.79 1

Table 1. Some of the lightest nuclei (+ iron) and their binding energies.

The different number densities add up to the total baryon number density

∑

Aini = nB . (5.7)

The baryon number density nB can be expressed in terms of photon density

nγ =
2

π2
ζ(3)T 3 (5.8)

and the baryon/photon -ratio
nB
nγ

=
g∗s(T )

g∗s(T0)
η (5.9)

as

nB =
g∗s(T )

g∗s(T0)
η
2

π2
ζ(3)T 3. (5.10)

After electron-positron annihilation g∗s(T ) = g∗s(T0) and nB = ηnγ . Here η is the present
baryon/photon ratio. It can be estimated from various observations in a number of ways. It’s
order of magnitude is 10−9.
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We define the mass fraction of nucleus i as

Xi ≡
Aini
nB

so that
∑

Xi = 1 . (5.11)

The equilibrium mass fractions are, from Eq. (5.5),

Xi =
1

2
XZ

p X
A−Z
n giA

5
2 ǫA−1eBi/T (5.12)

where

ǫ ≡ 1

2

(
2π

mNT

)3/2

nB =
1

π2
ζ(3)

(
2πT

mN

)3/2 g∗s(T )

g∗s(T0)
η ∼

(
T

mN

)3/2

η.

The factors which change rapidly with T are ǫA−1eBi/T . For temperatures mN ≫ T & Bi we
have eBi/T ∼ 1 and ǫ ≪ 1. Thus Xi ≪ 1 for others (A > 1) than protons and neutrons. As
temperature falls, ǫ becomes even smaller and at T ∼ Bi we have Xi ≪ 1 still. The temperature
has to fall below Bi by a large factor before the factor eBi/T wins and the equilibrium abundance
becomes large. We calculate below that, e.g., for 4He this happens at T ∼ 0.3MeV, and for 2H
at T ∼ 0.07MeV. Thus we have initially only free neutrons and protons in large numbers.

5.2 Neutron-proton ratio

What can we say about np and nn? Protons and neutrons are converted into each other in the
weak reactions

n + νe ↔ p + e−

n + e+ ↔ p + ν̄e (5.13)

n ↔ p + e− + ν̄e.

If these reactions are in equilibrium, µn + µνe = µp + µe, and the neutron/proton ratio is

nn
np

= e−Q/T+(µe−µνe )/T , (5.14)

where Q ≡ mn −mp = 1.293MeV.
We need now some estimate for the chemical potentials of electrons and electron neutrinos.

The universe is electrically neutral68, so the net number of electrons (ne− − ne+) equals the
number of protons, and µe can be calculated exactly in terms of η and T . We leave the exact
calculation as an exercise, but give below a rough estimate for the ultrarelativistic limit (T >
me):

In the ultrarelativistic limit

ne− − ne+ =
2T 3

6π2

(

π2
(µe
T

)

+
(µe
T

)3
)

= n∗p ≈ nB ≈ ηnγ = η
2

π2
ζ(3)T 3. (5.15)

Here n∗p includes the protons inside nuclei. Since η is small, we must have µe ≪ T , and we can
drop the (µe/T )

3 term to get
µe
T

≈ 6

π2
ζ(3)η. (5.16)

Thus µe/T ∼ η ∼ 10−9. The nonrelativistic limit can be done in a similar manner (exercise).
It turns out that µe rises as T falls, and somewhere between T = 30 keV and T = 10 keV µe
becomes larger than T , and, in fact, comparable to me.

68Electromagnetism is stronger than gravity by a factor of about 1038 so that the possible relative excess in
positive or negative charge should be much less than one per this number or otherwise it would have been noticed.
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For T & 30 keV, µe ≪ T , and we can drop the µe in Eq. (5.14).
Since we cannot detect the cosmic neutrino background, we don’t know the neutrino chemical

potentials. Usually it is assumed that also all three µνi ≪ T , so that the difference in the number
of neutrinos and antineutrinos is small. Thus we ignore both µe and µνe , so that µp = µn and
the equilibrium neutron/proton ratio is

nn
np

= e−Q/T . (5.17)

(This is not valid for T . 30 keV, since µe is no longer small, but we shall use this formula only
at higher temperatures as will be seen below.)

For T > 0.3MeV, we still have Xn +Xp ≈ 1, so the equilibrium abundances are

Xn =
e−Q/T

1 + e−Q/T
and Xp =

1

1 + e−Q/T
. (5.18)

Nucleons follow these equilibrium abundances until neutrinos decouple at T ∼ 1MeV, shutting
off the weak n ↔ p reactions. After this the neutrons decay into protons, so that

Xn(t) = Xn(t1)e
−(t−t1)/τn , (5.19)

where τn = 878.4 ± 0.5 s is the mean lifetime of a free neutron[30].69 (The half-life is τ1/2 =
(ln 2)τn.)

5.3 Bottlenecks

Using (5.5), (5.17), and (5.7)70, we get all equilibrium abundances as a function of T (they also
depend on the value of the parameter η). There are two items to note, however:

1. The normalization condition, Eq. (5.7), includes all nuclei up to uranium etc. Thus we
would get a huge polynomial equation from which to solve Xp. (After one has Xp, one
gets the rest easily from (5.5) and (5.17).)

2. In practice we don’t have to care about the first item, since as the temperature falls the
nuclei no longer follow their equilibrium abundances. The reactions are in equilibrium
only at high temperatures, when the other equilibrium abundances except Xp and Xn are
small, and we can use the approximation Xn +Xp = 1.

In the early universe the baryon density is too low and the time available is too short for
reactions involving three or more incoming nuclei to occur at any appreciable rate. The heavier
nuclei have to be built sequentially from lighter nuclei in two-particle reactions, so that deuterium
is formed first in the reaction

n + p → d + γ.

Only when deuterons are available can helium nuclei be formed, and so on. This process has
“bottlenecks”: the lack of sufficient densities of lighter nuclei hinders the production of heavier
nuclei, and prevents them from following their equilibrium abundances.

As the temperature falls, the equilibrium abundances rise fast. They become large later
for nuclei with small binding energies. Since deuterium is formed directly from neutrons and
protons it can follow its equilibrium abundance as long as there are large numbers of free neutrons

69This value given for τn by the Particle Data Group has recently changed by much more than the claimed
accuracy. From 2006 to 2010 the given value was 885.7 ± 0.8 s.

70For np and nn we know just their ratio, since we do not know µp and µn, only that µp = µn. Therefore this
extra equation is needed to solve all ni.
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available. Since the deuterium binding energy is rather small, the deuterium abundance becomes
large rather late (at T < 100 keV). Therefore heavier nuclei with larger binding energies, whose
equilibrium abundances would become large earlier, cannot be formed. This is the deuterium
bottleneck. Only when there is lots of deuterium (Xd ∼ 10−3), can helium be produced in large
numbers.

The nuclei are positively charged and there is thus an electromagnetic repulsion between
them. The nuclei need thus large kinetic energies to overcome this Coulomb barrier and get
within the range of the strong interaction. Thus the cross sections for these fusion reactions fall
rapidly with energy and the nuclear reactions are “shut off” when the temperature falls below
T ∼ 30 keV. Thus there is less than one hour available for nucleosynthesis. Because of additional
bottlenecks (e.g., there are no stable nuclei with A = 5 or 8) and the short time available, only
very small amounts of elements heavier than helium are formed.

5.4 Calculation of the helium abundance

Let us now calculate the numbers. We saw that because of the deuterium bottleneck, Xn+Xp ≈ 1
holds until T ∼ 0.1MeV. Until then, we get Xn and Xp at first from (5.18) and then from (5.19).
In reality, neutrino decoupling and thus the shift from behavior (5.18) to behavior (5.19) is not
instantaneous, but an approximation where one takes it to be instantaneous at time t1 when
T = 0.8MeV, so that

Xn(t1) = 0.1657 (5.20)

gives a fairly accurate final result.
Deuterium has Bd = 2.22MeV, and we get ǫeBd/T = 1 at T = Td ≡ 0.06MeV–0.07MeV

(solved by iteration; assuming η = 10−10 − 10−8), so the deuterium abundance becomes large
near this temperature. Since 4He has a much higher binding energy, B4 = 28.3MeV, the
corresponding situation ǫ3eB4/T = 1 occurs at a higher temperature T4 ∼ 0.3MeV. But we
noted earlier that only deuterium stays close to its equilibrium abundance once it gets large.
Helium begins to form only when there is sufficient deuterium available, in practice slightly
above Td. Helium forms then rapidly. The available number of neutrons sets an upper limit to
4He production. Since helium has the highest binding energy per nucleon (of all isotopes below
A=12), almost all neutrons end up in 4He, and only small amounts of the other light isotopes,
2H, 3H, 3He, 7Li, and 7Be, are produced.

The Coulomb barrier shuts off the nuclear reactions before there is time for heavier nuclei
(A > 8) to form. One gets a fairly good approximation for the 4He production by assuming
instantaneous nucleosynthesis at T = Tns ∼ 1.1Td ∼ 70 keV, with all neutrons ending up in 4He,
so that

X4 ≈ 2Xn(Tns). (5.21)

After electron annihilation (T ≪ me = 0.511MeV) the time-temperature relation is

t = 0.301g
−1/2
∗

mPl

T 2
, (5.22)

where g∗ = 3.384. Since most of the time in the temperature interval T = 0.8MeV–0.07MeV is
spent at the lower part of this temperature range, this formula gives a good approximation for
the time

tns − t1 = 266.0 s (in reality 264.3 s).

