Axion: Mass Dark Matter Abundance Relation

Guy Moore, TU Darmstadt

With Vincent Klaer, Leesa Fleury

- Mystery 1: Dark Matter
- Mystery 2: T-symmetry of QCD
- The Axion: a solution to both mysteries?
- Early Universe cosmology of the axion
- How to predict the axion mass if it's the dark matter

Dark Matter: a Cosmic Mystery

> Atoms: Standard Model.
> Dark Energy: Cosmological Constant.
> Strange value, but possible
> Dark Matter: MYSTERY! NOT SM!

We only know 3 things about dark matter:

- It's Matter: gravitationally clumps.
- It's Dark: negligible electric charge, interactions too feeble to be detected except by gravity
- It's Cold: negligible pressure by redshift $z=3000$

Another mystery: T-symmetry in QCD

QCD Lagrangian built of Dim-4 gauge-invariant Lorentz scalars:

$$
\begin{aligned}
S_{(E)} & =\int d^{4} x \frac{1}{4 g^{2}} F_{\mu \nu}^{a} F_{a}^{\mu \nu}+\frac{(i) \Theta}{64 \pi^{2}} \epsilon_{\mu \nu \alpha \beta} F_{a}^{\mu \nu} F_{a}^{\alpha \beta} \\
\epsilon_{\mu \nu \alpha \beta} F_{a}^{\mu \nu} F_{a}^{\alpha \beta} & =\partial^{\mu} K_{\mu}, \quad K_{\mu}=\epsilon_{\mu \nu \alpha \beta}\left(A_{a}^{\nu} F_{a}^{\alpha \beta}+\frac{g f_{a b c}}{3} A_{a}^{\nu} A_{b}^{\alpha} A_{c}^{\beta}\right)
\end{aligned}
$$

Second term integrates to integer N_{I} on A-field singularities.

$$
\exp \left(-S_{E}\right)=\exp \left(-S_{\text {standard }}\right) \times \exp \left(i \Theta N_{I}\right)
$$

Introduces extra, T violating phase into path integral!
G. 't Hooft, PRL 37, 8(1976); R. Jackiw and C. Rebbi, PRL 37, 172 (1976);

Callan Dashen and Gross, Phys Lett 63B, 334 (1976)

Looking for T: Neutron EDM

Put neutron in \vec{B} field - spin lines up with \vec{B}.

Is there an Electric Dipole Moment (EDM) aligned with spin?
If so: looks different when movie runs backwards, \mathbf{T} viol!

Neutron EDM and Θ

Theory: Neutron electric dipole moment should exist,

$$
d_{n}=-3.8 \times 10^{-16} e \mathrm{~cm} \times \Theta
$$

so long as Θ is not zero! Guo et al, arxiv:1502.02295, assumes Θ, modulo 2π, is small

Experiment: Consistent with zero! Baker et al (Grenoble), arxiv:hep-ex/0602020

$$
\left|d_{n}\right|<2.9 \times 10^{-26} e \mathrm{~cm}
$$

Either $|\Theta|<10^{-10}$ by (coincidence? accident?) or there is something deep going on here.

Axion mechanism

Add singlet complex scalar and some extra UV DOF such that

$$
\mathcal{L}_{\varphi}=\partial^{\mu} \varphi^{*} \partial_{\mu} \varphi+\frac{m^{2}}{8 f_{a}^{2}}\left(\varphi^{*} \varphi-2 f_{a}^{2}\right)^{2}+\frac{\operatorname{Arg}(\varphi)}{32 \pi^{2}} F_{\mu \nu}^{a} \tilde{F}_{a}^{\mu \nu}
$$

