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Outline

I Overoccupied, weak coupling dynamics in gauge theory
I Test case: isotropic self-similar overoccupied UV cascade
I Real time dynamics with classical fields

+ linearized fluctuations
Kurkela, T.L., Peuron, Eur. Phys. J. C 76 (2016) 688 [arXiv:1610.01355 [hep-lat]]

I Measure spectral and statistical functions for cascade
I Comparison to hard thermal loops (HTL):

plasmon dispersion relation, damping rate

Based on: Spectral function for overoccupied gluodynamics
from real-time lattice simulations,
K. Boguslavski, A. Kurkela, T.L., J. Peuron, arXiv:1804.01966
(today!)

Disclaimers
I Only gluons in this talk =⇒ definitely fire, not ice
I g ≈ 1/∞ (& Nc = 2, but this matters less)
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Overoccupied gauge fields

z  (beam axis)

t

strong fields classical EOMs

gluons & quarks out of eq. viscous hydrodynamics

gluons & quarks in eq.
ideal hydrodynamics

hadrons in eq.

freeze out

Heavy ion collision:
formation and dynamics of Quark-Gluon Plasma

I Initial stage dynamics dominated by saturation scale
Qs � ΛQCD; gluon field nonperturbative: AµAµ ∼ 1/αs

I Later: ∼thermal system, soft fields p . gT nonperturbative
Want to understand real time QCD systems with both

I Perturbative scale Q � ΛQCD =⇒ weak coupling αs � 1
I Fields (at least at some p) overoccupied

Aµ ∼ 1/g � 1 =⇒ can use classical field dynamics, g scales out
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Relation to hard loops (HTL)

Many numerical simulations of real-time HTL:
transport, plasma instabilities, sphalerons

too many references to list here . . .

I Explicitly separate treatment of hard ∼ Q (particles) and
soft ∼mD (field) modes =⇒ cannot go to large mD/Q
( Where to put cutoff mD � 1/a � Q?)

Idea here: all scales on same lattice =⇒ do not need mD � Q
I Physical situation initially in heavy ion collision: only Qs

I But can also have scale separation (on big, but doable, lattice)

I Hard+hard interactions classical =⇒ thermalize incorrectly,
but this is slower process (& often neglected anyway)

I Use as generalization of HTL picture?
I Can vary mD/Q smoothly
I Details of hard sector should not matter for HTL
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Test case: overoccupied cascade to UV

Extensively studied system:
Berges et al [arXiv:1203.4646 [hep-ph]] + . . . ,

Kurkela, Moore, [arXiv:1207.1663 [hep-ph]] + . . .

HTL/kinetic theory explains basic properties of numerics

I Start from isotropic
f (p) ∼ n0

g2 θ(p0 − p)
(actually smoother Gaussian)

I Later p0,n0 separately
don’t matter, only
ε ∼ Q4/g2

I Energy cascades
towards UV: largest
occupied pmax ∼ t1/7

I Typical
occupation∼ t−4/7

(at hard scale)

ln(p)

ln(f)

Thermal

f ~ 1

Initial condition

(eβp-1)-1

Self-similar cascade

p
max      

~ t1/7

f(p
max

)~ t-4/7

1/α

Q

Specifically define Q ≡ 4
√
ε/g2,

(ε conserved)
This work: choose Qt = 1500
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Debye or plasmon scale

Self-similar scaling

f (t ,p) = t−4/7fS(p/t1/7)

m2 ∼
∫

d3p
p

f (p)

=⇒ Soft scale goes as

m ∼ t−1/7

I Numerically verified
I Can dial m/Q or m/pmax

by looking at different t
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Yang-Mills on a real time lattice

Real-time numerics for classical field:
standard Hamiltonian lattice setup

I Gauge potential Ai , cov derivative Di = ∂i + ig[Ai , ·]
=⇒ link Ui(x) = eiagAi(x)

I Canonical conjugate electric field E i = ∂tAi

I Temporal gauge A0 = 0 ; constraint [Di , E i ] = 0 (Gauss’ law)

1st thing to measure: “Statistical function”

Fab
jk (x , x ′) =

1
2

〈{
Âa

j (x) , Âb
k (x ′)

}〉
I Measures (thermal) fluctuations ∼ particles in system ∼ f (p)

I Now field is classical Ai ∼ 1/g
=⇒ F is just 2-pt function of classical field

Fab
jk (x , x ′) =

〈
Ab

j (x)Ab
k (x ′)

〉
cl
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Linearized fluctuations on a real time lattice

The other independent correlator is the “spectral function”

ρab
jk (x , x ′) = i

〈[
Âa

j (x), Âb
k (x ′)

]〉
This is “quantum”, ∼ ~, but related to retarded propagator

GR(t , t ′,p) = θ(t − t ′) ρ(t , t ′,p).