Thus we get for the final 4He abundance

X4 = 2Xn(t1)e
−(tns−t1)/τn = 24.5 %. (5.23)

Accurate numerical calculations, using the reaction rates of the relevant weak and strong reaction
rates give X4 = 21–26 % (for η = 10−10 − 10−9).
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As a calculation of the helium abundance X4 the preceding calculation is of course a cheat,
since we have used the results of those accurate numerical calculations to infer that we need to
use T = 0.8MeV as the neutrino decoupling temperature, and Tns = 1.1Td as the “instantaneous
nucleosynthesis” temperature, to best approximate the correct behavior. However, it gives us
a quantitative description of what is going on, and an understanding of how the helium yield
depends on various things.

Exercise: Using the preceding calculation, find the dependence of X4 on η, i.e., calculate dX4/dη.

5.5 Why so late?

Let us return to the question, why the temperature has to fall so much below the binding energy
before the equilibrium abundances become large. From the energetics one might conclude that
when typical kinetic energies, 〈Ek〉 ≈ 3

2T for nuclei and 〈E〉 ≈ 2.7T for photons, are smaller than
the binding energy, it would be easy to form nuclei but difficult to break them. Above we saw
that the smallness of the factor ǫ ∼ (T/mN)

3/2η is the reason why this is not so. Here η ∼ 10−9

and (T/mN)
3/2 ∼ 10−6 (for T ∼ 0.1MeV). The main culprit is thus the small baryon/photon

ratio. Since there are 109 photons for each baryon, there is a sufficient amount of photons who
can disintegrate a nucleus in the high-energy tail of the photon distribution, even at rather low
temperatures. One can also express this result in terms of entropy. A high photon/baryon ratio
corresponds to a high entropy per baryon. High entropy favors free nucleons.

5.6 The most important reactions

In reality, neither neutrino decoupling, nor nucleosynthesis, are instantaneous processes. Ac-
curate results require a rather large numerical computation where one uses the cross sections
of all the relevant weak and strong interactions. These cross sections are energy-dependent.
Integrating them over the energy and velocity distributions and multiplying with the relevant
number densities leads to temperature-dependent reaction rates. The most important reactions
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are the weak n↔ p reactions (5.13) and the following strong reactions71(see also Fig. 41):

p + n → 2H + γ
2H + p → 3He + γ
2H + 2H → 3H + p
2H + 2H → 3He + n

n + 3He → 3H + p

p + 3H → 4He + γ
2H + 3H → 4He + n
2H + 3He → 4He + p
4He + 3He → 7Be + γ
4He + 3H → 7Li + γ
7Be + n → 7Li + p
7Li + p → 4He + 4He

The cross sections of these strong reactions can’t be calculated from first principles, i.e.,
from QCD, since QCD is too difficult. Instead one uses cross sections measured in laboratory.
The cross sections of the weak reactions (5.13) are known theoretically (there is one parameter
describing the strength of the weak interaction, which is determined experimentally, in practice
by measuring the lifetime τn of free neutrons). The relevant reaction rates are now known
sufficiently accurately, so that the nuclear abundances produced in BBN (for a given value of
η) can be calculated with better accuracy than the present abundances can be measured from
astronomical observations.

The reaction chain proceeds along stable and long-lived (compared to the nucleosynthesis
timescale—minutes) isotopes towards larger mass numbers. At least one of the two incoming
nuclei must be an isotope which is abundant during nucleosynthesis, i.e., n, p, 2H or 4He. The
mass numbers A = 5 and A = 8 form bottlenecks, since they have no stable or long-lived

71The reaction chain that produces helium from hydrogen in BBN is not the same that occurs in stars. The
conditions is stars are different: there are no free neutrons and the temperatures are lower, but the densities are
higher and there is more time available. In addition, second generation stars contain heavier nuclei (C,N,O) which
can act as catalysts in helium production. Some of the most important reaction chains in stars are ([31], p. 251):

1. The proton-proton chain

p + p → 2H+ e+ + νe
2H+ p → 3He + γ

3He + 3He → 4He + p + p,

2. and the CNO-chain

12C+ p → 13N+ γ
13N → 13C + e+ + νe

13C+ p → 14N+ γ
14N+ p → 15O+ γ

15O → 15N+ e+ + νe
15N+ p → 12C + 4He.

The cross section of the direct reaction d+d → 4He+γ is small (i.e., the 3H+p and 3He+n channels dominate
d+d →), and it is not important in either context.

The triple-α reaction 4He+ 4He+ 4He → 12C, responsible for carbon production in stars, is also not important
during big bang, since the density is not sufficiently high for three-particle reactions to occur (the three 4He nuclei
would need to come within the range of the strong interaction within the lifetime of the intermediate state, 8Be,
2.6×10−16 s). (Exercise: calculate the number and mass density of nucleons at T = 1MeV.)



5 BIG BANG NUCLEOSYNTHESIS 109

Figure 41: The 12 most important nuclear reactions in big bang nucleosynthesis.

isotopes. These bottlenecks cannot be crossed with n or p. The A = 5 bottleneck is crossed
with the reactions 4He+3He and 4He+3H, which form a small number of 7Be and 7Li. Their
abundances remain so small that we can ignore the reactions (e.g., 7Be + 4He → 11C + γ and
7Li + 4He → 11B+ γ) which cross the A = 8 bottleneck. Numerical calculations also show that
the production of the other stable lithium isotope, 6Li is several orders of magnitude smaller
than that of 7Li.

Thus BBN produces the isotopes 2H, 3H, 3He, 4He, 7Li and 7Be. Of these, 3H (half life 12.3
a) and 7Be (53 d) are unstable and decay after nucleosynthesis into 3He and 7Li. (7Be actually
becomes 7Li through electron capture 7Be + e− → 7Li + νe.)

In the end BBN has produced cosmologically significant (compared to present abundances)
amounts of the four isotopes, 2H, 3He, 4He and 7Li (the fifth isotope 1H= p we had already before
BBN). Their production in the BBN can be calculated, and there is only one free parameter,
the baryon/photon ratio η.

5.7 BBN as a function of time

Let us follow nucleosynthesis as a function of time (or decreasing temperature). See Figs. 42
and 43. 2H and 3H are intermediate states, through which the reactions proceed towards 4He.
Therefore their abundance first rises, is highest at the time when 4He production is fastest, and
then falls as the baryonic matter ends in 4He. 3He is also an intermediate state, but the main
channel from 3He to 4He is via 3He+n→3H+p , which is extinguished early as the free neutrons
are used up. Therefore the abundance of 3He does not fall the same way as 2H and 3H. The
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Figure 42: The time evolution of the n, 2H (written as d) and 4He abundances during BBN. Notice how
the final 4He abundance is determined by the n abundance before nuclear reactions begin. Only a small
part of these neutrons decay or end up in other nuclei. Before becoming 4He, all neutrons pass through
2H. To improve the visibility of the deuterium curve, we have plotted it also as multiplied by a factor of
50. This figure is for η = 6 × 10−10. The time at T = (90, 80, 70, 60) keV is (152, 199, 266, 367) s. Thus
the action peaks at about t = 4min. The other abundances (except p) remain so low, that to see them
the figure must be redrawn in logarithmic scale (see Fig. 43). From [32].

Figure 43: Time evolution of the abundances of the light isotopes during BBN. From
http://www.astro.ucla.edu/~wright/BBNS.html
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Figure 44: The primordial abundances of the light elements as a function of η. For 4He we give the
mass fraction, for D = 2H, 3He, and 7Li the number ratio to H = 1H, i.e., ni/nH.

abundance of 7Li also rises at first and then falls via 7Li+p→4He+4He. Since 4He has a higher
binding energy per nucleon, B/A, than 7Li and 7Be have, the nucleons in them also want to
return into 4He. This does not happen to 7Be, however, since, just like for 3He, the free neutrons
needed for the reaction 7Be+n→4He+4He have almost disappeared near the end.

5.8 Primordial abundances as a function of the baryon-to-photon ratio

Let us then consider BBN as a function of η (see Fig. 44). The larger is η, the higher is the
number density of nucleons. The reaction rates are faster and the nucleosynthesis can proceed
further. This mean that a smaller fraction of “intermediate nuclei”, 2H, 3H, and 7Li are left
over—the burning of nuclear matter into 4He is “cleaner”. Also the 3He production falls with
increasing η. However, 7Be production increases with η. In the figure we have plotted the final
BBN yields, so that 3He is the sum of 3He and 3H, and 7Li is the sum of 7Li and 7Be. The
complicated shape of the 7Li(η) curve is due to these two contributions: 1) For small η we get
lots of “direct” 7Li, whereas 2) for large η there is very little “direct” 7Li left, but a lot of 7Be is
produced. In the middle, at η ∼ 3× 10−10, there is a minimum of 7Li production where neither
way is very effective.
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The 4He production increases with η, since with higher density nucleosynthesis begins earlier
when there are more neutrons left.

5.9 Comparison with observations

The abundances of the various isotopes calculated from BBN can be compared to the observed
abundances of these elements. This is one of the most important tests of the big bang theory.
A good agreement is obtained for η in the range η = 5.8–6.6× 10−10 . This was the best method
to estimate the amount of ordinary matter in the universe, until the advent of accurate CMB
data, first from the WMAP satellite starting in 2003 and then from the Planck satellite data
starting in 2013.72

The comparison of calculated abundances with observed abundances is complicated due to
chemical evolution. The abundances produced in BBN are the primordial abundances of these
isotopes. The first stars form with this composition. In stars, further fusion reactions take place
and the composition of the star changes with time. Towards the end of its lifetime, the star
ejects its outer parts into interstellar space, and this processed material mixes with primordial
material. From this mixed material later generation stars form, and so on.