True $\Theta_{\text {eff }}=\Theta+\theta_{A}$ with $\theta_{A}=\operatorname{Arg}(\varphi)$. QCD gives θ_{A} a potential:

$$
\begin{aligned}
V_{\mathrm{eff}}\left(\theta_{A}\right) & =-\frac{T}{\Omega} \ln \int \mathcal{D}\left(A_{\mu} \bar{\psi} \psi\right) \operatorname{Det}(\not D+m) e^{-\int \frac{F^{2}}{4 g^{2}}} \times e^{i\left(\Theta+\theta_{A}\right) \int \frac{F \tilde{F}}{32 \pi^{2}}} \\
& \simeq \chi(T)\left(1-\cos \left[\Theta+\theta_{A}\right]\right) \\
\chi(T) & =\left\langle\int d^{4} x \frac{F \tilde{F}(x)}{32 \pi^{2}} \frac{F \tilde{F}(0)}{32 \pi^{2}}\right\rangle_{\beta}
\end{aligned}
$$

Forces $\Theta+\theta_{A}=0$ automatically, dynamically.
Peccei Quinn PRL 38, 1440 (1977);
J. E. Kim, PRL 43, 103 (1979); Shifman Vainshtein and Zakharov, NPB 166, 493 (1980)

$\chi(T)$: what we expect

Low $T: \chi$-pt works. $\chi \simeq \frac{m_{u} m_{d}}{\left(m_{u}+m_{d}\right)^{2}} m_{\pi}^{2} f_{\pi}^{2}$
Hi T : standard pert-thy works(??)

Low $T: \chi\left(T \ll T_{c}\right)=(76 \pm 1 \mathrm{MeV})^{4}$ Cortona et al, arxiv:1511.02867
High $T: \chi\left(T \gg T_{c}\right) \propto T^{-8}$ Gross Pisarski Yaffe Rev.Mod.Phys.53,43(1981)
but with much larger errors.

Axion in cosmology

Assume first: φ starts homogeneous [inflation]
Classical axion field!
Starts oscillating around
$t=\pi m_{a}^{-1}$. Damped:

- Hubble drag
- effect of $d m_{a} / d t$

Pressureless:

Acts Like Dark Matter!

Osc. frequency $=$ axion mass: $\omega^{2}=m_{a}^{2}=\chi / f_{a}^{2}$

Dark matter density?

More dark matter if oscillations start larger or later:

$$
\rho_{\mathrm{dm}} \propto f_{a}^{7 / 8} \theta_{A \text { init }}^{2} \quad \text { (approximately) }
$$

- Large f_{a}, (small m_{a}): later transition from cosmological constant to matter, more final energy density
- Initial $\theta_{A \text { init }}$: larger value, larger starting amplitude.

Because $\theta_{A \text { init }}$ unknown, scenario is not predictive.

Initial state of φ field?

most likely: randomly different in different places!

- Inflation stretches quantum fluctuations to classical ones: $\Delta \varphi \sim H_{\text {inff. }}$. If $N_{\text {efolds }} H^{2}>f_{a}^{2}$, scambles field. If not: need $H<10^{-5} f_{a}$ to avoid excess "isocurvature" fluctuations in axion field
- Gets scrambled after inflation if Universe was ever really hot $T>f_{a} \sim 10^{11} \mathrm{GeV}$.

Predictive: if axion=dark matter and we solve dynamics, then \rightarrow predict f_{a}, m_{a}. L. Visinelli and P. Gondolo, PRL 103, 011802 (2014)
Bad: nonperturbative. Good: classical field theory!

Needed Ingredients

Predict relation between Dark Matter Density

 and Axion Mass assuming space-random starting angle.Challenges:

1. $\chi(T)$: needs Lattice Gauge Thy.
2. Axion field dynamics: classical but with large scale hierarchy $f_{a} / H \sim 10^{30} \gg 1$
3. Recent Borsany ete al 1000.07494 lattice results. Confirmation??

Claim: I can solve 2.

Obvious approach

Classical real-time lattice using Lagrangian
$\mathcal{L}=\partial_{\mu} \varphi^{*} \partial^{\mu} \varphi+\frac{\lambda}{8}\left(2-\varphi^{*} \varphi\right)^{2}-\chi(t) \operatorname{Re} \varphi$
$\varphi(t=0)$ random,
Hubble drag,
Count axions at end.

Fails: scale hierarchy actually relevant!

Axion strings

φ is a complex number - plot as a 2D arrow.

Field generically has vortices. 2D-points. 3D-strings.

