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The research is motivated by the ongoing experimental programs and theoretical 
advances of the last two decades 

Experiments:

Experimental realization (1995-1999) of new classes of quantum “many-body” systems 
(degenerate ultra-cold atomic Bose and Fermi gases), 

current extensive study of their collective behavior
(non-relativistic, “many-body”, strongly interacting, non-equilibrium “cold” system)

Experiments on heavy ion collisions at  RHIC (2000-current) and LHC (2010-current)
(relativistic, “many-body”, strongly interacting, non-equilibrium “hot” system) 

Theory:
Gauge-string duality: A “new” (1997) non-perturbative  tool to study strongly interacting 

quantum systems 
(zero or finite temperature/density, relativistic and non-relativistic, equilibrium and

non-equilibrium) 

Romatschke and Romatschke, ``Relativistic Fluid Dynamics Out of Equilibrium : Ten Years of Progress in Theory and Numerical Simulations
of Nuclear Collisions,'' arXiv:1712.05815 [nucl-th]. Busza, Rajagopal and van der Schee, ``Heavy Ion Collisions: The Big Picture, and the 
Big Questions,’’ arXiv:1802.04801 [hep-ph].



Quantum field theories at finite temperature/density

Equilibrium Non-equilibrium
(Near-equilibrium)

entropy
equation of state
…….

transport coefficients
emission rates
………

perturbative non-perturbative
pQCD Lattice

perturbative non-perturbative
Kinetic theory Holography
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Entropy density of N=4 SYM in the planar limit
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Viscosity-entropy ratio in Unitary Fermi gas

G.Vlazlowski, P.Magierski, J.E.Drut, arXiv:1204.0270 [cond-mat.quant-gas]



Shear viscosity in                 SYM

Correction to            :  Buchel, Liu, A.O.S., hep-th/0406264

perturbative thermal gauge theory
S.Huot,S.Jeon,G.Moore, hep-ph/0608062

Buchel, 0805.2683 [hep-th]; Myers, Paulos, Sinha, 0806.2156 [hep-th]



Transport properties and analytic structure of correlation functions
in weakly interacting many-body quantum system (particles or quasiparticles)

Plan

Transport properties and analytic structure of correlation functions
in strongly interacting many-body quantum systems  (from holography - dual gravity)

Real systems are at intermediate coupling (e.g. QGP) 

The problem of interpolation between weak and strong coupling is non-trivial  

We compute (inverse) coupling corrections using two dual higher-derivative
actions - (Gauss-Bonnet) and          (dual to N=4 SYM)R2 R4



Weak coupling
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The hydrodynamic regime (continued)
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Kinetic equation

Linearized by

Leads to

For spatially homogeneous distributions:

Eigenvalue problem:

Solution:
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Spectrum of linearized kinetic operator

a) Discrete spectrum, U = ↵/r4

b) Continuous spectrum with a gap, U = ↵/rn, n > 4

c) Continuous gapless spectrum, U = ↵/rn, n < 4

d) Hod spectrum

Wang Chang & Uhlenbeck (1952), Grad (1963)



Relaxation time in kinetic theory (continued)
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The hierarchy of relaxation times is determined by the spectrum

of the  linearized kinetic operator
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Krook-Gross-Bhatnagar (KGB) equation (1959)

For weakly inhomogeneous systems:

Transport is then essentially determined by the relaxation time, e.g. shear viscosity is

⌘ = ⌧R s T



Of course, the situation is significantly more complicated
for generic weakly interacting quantum systems (relativistic or not)
at finite temperature and/or density

Resummations typically lead to effective kinetic theory (AGD, Popov, 
AMY++). Transport is determined by the spectrum of kinetic operator.
Partial results exist, yet e.g. the analytic structure of correlators of
gauge-invariant operators is generically unknown (but see recent work
by Guy D. Moore, 1803.0073).

A.Kurkela and U.A.Wiedemann, ``Analytic structure of nonhydrodynamic modes in kinetic theory,''
arXiv:1712.04376 [hep-ph].