The observations of present abundances are based on spectra of interstellar clouds and stel-
lar surfaces. To obtain the primordial abundances from the present abundances the effect of
chemical evolution has to be estimated. Since 2H is so fragile (its binding energy is so low), there
is hardly any 2H production in stars, rather any pre-existing 2H is destroyed early on in stars.
Therefore any interstellar 2H is primordial. The smaller the fraction of processed material in an
interstellar cloud, the higher its 2H abundance should be. Thus all observed 2H abundances are
lower limits to the primordial 2H abundance.73 Conversely, stellar production increases the 4He
abundance. Thus all 4He observations are upper limits to the primordial 4He. Moreover, stellar
processing produces heavier elements, e.g., C, N, O, which are not produced in the BBN. Their
abundance varies a lot from place to place, giving a measure of how much chemical evolution
has happened in various parts of the universe. Plotting 4He vs. these heavier elements one can
extrapolate the 4He abundance to zero chemical evolution to obtain the primordial abundance.
Since 3He and 7Li are both produced and destroyed in stellar processing, it is more difficult to
make estimates of their primordial abundances based on observed present abundances.

Qualitatively, one can note two clear signatures of big bang in the present universe:

1. All stars and gas clouds observed contain at least 23% 4He. If all 4He had been produced
in stars, we would see similar variations in the 4He abundance as we see, e.g., for C, N, and
O, with some regions containing just a few % or even less 4He. This universal minimum
amount of 4He must signify a primordial abundance produced when matter in the universe
was uniform.

2. The existence of significant amounts of 2H in the universe is a sign of BBN, since there
are no other known astrophysical sources of large amounts of 2H.

Quantitatively, the observed abundances of all the BBN isotopes, 2H, 3He, 4He and 7Li point
towards the range η = 1.5–7 × 10−10. See Fig. 45. Since 2H has the steepest dependence on
η, it can determine η the most accurately. The best 2H observations for this purpose are from
the absorption spectra of distant (high-z) quasars. This absorption is due to gas clouds that lie

72Many cosmological parameters can be estimated from the CMB anisotropy, as will be discussed in Cosmology
II. The Planck estimate[6] is ωb = 0.02242 ± 0.00014, or η = (6.14 ± 0.03) × 10−10.

73This does not apply to sites which have been enriched in 2H due to a separation of 2H from 1H. Deuterium
binds into molecules more easily than ordinary hydrogen. Since deuterium is heavier than ordinary hydrogen,
deuterium and deuterated molecules have lower thermal velocities and do not escape from gravity as easily. Thus
planets tend to have high deuterium-to-hydrogen ratios.
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Figure 45: Determining the baryon/photon ration η by comparing BBN predictions to observations. The
width of the bands around the the curves represents the uncertainty in BBN prediction due to uncertainty
about the reaction rates. The vertical extent of the yellow boxes represent the estimate of the primordial
abundance from observations and the horizontal extent the resulting range in η to agree with BBN. Note
the small deuterium box. The only observational data on 3He is from our own galaxy, and since 3He
is both produced and destroyed in chemical evolution, we cannot infer the primordial abundance from
them. From the review by Fields, Molaro, and Sarkar in [38].
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on the line-of-sight between us and the quasar. Some of these clouds lie also at a high redshift.
Thus we observe them as they were when the universe was rather young, and therefore little
chemical evolution had yet taken place. These measurements point towards the higher end of
the above range, to η = 5.8–6.6 × 10−10. Constraints from 3He and 4He are less accurate but
consistent with this range. The estimates based on 7Li abundances in the surfaces of a certain
class of old Population II stars, which have been thought to retain the primordial abundance,
give lower values η = 1.5–4.5 × 10−10. This is known as the “Lithium problem”. It is usually
assumed that we do not understand well enough of the physics of the stars in question, and
the range η = 5.8–6.6 × 10−10 (at 95% confidence level) is taken as the BBN value for the
baryon-to-photon ratio.[38] (This is also consistent with the CMB results.)

The wider range η = 1.5–7× 10−10 corresponds to ωb = Ωbh
2 = 3.65× 107η = 0.0055–0.026.

With h = 0.7± 0.07, this gives Ωb = 0.009–0.07 for a conservative range of the baryonic density
parameter. With η = 5.8–6.6 × 10−10 and h = 0.7 ± 0.07, the BBN result for the baryonic
density parameter is

Ωb = 0.036–0.061 . (5.24)

This is less than cosmological estimates for Ωm, which are around 0.3. Therefore not all matter
can be baryonic. In fact, most of the matter in the universe appears to be nonbaryonic dark
matter. This is discussed in Chapter 6.

Update: In a review from 2021 by Fields, Molaro, and Sarkar in [30], they give a tighter
constraint (compared to the η = 5.8–6.6 × 10−10) based on recent improved 2H determinations:

η = 6.14 ± 0.19 × 10−10 ⇒ ωb = 0.02244 ± 0.00069 . (5.25)

5.10 BBN as a probe of the early universe

BBN is the earliest event in the history of the universe from which we have quantitative evidence
in the form of numbers (primordial abundances of 2H, 3He, 4He, 7Li) that we can calculate
from known theory and compare to observations. It can be used to constrain many kinds of
speculations about the early universe.

When the number of neutrino species was not yet known, cosmology (BBN) was used to
constrain it. Big bang nucleosynthesis is sensitive to the expansion rate in the early universe,
and that depends on the energy density. Observations of abundances of light element isotopes
combined with BBN calculations require Neff = 2–4.

Actually any new light particle species that would be relativistic at nucleosynthesis time
(T ∼ 50 keV – 1 MeV) and would thus contribute to the expansion rate through its energy
density, but which would not interact directly with nuclei and electrons, would have the same
effect. It would increase g∗ and speed up the timescale (5.22), leading to more primordial
4He and a higher primordial abundance of the intermediate isotopes 2H and 3He. Thus such
hypothetical unknown particles (called dark radiation) may not contribute to the energy density
of the universe at that time more than one neutrino species does.

Most such modifications of the standard picture will ruin the agreement between theory
and observations. Thus we can say that we know well the history of the universe since the
beginning of the BBN (from T ∼ 1MeV and t ∼ 1 s), but before that there is much more room
for speculation.

What you will need from Chapter 5:

• A qualitative understanding of the processes involved in or relevant for BBN

• The roles of equilibrium, decoupling, bottlenecks, neutron decay, and Coulomb repulsion



5 BIG BANG NUCLEOSYNTHESIS 115

• How to calculate the primordial helium abundance, in the simplified way given in Secs. 5.1–
5.5

• What properties of the universe affect the BBN and how (Secs. 5.8, 5.10)

• What kind of observations are relevant for BBN and how the observed abundances relate
to primordial abundances (Sec. 5.9)

• What is the lithium problem (Sec. 5.9)

• What can we conclude about the amount of baryonic matter in the Universe (Sec. 5.9)
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6 Dark Matter

About this chapter: This chapter is about one of the central open questions in cosmology:
the nature of dark matter. We begin by the early evidence for dark matter from motions and
rotation curves of galaxies in Sec. 6.1 (more evidence is discussed in Cosmology II) and then
proceed to discuss different classes of and candidates for dark matter. Most of this chapter is
descriptive or involves just simple calculations; but Secs. 6.6 and 6.7 give a more complicated
detailed calculation of the present abundance of cold thermal relics.

6.1 Observations

The earliest evidence for dark matter is due to Zwicky (1933). He observed (from the variation
in their redshifts) that the relative velocities of galaxies in galaxy clusters were much larger than
the escape velocity due to the mass of the cluster, if that mass was estimated from the amount
of light emitted by the galaxies in the cluster. This suggested that there should actually be
much more mass in the galaxy clusters than the luminous stars we can see. This was then called
the “missing mass” problem. The modern terminology is to talk about dark matter, since it is
understood that what is “missing” is not the mass, just the light from that mass.

Similar evidence comes from the rotation curves of galaxies. According to Kepler’s third law,
the velocity of a body orbiting a central mass is related to its distance as

v ∝ 1

r1/2
. (6.1)

The planets in the Solar System satisfy this relation. For the stars orbiting the center of a galaxy
the situation is different, since the mass inside the orbit increases with the distance. Suppose,
for example, that the mass density of a galaxy decreases as a power-law

ρ ∝ r−x (6.2)

with some constant x. Then the mass inside radius r is

M(r) ∝
∫

r2r−xdr =
r3−x

3− x
for x < 3 . (6.3)

Equating the acceleration of circular motion with that caused by Newtonian gravity we have

v2

r
= G

M

r2
∝ r1−x . (6.4)

Thus we find that the rotation velocity in our model galaxy should vary with distance from the
center as

v(r) ∝ r1−x/2 . (6.5)

The function v(r) is called the rotation curve of a galaxy.
Observed rotation curves increase with r for small r, i.e., near the center of the galaxy, but

then typically flatten out, becoming v(r) ≈ const up to as large distances as there is anything
to observe in the galaxy. From Eq. (6.5), this would indicate a density profile

ρ ∝ r−2 . (6.6)

However, the density of stars appears to fall more rapidly towards the edges of the galaxy. Also,
the total mass from stars and other visible objects, like gas and dust clouds, appears to be too
small to account for the rotation velocity at large distances. This discrepancy between visible
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matter and galaxy rotation curves was established in early 1970s [34] after which this missing
mass / dark matter problem became a central topic in astrophysics.

This indicates the presence of another mass component to galaxies. This mass component
should have a different density profile than the visible, or luminous, mass in the galaxy, so that
it could be subdominant in the inner parts of the galaxy, but would become dominant in the
outer parts. This dark component appears to extend well beyond the visible parts of galaxies,
forming a dark halo surrounding the galaxy.

This can be discussed in terms of mass-to-light ratios, M/L, of various objects (we see L,
not M). It is customarily given in units of M⊙/L⊙, where M⊙ and L⊙ are the mass and
absolute luminosity for the Sun. The luminosity of a star increases with its mass faster than
linearly, so that stars with M > M⊙ have M/L < 1, and smaller stars have M/L > 1. Small
stars (M < M⊙) are more common than large stars, so a typical mass-to-light ratio from the
stellar component of galaxies is M/L ∼ a few. For stars in our part of the Milky Way galaxy,
M/L ≈ 2.2. Because large stars are more short-lived, M/L increases with the age of the star
system, and the typical M/L from stars in the universe is somewhat larger. However, this still
does not account for the full masses of galaxies.