Saariselkä, 5 April 2018 Slide 13 of 25

Domain walls

2D slice of evolution, When the potential tilts:

Layers of String Energy

$$
E_{\mathrm{str}}=\int d z \int d \phi \int r d r\left(\nabla \phi^{*} \nabla \phi \simeq f_{a}^{2} / 2 r^{2}\right) \simeq \pi \ell f_{a}^{2} \int_{\sim f_{a}^{-1}}^{\sim H^{-1}} \frac{r d r}{r^{2}}
$$

Series of "sheaths" around string:
equal energy in each $\times 2$ scale, 10^{30} scale range! $\ln \left(10^{30}\right) \simeq 70$.
Log-large string tension $T_{\text {str }}=\pi f_{a}^{2} \ln \left(10^{30}\right) \equiv \pi f_{a}^{2} \kappa$
Not reproduced by numerics (separation/core ~ 400)

Getting string tension correct MATTERS!

String dynamics are controlled by:

- String tension and inertia: $\propto \kappa \pi f_{a}^{2}$ FACTOR of κ
- String radiation and inter-string interactions: $\propto \pi f_{a}^{2}$ NO factor of κ

Relative importance of these effects, and string energy, are κ dependent

We really need to get this physics right!

Effective field theory

Integrate out string-cores out to radius r_{0} :
strings with tension $T=\kappa \pi f_{a}^{2}$ with $\kappa \equiv \ln \left(r_{0} f_{a}\right)$:

- Strings with tension T

$$
L_{\mathrm{NG}}=T \int d \sigma \sqrt{y^{\prime 2}(\sigma)\left(1-\dot{y}^{2}(\sigma)\right)}
$$

- Axion fields θ_{A}

$$
L_{\mathrm{GS}}=\int d^{3} x \frac{f_{a}^{2}}{2} \partial_{\mu} \theta_{A} \partial^{\mu} \theta_{A}+\chi\left(1-\cos \theta_{A}\right)
$$

- String-axion coupling

$$
L_{\mathrm{KR}}=\int d^{3} x A_{\mu \nu} J^{\mu \nu}
$$

Does anyone else have this effective theory?

Plan: find another model which also has:

- Strings obeying L_{NG}
- "Axion" fields obeying L_{GS}
- Coupling between them, L_{KR}

It can have extra DOF as long as I take a limit where they get heavy (along with $a \rightarrow 0$)

Trick: global strings, local cores

Theory with $U(1) \times U(1)$, one global one gauged:

$$
\begin{aligned}
\mathcal{L}\left(\varphi_{1}, \varphi_{2}, A_{\mu}\right)= & \frac{1}{4}\left(\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}\right)^{2} \\
& +\frac{\lambda}{8}\left[\left(2 \varphi_{1}^{*} \varphi_{1}-f^{2}\right)^{2}+\left(2 \varphi_{2}^{*} \varphi_{2}-f^{2}\right)^{2}\right] \\
& +\left|\left(\partial_{\mu}-i q_{1} e A_{\mu}\right) \varphi_{1}\right|^{2}+\left|\left(\partial_{\mu}-i q_{2} e A_{\mu}\right) \varphi_{2}\right|^{2}
\end{aligned}
$$

Pick $q_{1} \neq q_{2}$, say, $q_{1}=4, q_{2}=3$.
Two rotation symmetries, $\varphi_{1} \rightarrow e^{i \theta_{1}} \varphi_{1}, \varphi_{2} \rightarrow e^{i \theta_{2}} \varphi_{2}$
$q_{1} \theta_{1}+q_{2} \theta_{2}$ gauged, $q_{2} \theta_{1}-q_{1} \theta_{2}$ global (Axion)

Two scalars, one gauge field

String where each scalar winds by 2π :

B-field almost compensates

 gradients outside string.$$
f_{a}^{2}=f^{2} /\left(q_{1}^{2}+q_{2}^{2}\right)
$$

$$
T \simeq 2 \pi f^{2}, \quad \frac{d F}{d l}=\frac{f^{2}}{\left(q_{1}^{2}+q_{2}^{2}\right) r}, \quad \kappa_{\mathrm{eff}}=2\left(q_{1}^{2}+q_{2}^{2}\right)
$$

Higher
tension $=$
higher initial
density, longer lasting, hardier loops

Results

Axions produced vary mildly with increasing string tension

Results

- $10 \times$ string tension leads so $3 \times$ network density but
- only 40% more axions than with axion-only simulation,
- Fewer (78%) axions than $\theta_{A \text { init }}$-averaged misalignment
- Axionic string networks are very bad at making axions
- Results in less axion production.