G.D.Moore, ``Stress-stress correlator in phi^4 theory: Poles or a Cut?,’’ arXiv:1803.00736 [hep-ph].

P.Romatschke, ``Retarded correlators in kinetic theory: branch cuts, poles and hydrodynamic onset 
transitions,'' [arXiv:1512.02641 [hep-th]].



Strong coupling



M,J,Q
Holographically dual system

in thermal equilibrium

M, J, Q 

T       S

Gravitational fluctuations
(and fluctuations of other fields)

Deviations from equilibrium

????

and B.C.
Quasinormal spectrum

10-dim gravity
4-dim gauge theory – large N,
strong coupling

Birmingham, Sachs, Solodukhin, 2001; Son and AOS, 2002

A(0)
µ + aµ

”⇤”aµ = 0



In quantum field theory, the dispersion relations such as

appear as poles of the retarded correlation functions, e.g.

- in the hydro approximation -



Fluid dynamics is an effective theory valid in the long-wavelength, long-time limit

Fundamental degrees of freedom = densities of conserved charges

Equations of motion = conservation laws + constitutive relations^* 

�aJ
a = 0

)
�tJ

0 = D�2J0 + · · ·

�aT
ab = 0

Example I

Example II
)

Navier-Stokes eqs
Burnett eqs
…..

* Modulo assumptions e.g. analyticity

T ab = �uaub + P (�)
�
gab + uaub

�
+�ab + · · ·

** E.o.m. universal, transport coefficients depend on underlying microscopic theory

J i = �D⇥i J0 + · · ·



Consider relativistic neutral conformal fluid in a d-dimensional (curved) space-time

T ab = �uaub + P (�)
�
gab + uaub

�
+�ab + · · ·
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Including only terms with first and second  derivatives of fluid velocity: 

Transport coefficients (in conformal case):

Non-conformal case: 2 first order coefficients, 15 (10) second order coefficients 
(see S.Bhattacharyya, 1201.4654 [hep-th]) 

� , ⌅� ,⇥ ,⇤1 ,⇤2 ,⇤3



Beyond second order hydrodynamics

Tensors structures appearing in the derivative expansion have been analyzed using 
computer algebra in 1507.02461 [hep-th] by Grozdanov & Kaplis.

At third order, there are 20 relevant structures in the conformal case 
and 68 in the non-conformal one.

This still needs an entropy current analysis similar to the one in 
S.Bhattacharyya, 1201.4654 [hep-th]  
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Example: dispersion relations in conformal case

cs = 1/
p
3 � = �/(⇥+ P )Here



Notations used in the derivative expansion

D ⌘ uara

�ab ⌘ gab + uaub

Ahabi ⌘ 1

2
�ac�bd (Acd +Adc)�

1

d� 1
�ab�cdAcd ⌘ hAabi

�ab = 2hraubi

⇥ab =
1

2
�ac�bd (rcud �rduc)

*Hydro definitions differ in the literature – see footnote 91 on page 128 
of M.Haehl, R.Loganayagam, M.Rangamani, 1502.00636 [hep-th] 

See Appendix B in S.Grozdanov, AOS, 1611.07053 [hep-th]



Computing transport coefficients from �first principles�

Kubo formulae allows one to calculate transport 
coefficients from microscopic models 

In the regime described by a gravity dual the correlator
can be computed using gauge theory/gravity duality

Fluctuation-dissipation theory
(Callen, Welton, Green, Kubo)



Kubo formulas for second order transport coefficients

First order transport coefficients can be computed from two-point functions
of the corresponding operators using Kubo formulas
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Similarly, second transport coefficients can be computed from three-point functions
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Schwinger-Keldysh generating functional

Moore, Sohrabi, Saremi, 2010, 2011; Arnold, Vaman, Wu, Xiao, 2011



How to compute second order transport coefficients?