The mass-to-light ratio of a galaxy turns out to be difficult to determine; the larger volume
around the galaxy you include, the largerM/L you get. But theM is determined from velocities
of orbiting bodies and at large distances there may be no such bodies visible. For galaxy clusters
you can use the velocities of the galaxies themselves as they orbit the center of the cluster. The
mass-to-light ratios of clusters appears to be several hundreds. Presumably isolated galaxies
would have similar values if we could measure them to large enough radii.

From galaxy surveys, the luminosity density of the universe is

ρL = 2.0± 0.7 × 108hL⊙ Mpc−3 . (6.7)

(Peacock [36], p.368; Efstathiou et al. 1988 [37]). Multiplying this with a typical mass-to-light
ratio from galaxy clusters (Peacock, pp. 372–374),

M/L ∼ 300h–400h , (6.8)

we find an estimate for the density of clustered74 mass in the universe,

ρm = (M/L) · ρL ∼ 0.39–1.08 × 1011h2M⊙/Mpc3 (6.9)

= 2.6–7.3× 10−27h2kg/m3 . (6.10)

(We equate the clustered mass with matter, since gravity causes matter, but not radiation or
vacuum energy, to cluster. Implicitly we are assuming that all, or most of, matter clusters form
stars, so that we can observe them.) Comparing to the critical density

ρcr0 = h2 · 1.88 × 10−26kg/m3 , (6.11)

we get that
Ωm = 0.14–0.39 . (6.12)

The estimates for the amount of ordinary matter in the objects we can see on the sky, stars
and visible gas and dust clouds, called luminous matter, give a much smaller contribution,

Ωlum . 0.01 (6.13)

74“Clustered” here does not refer to just galaxy clusters, but also to isolated galaxies, which are “clusters of
matter”.
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to the density parameter. In Chapter 5 we found that big bang nucleosynthesis leads to an
estimate

Ωb = 0.036–0.061 (6.14)

for baryonic matter.
Thus we have

Ωlum < Ωb < Ωm. (6.15)

This is consistent, since all luminous matter is baryonic, and all baryonic matter is matter. That
we have two inequalities, instead of equalities, tells us that there are two kinds of dark matter
(as opposed to luminous matter): 1) baryonic dark matter (BDM) and 2) nonbaryonic dark
matter. We do not know the precise nature of either kind of dark matter, and therefore this
is called the dark matter problem. To determine the nature of dark matter is one of the most
important problems in astrophysics today. Often the expression “dark matter” is used to refer
to the nonbaryonic kind only, as the nature of that is the deeper question.

6.2 Baryonic dark matter

The question of the dominant constituent of BDM is by now probably close to settled [35], so
this section and its focus on MACHOs is mainly of historical interest.

Candidates for BDM include compact (e.g. planet-like) objects in interstellar space and thin
intergalactic gas (or plasma).

Objects of the former kind have been dubbed MACHOs (Massive Astrophysical Compact
Halo Objects) to contrast them with another (nonbaryonic) dark matter candidate, WIMPs, to
be discussed later. A way to detect such a dark compact object is gravitational microlensing75:
If such a massive object passes near the line of sight between us and a distant star, its gravity
focuses the light of that star towards us, and the star appears to brighten for a while. The
brightening has a characteristic time profile, and is independent of wavelength, which clearly
distinguishes it from other ways a star may brighten (variable stars).

An observation of a microlensing event gives an estimate of the mass, distance and velocity76

of the compact object; but tells nothing else about it. Thus in principle we could have nonbary-
onic MACHOs. But as we do not know of any such objects (except black holes), the MACHOs
are usually thought of as ordinary substellar objects, such as brown dwarfs or “jupiters”. Ordi-
nary stars can of course also cause a microlensing event, but then we would also see this star.
Here we are interested in events where we do not observe light, or any other signal, from the
lensing object. Heavier relatively faint objects which could fall into this category, include old
white dwarfs, neutron stars, and black holes, but these are expected to be much more rare.

The masses of ordinary black holes are included in the Ωb estimate from BBN, since they were
formed from baryonic matter after BBN. However, if there are primordial black holes produced
in the big bang before BBN, they would not be included in Ωb.

A star requires a mass of about 0.07M⊙ to ignite thermonuclear fusion, and to start to
shine as a star. Smaller, “failed”, stars are called brown dwarfs. They are not completely dark;
they are warm balls of gas which radiate faint thermal radiation. They were warmed up by the
gravitational energy released in their compression to a compact object. Thus brown dwarfs can

75“Micro” here means that the angles involved are smaller than the resolution of telescopes, so that we just
observe a brightening of a point source, typically a star. This is in contrast to gravitational lensing where we
observe a distortion of the shape of the image of the object, or its splitting into two or more images.

76Actually we do not get an independent measure of all three quantities, as the observables depend on com-
binations of these. However, we can make some reasonable assumptions of the expected distance and velocity
distributions among such objects, leading to a rough estimate of the mass. Especially from a set of many events,
we get an estimate for the typical mass.
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be, and have been, observed with telescopes if they are quite close by. Smaller77 such objects
are called “jupiters” after the representative such object in the Solar System.

The strategy to observe a microlensing event is to monitor constantly a large number of
stars to catch such a brightening when it occurs for one of them. Since the typical time scales
of these events are many days, or even months, it is enough to look at each star, say, once every
night or so. As most of the dark matter is in the outer parts of the galaxy, further out than
we are, it would be best if the stars to be monitored where outside of our galaxy. The Large
Magellanic Cloud, a satellite galaxy of our own galaxy, is a good place to look for these events,
being at a suitable distance where individual stars are still easy to distinguish. Because of the
required precise alignment of us, the MACHO, and the distant star, the microlensing events will
be rare. But if the BDM in our galaxy consisted mainly of MACHOs (with masses between that
of Jupiter and several solar masses), and we monitored constantly millions of stars in the LMC,
we should observe many events every year.

Such observing campaigns (MACHO, OGLE, EROS, . . . ) were begun in the 1990s. Indeed,
over a dozen microlensing events towards LMC or SMC were observed. The typical mass of
these MACHOs turned out to by ∼ 0.5M⊙ (assuming the lenses were located in the halo of our
galaxy), much larger than the brown dwarf mass that had been expected. The most natural
faint object with such a mass would be a white dwarf. However, white dwarfs had been expected
to be much too rare to explain the number of observed events. On the other hand the number
of observed events is too small for these objects to dominate the mass of the BDM in the halo of
our galaxy. These mass estimates depend on the assumed distance of the lenses. If one instead
assumes that the lens is located in the same Magellanic Cloud as the star, the mass estimates
are smaller, ∼ 0.2M⊙. Then the lensing objects could be ordinary red dwarf stars, not visible to
us due to this large distance. In any case, these observed lensing objects were too few to explain
the BDM of our galaxy.

The present opinion is that the BDM in our universe is dominated by thin intergalactic
ionized gas [35]. In fact, in large clusters of galaxies, we can see this gas, as it has been heated
by the deep gravitational well of the cluster, and radiates X-rays.

6.3 Nonbaryonic dark matter

The favorite candidates for nonbaryonic dark matter are divided into two main classes, hot dark
matter (HDM) and cold dark matter (CDM), based on the typical velocities of the particles
making up this matter. These particles are supposed to be at most weakly interacting, so that
they decoupled early, or possibly they were never at thermodynamic equilibrium.

The distinction between HDM and CDM comes from their different effect on structure for-
mation in the universe. Structure formation refers to how the originally almost homogeneously
distributed matter formed galaxies and galaxy clusters under the pull of gravity. For HDM,
the velocities of the particles were large when structure formation began, making it difficult
to trap them in potential wells of the forming structures. Typically these velocities were then
nonrelativistic but larger than the escape velocities of the forming structures. CDM particles,
on the other hand, have negligible velocities and they began to form structures early due to their
mutual gravity. Structure formation dominated by HDM leads to top-down structure formation,
where the largest structures form first, and smaller structures arise from the fragmentation of
these larger structures. Structure formation dominated by CDM leads to bottom-up structure
formation, where smaller structures form first, and later they cluster or coalesce to form larger
structures. The intermediate case is called warm dark matter (WDM).

We shall discuss structure formation in Cosmology II. But we mention already that the

77That is, objects with smaller mass. Brown dwarfs actually all have roughly the same radius as Jupiter. The
increased gravity from the larger mass compresses them to a higher density.
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observed large-scale structure in the universe, i.e., how galaxies are distributed in space, and
relating it to the observed anisotropy of the CMB, which shows the primordial inhomogeneity,
from which this structure grew, gives today the best way to estimate the relative amounts of
BDM, HDM, and CDM in the universe. The result is that dark matter must be dominated by
CDM (or possibly it could be somewhat “warm”).

A popular class of nonbaryonic dark matter are thermal relics, particles and antiparticles
that were initially in thermodynamic equilibrium, but decoupled early enough to prevent their
annihilation with each other at least to some extent. For thermal relics there is another clear
distinction between HDM and CDM: HDM particles decoupled while they were relativistic (the
prime example is the neutrinos). They have therefore retained a large number density, and thus
their masses must be small, less than 100 eV, for their total mass density not to exceed the
estimated dark matter density. Today, the HDM particles should be nonrelativistic—otherwise
we would not classify them as “matter”. CDM particles decouple while nonrelativistic and thus
a much smaller relic number density is left over. Thus CDM particles must typically be heavy
for CDM to form a significant part of dark matter. Since after decoupling the thermal relic
CDM temperature falls as a−2, CDM is extremely cold when structure formation begins.

However, there is another possibility for CDM: particles that were never in thermal equi-
librium; these can have small velocities and still a large relic number density, requiring their
masses to be small (the main such candidate is called the axion).