Must be compensated by ligher axion mass.

Put it all together

Axion production: $\quad n_{\mathrm{ax}}\left(T=T_{*}\right)=(13 \pm 2) H\left(T_{*}\right) f_{a}^{2}$
Hubble law: $\quad H^{2}=\frac{8 \pi \varepsilon}{3 m_{\mathrm{pl}}^{2}}$,
Equation of state: $\quad \varepsilon=\frac{\pi^{2} T^{4} g_{*}}{30}, \quad s=\frac{4 \varepsilon}{3 T}, \quad g_{*}(1 \mathrm{GeV}) \simeq 73$
Susceptibility: $\quad \chi(T) \simeq\left(\frac{1 \mathrm{GeV}}{T}\right)^{7.6}\left(1.02(35) \times 10^{-11} \mathrm{GeV}^{4}\right)$
Dark matter: $\quad \frac{\rho}{s}=0.39 \mathrm{eV}$
One finds $T_{*}=1.54 \mathrm{GeV}$ and $m_{a}=26.2 \pm 3.4 \mu \mathrm{eV}$

Conclusions

- QCD "generically" violates T symmetry
- Axions: natural explanation, why \mathbf{T} viol not observed
- Dark matter density calculable if θ_{A} starts random
- Tricky network dynamics - new techniques needed
- Prediction: if $\mathrm{DM}=$ Axions, then $m_{a}=26.2 \pm 3.4 \mu \mathrm{eV}$.

We should go and look for axions, $m_{a} \sim 26 \mu \mathrm{eV}$!

How to look for axions

Generally axion also couples to ordinary electromagnetism

$$
\mathcal{L}=\ldots+\frac{\theta_{A}}{32 \pi^{2}} F_{\mathrm{QCD}}^{\mu \nu} \tilde{F}_{\mathrm{QCD}}^{\mu \nu}+\frac{K \theta_{A}}{32 \pi^{2}} F_{\mathrm{EM}}^{\mu \nu} \tilde{F}_{\mathrm{EM}}^{\mu \nu}
$$

Since θ_{A} varies with time,

$$
\begin{aligned}
J^{\nu} & =\partial_{\mu} F^{\mu \nu}+\partial_{\mu}\left(\frac{K \theta_{A}}{8 \pi^{2}} \epsilon^{\mu \nu \alpha \beta} \partial_{\alpha} A_{\beta}\right) \\
J^{\nu} & =\dot{E}_{i}+\nabla \times B_{i}+\frac{K \dot{\theta}_{A}}{8 \pi^{2}} B_{i}
\end{aligned}
$$

Axion turns B field into time-oscillating current!

MADMAX experiment Redondo et al 1611.05865

Spaced series of dielectrics, bathed in \vec{B} field

Oscillating current along dielectric interface \rightarrow microwave emission.
Dielectric sheet spacing \rightarrow constructive interference
$26 \mu \mathrm{eV} \simeq 6 \mathrm{Ghz} \simeq \lambda=5 \mathrm{~cm}$

What about Anthropic Principle?

Trendy Explanation for "coincidences" or "tunings"
Why is Cosmological Constant so small?
If it were 100 times bigger, matter would fly apart or collapse before life could evolve. Nature plays dice, universes with all values occur, but only universes with life get observed.

Why does QCD respect T symmetry?
If QCDviolated T , something would go wrong with nuclear physics, which would make life impossible. Nature plays dice, only universes where life is possible get observed. Except that life is fine in a world where $\Theta=10^{-2}$!