Measure in classical theory: linear response

Âa
i (x)→ Âa

i (x) + âa
i (x) , 〈âb

i (x)〉 =

∫
d4x ′G bc

R,ik (x , x ′) jkc(x ′)

Algorithm for statistical function
I Perturb system with current jkc(x) = eik·xδ(t − t0)

I Follow linearized equations of motion for aa
i (x), ei

a(x)

I Correlate field aa
i (t) with current j ia(t0) =⇒ ρ(p, t)
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Transversely polarized mode

Same quasiparticles
in F and ρ?

Normalization:

I ∂tρ(t , t ′,p)
t→t′−→ 1

I ∂t∂t′F(t , t ′,p) ∼ f (p),
# particles in system

To compare, plot
∂tρ(t , t ′) and ∂t∂t′F(t,t′,p)

[t→t′]

I Very nice agreement!

I Same in frequency
t − t ′ → ω

=⇒ nice Lorentzian
I Even see a Landau cut;

line is HTL theory
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Longitudinally polarization mode

I Story very similar: good
agreement between
statistical and spectral

I Measurement harder:
peak weak at high p

I Linearized fluctuations
clearly much cleaner
Orange: statistical (i.e. bkg
field)
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Dispersion relation

I Overall shape agrees
with HTL

I Looking in more detail√
ω2 − p2 between HTL

prediction and pure
ω2 = m2 + p2

I Numerical estimate:
ωpl

m∞
= 0.96

where HTL prediction is

ωpl

m∞
=

√
2/3 ≈ 0.82
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(which we estimate using EE-correlator)

(ωpl ≡ ω(p→ 0), m∞ ≡mass gap at p→∞)



11/15

Dispersion relation

I Overall shape agrees
with HTL

I Looking in more detail√
ω2 − p2 between HTL

prediction and pure
ω2 = m2 + p2

I Numerical estimate:
ωpl

m∞
= 0.96

where HTL prediction is

ωpl

m∞
=

√
2/3 ≈ 0.82

0.8

0.9

1

0 1 2 3

C
o

m
b

in
a
ti

o
n

: 
 (

ω
T

2  -
 p

2 )0.
5  / 

m
H

T
L

Momentum: p / mHTL

Curve “HTL” uses m∞ from f (p)
(which we estimate using EE-correlator)

(ωpl ≡ ω(p→ 0), m∞ ≡mass gap at p→∞)



12/15

Longitudinal dispersion

I Difference between
T and L
qualitatively as
expected

I Functional form less
well reproduced —
but peak gets hard
to extract at high p
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Further HTL comparisons

Back to equal time correlators of fields . . .
For soft transverse fields HTL would predict a thermal

f (p) ∼ T
ω

with T = T∗ ≡
1
2

∫
p f (t ,p) (f (t ,p) + 1)∫

p
f (t,p)√
m2

∞+p2

∼ t−3/7

(classical fields: neglect 1 in (f + 1))

I Do not see this
functional form, and
normalization ∼

I Scale separation not
good enough?
Effect of magnetic
scale?
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Damping rate

Extract damping rate from decay of plasma oscillation
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Rough agreement with HTL (point at p = 0) :
I Does scale (in t) with same T∗ as it should
I Normalization also, but within large errors
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Conclusions

I Several aspects of a heavy ion collision exhibit
overoccupied f (p) ∼ 1/g2 =⇒ classical gauge field:

I Initial glasma fields: one scale problem p ∼ Qs
I Soft fields p ∼ gT in thermal system

I For controlled understanding of these fields:
new numerical algorithm for linearized fluctuations

I First test case: isotropic self-similar UV cascade
I Here ∃ scale separation =⇒ can compare to HTL, with

relatively good success
I Extract plasmon decay rate γ(p)

I Future:
I Viscosity, jet quenching?
I Anisotropic, expanding system:

plasma instabilities, isotropization

Thank you!
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Backup
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Gauge fixing

Gauge fixing: equal-time correlators in Coulomb gauge

I For unequal times: fix
Coulomb when
introducing current j / at
first time in statistical
function measurement,
not later

I Keeping Coulomb
gauge condition would
introduce gauge
artefacts in correlator
=⇒ to remove these
need to keep track of
A0
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Insensitivity to parameters

I Dispersion relation
I Damping rate
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Insensitivity to parameters

I Dispersion relation
I Damping rate
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