6.4 Hot dark matter

The main candidate for HDM are neutrinos with a small but nonzero rest mass. The cosmic
neutrino background would make a significant contribution to the density parameter if the
neutrinos had a rest mass of the order of 1 eV.

For massive neutrinos, the number density today is the same as for massless neutrinos, but
their energy density today is dominated by their rest masses, giving (factor 3

4 from their fermionic
nature · factor 4

11 from their lower temperature after electron-positron annihilation = 3
11 )

ρν =

3∑

ν=1

mνnν =
3

11
nγ
∑

mν . (6.16)

For T0 = 2.725K, this gives for the neutrino density parameter

Ωνh
2 =

∑
mν

94.14 eV
, (6.17)

which applies if the neutrino masses are well below the neutrino decoupling temperature, ∼
1MeV, but well above the present temperature of massless neutrinos, Tν0 = 0.168meV. This
counts then as one contribution to Ωm. As discussed in Chapter 4, neutrino oscillation measure-
ments constrain

∑
mν within the range 0.06–3.3 eV, so that Ων = 0.001–0.09.

If neutrinos dominated the masses of galaxies there would be a lower limit to their mass
called the Tremaine–Gunn limit due to the available phase space inside the galaxy volume and
below the galaxy escape velocity. This is because neutrinos are fermions and the Pauli exclusion
principle prevents two neutrinos from occupying the same quantum state. A similar limit would
apply to any fermion candidates for the dominant component of dark matter, but not to bosons.

Exercise: Tremaine–Gunn limit. Suppose neutrinos dominate the mass of galaxies (i.e., ignore
other forms of matter). We know the mass of a galaxy (within a certain radius) from its rotation velocity.
The mass could come from a smaller number of heavier neutrinos or a larger number of lighter neutrinos,
but the available phase space (you don’t have to assume a thermal distribution) limits the total number
of neutrinos, whose velocity is below the escape velocity. This leads to a lower limit on the neutrino mass
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mν . Let r be the radius of the galaxy, and v its rotation velocity at this distance. Find the minimum mν

needed for neutrinos to dominate the galaxy mass, assuming all three species have the same mass. (A
rough estimate is enough: you can, e.g., assume that the neutrino distribution is spherically symmetric,
and that the escape velocity within radius r equals the escape velocity at r). Give the numerical value
for the case v = 220 km/s and r = 10kpc. Repeat the calculation assuming that only one of the three ν
species is massive. (We know today that neutrinos are only a small part of dark matter, but a similar
limit applies to any fermions.)

Data on large scale structure and CMB combined with structure formation theory requires
that a majority of the matter in the universe has to be CDM (or possibly WDM) and the present
upper limit to HDM (massive neutrinos) is [33]

ων ≡ Ωνh
2 . 0.0025 (6.18)

requiring that the sum of the three neutrino masses satisfies

∑

mν . 230meV . (6.19)

Thus neutrinos make only a small contribution to dark matter,

0.0007 . Ωνh
2 . 0.0025 , (6.20)

where the lower limit comes from the
∑
mν ≥ 0.06 from neutrino oscillations.

6.5 Cold dark matter

Observations require that dark matter is dominated by CDM. No known particle is suitable to
act as CDM; therefore this conclusion implies that the standard model of particle physics must
be extended with additional particles.

A major class of CDM particle candidates is called WIMPs (Weakly Interacting Massive
Particles). We mentioned already that because of the large number density of neutrinos, their
masses must be small, in order not to “close the universe” with an energy density > ρcr. How-
ever, if the mass of some hypothetical weakly interacting particle species is much larger than the
decoupling temperature of weak interactions, these particles will be largely annihilated before
this decoupling, leading to a much lower number density, so that again it becomes possible to
achieve a total density < ρcr starting from an initial thermal distribution at very high temper-
atures. (We calculate this in the next section.) Thus the universe may contain two classes of
weakly interacting particles, very light (the neutrinos) and very heavy (the WIMPs), with a
cosmologically interesting density parameter value.

The favorite kind of WIMP is provided by the supersymmetric partners of known particles,
more specifically, the “lightest supersymmetric partner” (LSP), which could be a stable weakly
interacting particle. It should have a mass of the order of 100GeV. It has been hoped that,
if it exists, it could be created and detected at CERN’s LHC (Large Hadron Collider) particle
accelerator. A measurement of its properties would allow a calculation of its expected number
and energy density in the universe. So far (2018) there has been no detection, already considered
a disappointment.

A candidate CDM particle should thus be quite heavy, if it was in thermal equilibrium
sometime in the early universe. One CDM candidate, the axion, is, however, very light; but
it was “born cold” and has never been in thermal interaction. It is related to the so-called
“strong CP-problem” in particle physics. We shall not go into the details of this, but it can be
phrased as the question “why is the neutron electric dipole moment so small?”. It is zero to the
accuracy of measurement, the upper limit being dn < 0.30 × 10−25ecm (Particle Data Group
2016 [38]), whereas it has a significant magnetic dipole moment. A proposed solution involves an
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additional symmetry of particle physics (the Peccei–Quinn symmetry). The axion would then
be the “Goldstone boson of the breaking of this symmetry”. The important point for us is that
these axions would be created in the early universe when the temperature fell below the QCD
energy scale (of the order of 100MeV), and they would be created “cold”, i.e., with negligible
kinetic energy, and they would never be in thermal interaction. Thus the axions have negligible
velocities, and act like CDM.

If these WIMPs or axions make up the CDM, they should be everywhere, also in the Solar
System, although they would be very difficult to detect. A direct detection is not impossible,
however. Sensitive detectors have been built with this purpose. WIMPs and axions require a
rather different detection technology.

One kind of an axion detector is a low noise microwave cavity in a strong magnetic field. An
axion may interact with the magnetic field and produce a microwave photon. No axions have
so far been detected. On the other hand the detectors have so far not been sensitive enough for
us to really expect a detection.

WIMPs interact weakly with ordinary matter. In practice this means that mostly they do
not interact at all, so that a WIMP will pass through the Earth easily, without noticing it, but
occasionally, very rarely, there will be an interaction. A typical interaction is elastic scattering
from a nucleus, with an energy exchange of a few keV.78 A very sensitive WIMP detector can
detect if this much energy is deposited on its target material. The problem is that there are
many other “background” events which may cause a similar signal. Thus these WIMP detectors
are continuously detecting something.

Therefore the experimentalists are looking for an annual modulation in the signal they ob-
serve. The WIMPs should have a particular velocity distribution related to the gravitational
well of our galaxy. The Earth is moving with respect to this velocity distribution, and the
annual change in the direction of Earth’s motion should result in a corresponding variation in
the detection rate. One such experiment, DAMA,79 has already claimed that they detect such
an annual variation in the signal they observe, signifying that some of the events they see are
due to WIMPs. Other experiments have not been able to confirm this detection.

6.6 Decoupling

An important class of dark matter particle candidates are thermal relics, particles that were
once in thermal equilibrium and survived because they decoupled before they were annihilated.

Decoupling is the process where a particle species makes a transition from a high interaction
rate with other particles to a low, and eventually negligible, interaction rate. While the interac-
tion rate is high, the interactions keep the particles in thermal equilibrium with other species.
When the interaction rate becomes low enough the particles decouple from other species. If
the decoupled particles are stable (or have very long lifetime, i.e., negligible decay rate), their
number will then stay constant so that their number density falls with the expansion as n ∝ a−3.

Consider the case where the main interaction of particle species x with other species (y, z)
is particle-antiparticle annihilation and creation:

x + x̄ ↔ y + z . (6.21)

For simplicity, assume an equal number of particles an antiparticles, nx = nx̄, i.e., that µx = 0.
(If µx 6= 0 but just very small, we can check after the calculation whether this was a good
approximation, i.e., if the thermal relic density we get with the µx = 0 approximation is large
compared to the particle-antiparticle excess. If µx is important, i.e., particles survive mainly

78Note that weak interactions are “weak” in the sense that they occur rarely, but the energy exchange in such
an interaction, when it occurs, does not have to be very small.

79http://www.lngs.infn.it/en/dama
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because there were more particles than antiparticles, we wouldn’t usually call them thermal
relics.) The x particle number density nx then evolves according to

dnx
dt

+ 3Hnx = −〈σv〉nxnx̄ + ψ , (6.22)

where σ is the annihilation cross section (the effective area the other particle presents as a
target), v is the relative velocity of the colliding particles, 〈·〉 indicates the mean value taken
over the particle momentum space distribution, and ψ is the rate of creation of x particles.

In equilibrium, as many particles are created as annihilated. Thus

ψ = 〈σv〉n2eq , (6.23)

where neq is the equilibrium value of nx and nx̄, and we can rewrite (6.22) as

dnx
dt

+ 3Hnx = −〈σv〉
(
n2x − n2eq

)
. (6.24)

The Hubble parameter H gives the time scale at which external conditions, and thus also neq,
change. Define

Γ ≡ neq〈σv〉 , (6.25)

the reaction rate per particle in equilibrium (τ ≡ 1/Γ gives the mean time between interactions
for an x particle). We have to compare Γ to H to determine whether the interaction rate is high
or low. Defining the comoving number density

Nx ≡ nxa
3 and Neq ≡ neqa

3 (6.26)

we can rewrite (6.24) as

1

Neq

dNx

d ln a
= − Γ

H

[(
Nx

Neq

)2

− 1

]

. (6.27)

(It is often practical to use the logarithm of the scale factor ln a as time coordinate. It changes
by one when the universe expands by a factor e.)