Fluid-gravity correspondence [Bhattacharyya et al, 2007]

Quasinormal spectrum [Baier et al, 2007]

Kubo formulas & three-point functions 
[Moore, Sohrabi, Saremi, 2010, 2011; Arnold, Vaman, Wu, Xiao, 2011]



First and second order transport coefficients of conformal
holographic fluids to leading order in supergravity approximation 
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Cuts versus poles: a mystery

Weak (vanishing) coupling

Singularities of a Green’s function in the complex frequency plane

Hartnoll, Kumar (2005)

Strong (infinite) coupling

AOS (2002)

We should be able to interpolate between the two limits…



Coupling constant corrections to N=4 SYM transport coefficients
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Curvature squared corrections to transport coefficients 
of a (hypothetical) strongly coupled liquid 
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Gauss-Bonnet corrections to transport coefficients 
of a (hypothetical) strongly coupled liquid 
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Non-perturbative Gauss-Bonnet corrections to transport coefficients 
of a (hypothetical) strongly coupled liquid 
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Poles (blue) and zeros (red) of a typical retarded correlator 
at infinite coupling (dual gravity results)
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Singularities of stress-energy tensor Green’s function
at infinite (black dots) and finite (black crosses and diamonds)

coupling

Earlier work: Stricker, 1307.2736 [hep-th]; Waeber, Schäfer, Vuorinen and Yaffe, 1509.02983 [hep-th].
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Quasinormal spectrum of Gauss-Bonnet black brane
vs

AdS-Schwarzschild black brane (numerical data)
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in different regimes of viscosity-entropy ratio (shear channel)
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On the “unreasonable effectiveness” of kinetic theory at strong coupling  
Recall that in kinetic theory � = const s ⇥R T

What happens at large but finite coupling, with �R = 1/|Im ⇥F | ?
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Breakdown of hydrodynamics at (large) finite coupling  

qc = qc(�)
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Figs from Paul Romatschke, 1512.02641 [hep-th]
See also A.Kurkela and U.Wiedemann, 1712.04376 [hep-ph]
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“Applicability of hydrodynamics” as a function of coupling 

Hydro OK

Hydro not applicable

“strong coupling” “weak coupling”



Transport peak of spectral functions at large finite coupling 

�
xy,xy
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Viscosity is determined by the height of the peak of the spectral function at w=0.

The peak is affected by the singularities of the correlator in the complex w plane.

What kind of singularities? Are they the same at weak and strong coupling?



Transport peak in QCD at finite temperature (sketch)
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Note: Black solid line is the spectral function at  infinite coupling
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Linear instability of black brane backgrounds in higher-derivative gravity 

Gubser, Klebanov and Tseytlin, hep-th/9805156; Pawelczyk and Theisen, hep-th/9808126
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Linear metric fluctuations satisfy e.o.m. of the type 



This can be re-written in Eddington-Finkelstein coordinates as
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The sign of the imaginary part of an eigenfrequency is determined by 
(Horowitz and Hubeny, 1999)
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The instability seems to be generic.

Konoplya and Zhidenko, 2017; Grozdanov, Gushterov, AOS, 2018



Conclusions & open questions

Finite coupling corrections seem to show qualitatively similar behavior irrespective of the 
precise structure of higher derivative terms  in dual gravity (we did R^2 and R^4)

How robust are the results (structure of higher derivative expansion)? 

We observe breakdown of hydrodynamics at coupling-dependent value of a wave-vector. The 
dependence on coupling suggests that hydrodynamics has a wider applicability range at

stronger coupling

Our results suggest that kinetic theory results may be formally still applicable
in the intermediate and strong coupling regime

where the use of kinetic theory itself cannot be justified. In particular, transport peak
is visible at large finite coupling due to inflow of poles. Compare to pQFT?

We observe qualitatively different analytic structure of correlators depending on whether 
�/s > 1/4⇥ or �/s < 1/4⇥

We observe linear instability of the dual metric at finite coupling. Need to explain this.
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