If Γ ≫ H (τ ≪ H−1), the interactions keep Nx very close to Neq, since a small deviation is
enough to make the rhs of (6.27) large and cause a rapid corrective change in Nx. On the other
hand, if Γ ≪ H (τ ≫ H−1), the rhs stays negligible no matter how much Nx deviates from Neq

and thus Nx stays constant. Typically a particle species is in the Γ ≫ H regime at first, but
may make a transition to the Γ ≪ H regime (decouple) later. We call the temperature Td at
which Γ = H, the decoupling temperature. (Decoupling is also called “freeze-out”.)

The constant comoving number density after decoupling is the comoving relic density of the
particles. A crude approximation (the instantaneous decoupling approximation) is

Nx(relic) ≈ Nx(Td) ≈ Neq(Td) , (6.28)

which we get if we assume that Nx follows Neq until T = Td, and stays constant after that.
There are two distinct situations: 1) Hot thermal relics: particles that were ultrarelativistic

(Td > mx) when they decoupled. Their relic density is large, ∼ T 3. 2) Cold thermal relics:
particles that were nonrelativistic (Td ≪ mx) when they decoupled. Thus most of them annihi-
lated after T fell below mx, but decoupling saved the rest. Thus cold thermal relics survive in
much smaller numbers than hot thermal relics. We already discussed neutrinos, which are hot
thermal relics, in Chapter 4. Let us now consider cold thermal relics.

Cold thermal relics decouple while they are nonrelativistic, so that their equilibrium number
density then is

neq(Td) = gx

(
mTd
2π

)3/2

e−m/Td , (6.29)
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where m is the mass of the relic particle. After decoupling nx ∝ a−3, so that the present (relic)
density is

nx0 ≈ g∗S(T0)

g∗S(Td)

(
T0
Td

)3

neq(Td) . (6.30)

The problem is to find Td, the decoupling temperature where Γd ≡ neq(Td)〈σv〉 = H.
The annihilation cross section σ depends on the particle and associated theory, but on

general quantum theoretical grounds σv can be expanded in terms of velocity squared, with
contributions σv ∝ v2q, where q = 0 is called s-wave annihilation, q = 1 p-wave annihilation etc.
For the nonrelativistic case, v ≪ 1, the s-wave annihilation is dominant, unless prohibited for
some reason in which case the p-wave is dominant. For an equilibrium distribution, the mean
speed of a nonrelativistic particle is 〈v〉 =

√

8/π
√

T/m. Since v ∝ (T/m)1/2, we can write

〈σv〉 = σ0

(
T

m

)q

, where q = 0 (for s) or q = 1 (for p) . (6.31)

Thus

Γd = σ0

(
Td
m

)q

neq(Td) = σ0
gx

(2π)3/2
m3y−q−3/2e−y , (6.32)

where
y ≡ m

Td
≫ 1 . (6.33)

In the early universe, the relation between the Hubble parameter and temperature is

H2 =
8πG

3

π2

30
g∗(T )T

4 (6.34)

so that

Hd =

√

g∗(Td)

90

πm2

MPl
y−2 (6.35)

where MPl ≡ 1/
√
8πG = 2.436 × 1018 GeV is the reduced Planck mass. The decoupling tem-

perature can be solved from the equation

Γd

Hd
= Ay1/2−qe−y = 1 , (6.36)

where

A ≡
√

45

4π5g∗(Td)
gxMPlmσ0 . (6.37)

Given gx, m, σ0, q, and an initial guess for g∗(Td), we can solve Td numerically from (6.36).
The relic number density is, from (6.30) and (6.29),

nx0 ≈ g∗S(T0)

g∗S(Td)

(
T0
Td

)3

gx

(
mTd
2π

)3/2

e−y

=
gx

(2π)3/2
g∗S(T0)

g∗S(Td)
y3/2e−yT 3

0

=
gx

(2π)3/2
g∗S(T0)

g∗S(Td)
A−1y1+qT 3

0

=

√

g∗(Td)

90

g∗S(T0)

g∗S(Td)

π

MPlmσ0
y1+qT 3

0 , (6.38)
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where we used e−y = A−1yq−1/2 from (6.36) to get rid of the exponential dependence on y (this
allows us to use an approximate value for y below). We get the relic mass (energy) density by
multiplying with m,

ρx0 =

√

g∗(Td)

90

g∗S(T0)

g∗S(Td)

π

MPlσ0
y1+qT 3

0 . (6.39)

Relating nx0 to the present CMB photon number density nγ0 = (2ζ(3)/π2)T 3
0 , we have

nx0
nγ0

=
π3

ζ(3)

√

g∗(Td)

360

g∗S(T0)

g∗S(Td)

y1+q

MPlmσ0
. (6.40)

Assuming that decoupling happens before electron-positron annihilation and that no particle
species is becoming nonrelativistic during the decoupling, we can set g∗(Td) = g∗S(Td), and
using the numerical value g∗S(T0) ≈ 3.938, this becomes

nx0
nγ0

=
π3

ζ(3)

1√
360

g∗S(T0)
√

g∗(Td)

y1+q

MPlmσ0
≈ 5.35

y1+q

√

g∗(Td)MPlmσ0
. (6.41)

For an analytical estimate of y, we can solve Eq. (6.36) iteratively: Taking the logarithm, it
becomes

y = lnA+ (12 − q) ln y . (6.42)

For y ≫ 1, ln y is a slowly varying function of y, allowing for rapidly convergent iteration. We
make our first guess for y by ignoring the term with ln y:

y0 = lnA (6.43)

and then iterate
y1 = lnA+ (12 − q) ln y0 . (6.44)

For our rough estimate this first iteration is enough, and we take

y ≈ y1 = lnA+ (12 − q) ln(lnA) . (6.45)

where A ∝ mσ0, so that y depends logarithmically on m and σ0.
The relic density depends mainly on m and σ0. Assuming a fixed σ0, we see that the relic

number density decreases with increasing m, so that the cold thermal relic mass density ρx0
depends only logarithmically on the relic particle mass m; but it is inversely proportional to σ0.
However, as we see in the next section, σ0 may depend on m, changing these conclusions.

6.7 WIMP miracle

Consider now a hypothetical particle with a mass in the GeV range, gx = 2 (spin-12 fermion),
s-wave annihilation (q = 0) with a typical weak interaction cross section

σ0 ∼ G2
FE

2 ∼ G2
Fm

2 (6.46)

where GF = 1.17 × 10−5 GeV−2 is the Fermi constant.
We have then MPlmσ0 ≈ 3.3 × 108(m/GeV)3. Since now σ0 ∝ m2 and mσ0 ∝ m3, we see

that the relic densities depend on the mass as

nx0 ∝
1

m3
and ρx0 ∝

1

m2
(6.47)
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(besides the logarithmic dependence via y). Thus the cold thermal relic mass density decreases
with increasing relic particle mass, whereas for hot thermal relics, the number density is inde-
pendent of m and the mass density increases proportional to m.

The decoupling temperature Td = m/y depends only logarithmically on g∗(Td), so the precise
value of g∗(Td) is not important. If we assume that decoupling happened between the electroweak
and QCD transitions, g∗(Td) is between 60 and 100 (in the standard model). Taking g∗(Td) = 60,
we get that A ≈ 1.63 × 107(m/GeV)3 and lnA ≈ 16.6 + 3 ln(m/GeV). The value of y is close
to this.

For example, for m = 3 GeV, lnA = 19.9 and y ≈ lnA + 1
2 ln(lnA) ≈ 21.4, so that Td =

m/y ≈ 0.14 GeV. With a higher mass, we get a higher decoupling temperature. For m =
100 GeV, lnA = 30.4, y = 32.1, and Td = 3.1 GeV.

For the relic number density we get (approximating further y ≈ lnA)

nx0
nγ0

≈ 5.35
y

√

g∗(Td)MPlmσ0
= 2.1 × 10−9y

( m

GeV

)−3

≈ 3.5× 10−8
(

1 + 0.18 ln
m

GeV

)( m

GeV

)−3
. (6.48)

Taking the baryon-to-photon ratio to be η = 6×10−10, we get for the ratio of cold thermal relics
to baryons

nx0
nB0

≈ 58
(

1 + 0.18 ln
m

GeV

)( m

GeV

)−3
, (6.49)

and since mN ≈ 1 GeV the mass density ratio

ρx0
ρb0

≈ 58
(

1 + 0.18 ln
m

GeV

)( m

GeV

)−2
. (6.50)

Since ρb0 ≈ 0.05ρcr0, the requirement that such relic particles (with energy density ρx0 + ρx̄0 =
2ρx0) do not close the universe gives the lower bound m & 2.6 GeV for their mass (the Lee-
Weinberg bound). The corresponding upper bound for a massive neutrino species (a hot thermal
relic) was mν . 50 eV (from Eq. (6.17) with h ∼ 0.7).

We get the observed CDM to baryon density ratio ρc0/ρb0 ≈ 5.3 [33] for m ≈ 5.3 GeV.80 The
fact that we get the right dark matter density for a cold thermal relic with a weak interaction
cross section and mass roughly corresponding to the electroweak scale81, is called the WIMP
miracle. Such particles appear naturally in extensions to the standard model of particle physics,
like supersymmetry (SUSY), which predicts SUSY partners to standard model particles, so this
makes them a very natural candidate for dark matter. Such dark matter candidates are called
WIMPs (weakly interacting massive particles).

In the minimal supersymmetric extension to the standard model (MSSM) such a particle
with a mass of a few GeV would already have been discovered in particle colliders. The lower
mass limit for fermionic SUSY partners in MSSM is 15GeV [39]. Ongoing experiments at LHC
are pushing this limit up. With a typical weak interaction σ0 such heavier WIMPs would make
just a small contribution to the dark matter. As the relic density is inversely proportional to
σ0 (besides the logarithmic dependence via y) we can save WIMPs as the main CDM candidate
if we assume a smaller interaction cross section. There is enough freedom to adjust parameters
in extensions to the standard model that this is possible. Such parameters are constrained by
both collider and direct detection experiments.
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Figure 46: This is a composite image of galaxy cluster 1E 0657-56, also called the Bullet Cluster. It
consists of two subclusters, a larger one on the left, and a smaller one on the right. They have recently
collided and traveled through each other. One component of the image is an optical image which shows
the visible galaxies. Superposed on it, in red, is an X-ray image, which shows the heated intergalactic
gas, that has been slowed down by the collision and left behind the galaxy components of the clusters.
The blue color is another superposed image, which represent an estimate of the total mass distribution
of the cluster, based on gravitational lensing. NASA Astronomy Picture of the Day 2006 August 24.
Composite Credit: X-Ray: NASA/CXC/CfA/M. Markevitch et al. Lensing map: NASA/STScI; ESO
WFI; Magellan/U. Arizona/D. Clowe et al. Optical: NASA/STScI; Magellan/U. Arizona/D. Clowe et
al.

6.8 Dark Matter vs. Modified Gravity

Since all the evidence for non-standard-model dark matter comes so far from its gravitational
effects, it has been suggested that it does not exist, and instead the law of gravity needs to be
modified over large distances. While actual proposals for such gravity modifications (MOND
– Modified Newtonian Gravity, TeVeS – Tensor-Vector-Scalar gravity) do not appear very con-
vincing and lead to difficulties of their own, it certainly would be comforting to have a direct
laboratory detection of a CDM particle.

Evidence for the standard view of dark matter comes from collisions of clusters of galaxies
[40], see Fig. 46. According to this standard view the mass of a cluster of galaxies has three
main components: 1) the visible galaxies, 2) the intergalactic gas, and 3) cold dark matter. The
last component should have the largest mass, and the first one the smallest. When two clusters
of galaxies collide, it is unlikely for individual galaxies to collide, since most of the volume, and
cross section, in a cluster is intergalactic space. The intergalactic gas is too thin to slow down
the relatively compact galaxies noticeably. On the other hand, the intergalactic gas components
do not travel through each other freely but are slowed down by the collision and heated up. Thus

80Note that ρc denotes the CDM energy density and ρcr the critical density.
81The electroweak scale is more like 100GeV, but this is considered close enough.
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after the clusters have traveled through each other, much of the intergalactic gas is left behind
between the receding clusters. Cold dark matter, in turn, should be very weakly interacting,
and thus practically collisionless. Thus the CDM components of both clusters should also travel
through each other unimpeded.

Figure 46 is a composite image of such a collision of two clusters. We see that the intergalactic
gas has been left behind the galaxies in the collision. The mass distribution of the system has
been estimated from the gravitational lensing effect on the apparent shapes of galaxies behind
the cluster. If there were no cold dark matter, most of the mass would be in the intergalactic gas,
whose mass is estimated to be about five times that of the visible galaxies. Even in a modified
gravity theory, we would expect most of the lensing effect to be where most of the mass is, even
though the total mass estimate would be different. However, the image shows that most of the
mass is where the galaxies are. This agrees with the cold dark matter hypothesis, since cold
dark matter should move like the galaxies in the collision.

What you will need from Chapter 6:

• What is the evidence for dark matter from motions of galaxies and galaxy rotation curves
(Sec. 6.1)

• Different classes of dark matter BDM, HDM, CDM; and what can we say about their
relative abundance (Secs. 6.1, 6.4, and 6.5)

• What candidates there are for BDM (Sec. 6.2)

• What candidates there are for HDM (Sec. 6.4)

• What candidates there are for CDM (Sec. 6.5)

• What is the difference between HDM and CDM (Sec. 6.3)

• What is the difference between hot and cold thermal relics (Secs. 6.3–6.6)

• What is the relation of hot and cold thermal relics to HDM and CDM (Secs. 6.3–6.6)

• How to calculate the abundance of cold thermal relics using the instantaneous decoupling
approximation (Sec. 6.6)

• What about modified gravity as an alternative to dark matter (Sec. 6.8)
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A More about General Relativity

A.1 Vectors, tensors, and the volume element

The metric of spacetime can always be written as

ds2 = gµνdx
µdxν ≡

3∑

µ=0

3∑

ν=0

gµνdx
µdxν . (A.1)

We introduce Einstein’s summation rule: there is a sum over repeated indices (that is, we don’t
bother to write down the summation sign

∑
in this case). Greek (spacetime) indices go over

the values 0–3, Latin (space) indices over the values 1–3, i.e., gijdx
idxj ≡

∑3
i=1

∑3
j=1 gijdx

idxj .
The objects gµν are the components of the metric tensor. They have, in principle, the dimension
of distance squared. In practice one often assigns the dimension of distance (or time) to some
coordinates, and then the corresponding components of the metric tensor are dimensionless.
These coordinate distances are then converted to proper (“real” or “physical”) distances with
the metric tensor. The components of the metric tensor form a symmetric 4× 4 matrix.

Example 1. The metric tensor for a 2-sphere (discussed in Chapter 2 as an example of a
curved 2D space) has the components

[gij ] =

[
a2 0
0 a2 sin2 ϑ

]

. (A.2)

Example 2. The metric tensor for Minkowski space has the components

gµν =







−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1







(A.3)

in Cartesian coordinates, and

gµν =







−1 0 0 0
0 1 0 0
0 0 r2 0
0 0 0 r2 sin2 ϑ







(A.4)

in spherical coordinates.
Example 3. The Robertson-Walker metric, which we discuss in Chapter 3, has components

gµν =







−1 0 0 0

0 a2

1−Kr2
0 0

0 0 a2r2 0
0 0 0 a2r2 sin2 ϑ






. (A.5)

Note that the metric tensor components in the above examples always formed a diagonal
matrix. This is the case when the coordinate system is orthogonal.

The vectors which occur naturally in relativity are four-vectors, with four components, e.g.,
the four-velocity. The values of the components depend on the basis {eα} used. Note that the
index of the basis vector does not refer to a component, but specifies which one of the four
basis vectors is in question. The components of the basis vectors in the basis they define are, of
course,

(eα)
β = δβα , (A.6)
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where δβα is the Kronecker symbol, 1 if α = β, 0 otherwise.
Given a coordinate system, we have two bases (also called frames) naturally associated with

it, the coordinate basis and the corresponding normalized basis. If the coordinate system is
orthogonal, the latter is an orthonormal basis. When we use the coordinates to define the
components of a vector, like the 4-velocity in Chapter 2, the components naturally come out
in the coordinate basis. The basis vectors of a coordinate basis are parallel to coordinate lines,
and their length represents the distance from changing the value of the coordinate by one unit.
For example, if we move along the coordinate x1 so that it changes by dx1, the distance traveled
is ds =

√

g11dx1dx1 =
√
g11dx

1. The length of the basis vector e1 is thus
√
g11. Since in

the coordinate basis the basis vectors usually are not unit vectors, the numerical values of the
components give the wrong impression of the magnitude of the vector. Therefore we may want
to convert them to the normalized basis

eα̂ ≡
( 1
√

|gαα|
)
eα . (A.7)

(It is customary to denote the normalized basis with a hat over the index, when both bases are
used. In the above equation there is no sum over the index α, since it appears only once on the
left.) For a four-vector w we have

w = wαeα = wα̂eα̂ , (A.8)

where
wα̂ ≡

√

|gαα|wα . (A.9)

For example, the components of the coordinate velocity of a massive body, vi = dxi/dt could
be greater than one; the “physical velocity”, i.e., the velocity measured by an observer who is
at rest in the comoving coordinate system, is 82

vî =
√
giidx

i/
√

|g00|dx0 , (A.10)

with components always smaller than one.
The volume of a region of space (given by some range in the spatial coordinates x1, x2, x3)

is given by

V =

∫

V
dV =

∫

V

√

det[gij ]dx
1dx2dx3 , (A.11)

where dV ≡
√

det[gij ]dx
1dx2dx3 is the volume element. Here det[gij ] is the determinant of the

3× 3 submatrix of the metric tensor components corresponding to the spatial coordinates. For
an orthogonal coordinate system, the volume element is

dV =
√
g11dx

1√g22dx2
√
g33dx

3. (A.12)

The metric tensor is used for taking scalar (dot) products of four-vectors,

w · u ≡ gαβu
αwβ . (A.13)

The (squared) norm of a four-vector w is

w ·w ≡ gαβw
αwβ. (A.14)

Exercise: Show that the norm of the four-velocity is always −1.

82When g00 = −1, this simplifies to
√
giidx

i/dt.
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For an orthonormal basis we have

e0̂ · e0̂ = −1

e0̂ · eĵ = 0

eî · eĵ = δij . (A.15)

We shall use the short-hand notation

eα̂ · eβ̂ = ηαβ , (A.16)

where the symbol ηαβ is like the Kronecker symbol δαβ, except that η00 = −1.

A.2 Contravariant and covariant components

We sometimes write the index as a subscript, sometimes as a superscript. This has a precise
meaning in relativity. The component wα of a four-vector is called a contravariant component.
We define the corresponding covariant component as

wα ≡ gαβw
β . (A.17)

The norm is now simply
w ·w = wαw

α. (A.18)

In particular, for the 4-velocity we always have

uµu
µ = gµνu

µuν =
ds2

dτ2
= −1 . (A.19)

We defined the metric tensor through its covariant components (Eq. A.1). We now define
the corresponding covariant components gαβ as the inverse matrix of the matrix [gαβ ],

gαβg
βγ = δγα . (A.20)

Now
gαβwβ = gαβgβγw

γ = δαγw
γ = wα. (A.21)

The metric tensor can be used to lower and raise indices. For tensors,

A β
α = gαγA

γβ

Aαβ = gαγgβδA
γδ

Aαβ = gαγgβδAγδ. (A.22)

Note that for the mixed components A β
α 6= Aβ

α, unless the tensor is symmetric, in which case
we can write Aβ

α. When indices form covariant-contravariant pairs and are summed over, as in
AαβγB

αβγ the resulting quantity is invariant in coordinate transformations.
For an orthonormal basis,

gα̂β̂ = gα̂β̂ = ηαβ , (A.23)

and the covariant and contravariant components of vectors and tensors have the same values,
except that the raising or lowering of the time index 0 changes the sign. These orthonormal
components are also called “physical” components, since they have the “right” magnitude.

Note that the symbols δαβ and ηαβ are not tensors, and the location of their index carries
no meaning.
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A.3 Einstein equation

From the first and second partial derivatives of the metric tensor,

∂gµν/∂x
σ, ∂2gµν/(∂x

σ∂xτ ) , (A.24)

one can form various curvature tensors. These are the Riemann tensor Rµ
νρσ, the Ricci tensor

Rµν ≡ Rα
µαν , and the Einstein tensor Gµν = Rµν − 1

2gµνR, where R is the Ricci scalar gαβRβα,
also called the “scalar curvature” (not to be confused with the scale factor of the Robertson–
Walker metric, which is sometimes denoted R(t)). We shall not discuss these curvature tensors
in this course. The only purpose of mentioning them here is to be able to show the general
form of the Einstein equation, before we go to the much simpler specific case of the Friedmann–
Robertson–Walker universe.

In Newton’s theory the source of gravity is mass, or, in the case of continuous matter, the
mass density ρ. According to Newton, the gravitational field gN is given by the equation

∇2Φ = −∇ · gN = 4πGρ . (A.25)

Here Φ is the gravitational potential.
In Einstein’s theory, the source of spacetime curvature is the energy-momentum tensor, also

called the stress-energy tensor, or, for short, the “energy tensor” T µν . The energy tensor carries
the information on energy density, momentum density, pressure, and stress. The energy tensor
of frictionless continuous matter (a perfect fluid) is

T µν = (ρ+ p)uµuν + pgµν , (A.26)

where ρ is the energy density and p is the pressure in the rest frame of the fluid. In cosmology we
can usually assume that the energy tensor has the perfect fluid form. T 00 is the energy density
in the coordinate frame. (T i0 gives the momentum density, which is equal to the energy flux
T 0i. T ij gives the flux of momentum i-component in j-direction.)

We can now give the general form of the Einstein equation,

Gµν = 8πGT µν . (A.27)

This is the law of gravity according to Einstein. Comparing to Newton (Eq. A.25) we see that the
mass density ρ has been replaced by T µν , and∇2Φ has been replaced by the Einstein tensor Gµν ,
which is a short way of writing a complicated expression containing first and second derivatives
of gµν . Thus the gravitational potential is replaced by the 10 components of gµν in Einstein’s
theory.

In the case of a weak gravitational field, the metric is close to the Minkowski metric, and we
can write, e.g.,

g00 = −1− 2Φ (A.28)

(in suitable coordinates), where Φ is small. The Einstein equation for g00 becomes then

∇2Φ = 4πG(ρ+ 3p) . (A.29)

Comparing this to Eq. (A.25) we see that the density ρ has been replaced by ρ + 3p. For
relativistic matter, where p can be of the same order of magnitude than ρ, this is an important
modification to the law of gravity. For nonrelativistic matter, where the particle velocities are
v ≪ 1, we have p≪ ρ, and we get Newton’s equation.

When applied to a homogeneous and isotropic universe filled with ordinary matter, the
Einstein equation tells us that the universe cannot be static, it must either expand or contract.83

83Equation (A.44) leads to ä < 0, which does not allow a(t) = const . If we momentarily had ȧ = 0, a would
immediately begin to decrease.
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When Einstein was developing his theory, he did not believe this was happening in reality. He
believed the universe was static. Therefore he modified his equation by adding an extra term,

Gµν + Λgµν = 8πGT µν . (A.30)

The constant Λ is called the cosmological constant. Without Λ, a universe which was momentar-
ily static, would begin to collapse under its own weight. A positive Λ acts as repulsive gravity. In
Einstein’s first model for the universe (the Einstein universe), Λ had precisely the value needed
to perfectly balance the pull of ordinary gravity. This value is so small that we would not notice
its effect in small scales, e.g., in the solar system. The Einstein universe is, in fact, unstable to
small perturbations.84 When Einstein heard that the Universe was expanding, he threw away
the cosmological constant, calling it “the biggest blunder of my life”.85

In more recent times the cosmological constant has made a comeback in the form of vacuum
energy. Considerations in quantum field theory suggest that, due to vacuum fluctuations, the
energy density of the vacuum should not be zero, but some constant ρvac.

86 The energy tensor
of the vacuum would then have the form Tµν = −ρvacgµν . Thus vacuum energy has exactly the
same effect as a cosmological constant with the value

Λ = 8πGρvac. (A.31)

Vacuum energy is observationally indistinguishable from a cosmological constant. This is
because in physics, we can usually measure only energy differences. Only gravity responds
to absolute energy density, and there a constant energy density has the same effect as the
cosmological constant. In principle, however, they represent different ideas. The cosmological
constant is an “addition to the left-hand side of the Einstein equation”, a modification of the
law of gravity, whereas vacuum energy is an “addition to the right-hand side”, a contribution to
the energy tensor, i.e., a form of energy.

A.4 Friedmann equations

We shall now apply the Einstein equation to the homogeneous and isotropic case, which leads
to Friedmann–Robertson–Walker (FRW) cosmology. The metric is now the Robertson–Walker
(RW) metric,

gµν =







−1 0 0 0

0 a2

1−Kr2 0 0

0 0 a2r2 0
0 0 0 a2r2 sin2 ϑ






, (A.32)

where K is a constant related to curvature of space and a(t) is a function of time related to
expansion of space. Calculating the Einstein tensor from this metric gives

G0̂0̂ =
3

a2
(ȧ2 +K) (A.33)

G1̂1̂ = − 1

a2
(2äa+ ȧ2 +K) = G2̂2̂ = G3̂3̂. (A.34)

84“If you sneeze, the universe will collapse.”
85This statement does not appear in Einstein’s writings, but is reported by Gamow[41].
86In field theory, the fundamental physical objects are fields, and particles are just quanta of the field oscillations.

Vacuum means the ground state of the system, i.e., fields have those values which correspond to minimum energy.
This minimum energy is usually assumed to be zero (although this is not necessary). However, in quantum field
theory, the fields cannot stay at fixed values, because of quantum fluctuations. Thus even in the ground state the
fields fluctuate around their zero-energy value, contributing a positive energy density. This is analogous to the
zero-point energy of a harmonic oscillator in quantum mechanics.
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We use here the orthonormal basis (signified by theˆover the index).
We assume the perfect fluid form for the energy tensor

T µν = (ρ+ p)uµuν + pgµν . (A.35)

Isotropy implies that the fluid is at rest in the RW coordinates, so that uµ̂ = (1, 0, 0, 0) and
(remember, gµ̂ν̂ = ηµν = diag(−1, 1, 1, 1))

T µ̂ν̂ =







ρ 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p






. (A.36)

Homogeneity implies that ρ = ρ(t), p = p(t).
The Einstein equation Gµ̂ν̂ = 8πGT µ̂ν̂ becomes now

3

a2
(ȧ2 +K) = 8πGρ (A.37)

−2
ä

a
−
(
ȧ

a

)2

− K

a2
= 8πGp . (A.38)

Let us rearrange this pair of equations to87

(
ȧ

a

)2

+
K

a2
=

8πG

3
ρ (A.43)

ä

a
= −4πG

3
(ρ+ 3p) . (A.44)

These are the Friedmann equations. (“Friedmann equation” in singular refers to Eq. A.43.)

87Including the cosmological constant Λ these equations take the form

3

a2
(ȧ2 +K)− Λ = 8πGρ (A.39)

−2
ä

a
−

(

ȧ

a

)2

− K

a2
+ Λ = 8πGp . (A.40)

or, in the rearranged form,

(

ȧ

a

)2

+
K

a2
− Λ

3
=

8πG

3
ρ (A.41)

ä

a
− Λ

3
= −4πG

3
(ρ+ 3p) . (A.42)

We shall not include Λ in these equations. Instead, we allow for the presence of vacuum energy ρvac, which has
the same effect.
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C Numerical Constants

C.1 Defining constants

The following constants of nature are used to define SI units and therefore the given numerical
values are exact 88. The second equalities define the natural units we use in this course.

c = 299 792 458m/s = 1 defines meter

h = 6.626 070 15 × 10−34 Js = 2π defines kilogram (kg = Js2/m2)

kB = 1.380 649 × 10−23 J/K = 1 defines kelvin

e = 1.602 176 634 × 10−19 C defines ampere (A = C/s) (C.1)

C.2 Other constants of nature

G = 6.674 30 ± 15× 10−11 m3/kgs2

mPl = 1.220 890 ± 14× 1019 GeV (C.2)

C.3 Mathematical constants

Approximate values:

π ≈ 3.14159 26535 8979

e ≈ 2.71828 18284

ζ(3) ≈ 1.20205 69032

(C.3)

C.4 Astronomical units

Julian year ≡ 365.25 days = 31 557 600 s

light year = 9 460 730 472 580 800m (exact)

AU = 149 597 870 700m (2012 definition)

pc ≡ 3600 (180/π)AU ≈ 206 264.806 247AU

≈ 3.085 677 581 49 × 1016 m ≈ 3.261 564 light years

Hubble length H−1
0 = h · 2997.94258Mpc ≈ 4.283Gpc for h = 0.7 (C.4)

C.5 Cosmological quantities

Present CMB temperature [28]

T0 = 2.7255 ± 0.0006K

⇒ nγ0 =
2ζ(3)

π2
T 3
0 ≈ 410.73 photons/cm3

ργ0 = 2
π2

30
T 4
0 ≈ 4.6451 × 10−31 kg/m3 (C.5)

88physics.nist.gov/cuu/Units/current.html
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