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Context
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Dimensionally reduced effective theory for hot QCD
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Developed for studying high-temperature thermodynamics.3

Remarkably,4 also applies to soft light-cone observables.5

3
P.H. Ginsparg, First and second order phase transitions in gauge theories at finite

temperature, NPB 170 (1980) 388; T. Appelquist and R.D. Pisarski, High-temperature Yang-
Mills theories and three-dimensional Quantum Chromodynamics, PRD 23 (1981) 2305.

4
S. Caron-Huot, O(g) plasma effects in jet quenching, 0811.1603.

5
e.g. M. Panero, K. Rummukainen and A. Schäfer, Lattice Study of the Jet Quenching

Parameter, 1307.5850; J. Ghiglieri et al, Next-to-leading order thermal photon production
in a weakly coupled quark-gluon plasma, 1302.5970.
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However the EQCD description fails close to Tc

Pure-glue transition is driven by Z(3) symmetry,6 which is not

explicit in EQCD. There is partial dynamical re-generation,7

however in practice non-perturbative EQCD does not work well.8
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6
B. Svetitsky and L.G. Yaffe, Critical Behavior at Finite Temperature Confinement

Transitions, NPB 210 (1982) 423.
7
K. Kajantie et al, Phase diagram of 3d SU(3) + adjoint Higgs theory, hep-lat/9811004.

8
A. Hietanen et al, Three-dimensional physics and the pressure of hot QCD, 0811.4664.
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Terminology

“hard scale” ∼ πT :

integrated out from QCD in order to arrive at EQCD.

“soft scale” ∼ mE ∼ gT , where g ≡
√

4παs:

mass/momentum scale of the EQCD field Aa
0.

“ultrasoft scale” ∼ g2T/π:

momentum scale of MQCD, obtained by integrating out Aa
0.
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Conceptual clarifications

Often pQCD is said to fail at any reasonable temperature,

because of large soft corrections, e.g. |NLO − LO|>∼ LO.

However, these effects can in principle be studied non-

perturbatively through EQCD.

More troublesome is poor convergence at the hard scale, which

is responsible for the breakdown of EQCD.
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3-loop hard correction to g2
E (= g2/[ZB + δZB]):
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What is the IR divergence?? (No counterpart in EQCD!)

9
I. Ghisoiu, Three-loop Debye mass and effective coupling in thermal QCD, PhD

thesis (2013) [https://pub.uni-bielefeld.de/publication/2632705]; I. Ghisoiu and
Y. Schröder, poster at SEWM14 [http://www.sewm14.unibe.ch/ghisoiu.pdf].
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Dimension-six operators
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Chapman action:10
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(This basis is slightly redundant, which offers for nice crosschecks.)

10
S. Chapman, A New dimensionally reduced effective action for QCD at high

temperature, hep-ph/9407313.
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Chapman coefficients

Because we are going to do loops with the Chapman operators,

their coefficients are needed in d = 3 − 2ǫ dimensions. It is

convenient to employ the background field gauge.11

A rather optimal way to determine the coefficients is from the

5-point function (20 independent colour/Lorentz structures).

(We also computed the 2-, 3- and 6-point functions.)

11
L.F. Abbott, The Background Field Method Beyond One Loop, NPB 185 (1981) 189.
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Leading-order results (d = 3 − 2ǫ)
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Operators coupling to c8, c9, c10 are “evanescent”.
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Loop effects from

dimension-six operators
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The goal now is to integrate out the scale mE

In other words we reduce EQCD into MQCD:
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background field gauge:
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(We keep g2
E, g

2
M dimensionless, showing T explicitly.)
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1-loop level (blobs stand for Chapman vertices)
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This is a finite contribution of O(g4mE/T ) ∼ O(g5).
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2-loop diagrams
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Summary: 1-loop and 2-loop results
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This cancels 1097
1098 of the IR divergence from hard scales!
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Intermediate summary

After integrating out the scales ∼ πT and ∼ mE, an IR

divergence remains in the effective gauge coupling.

This remaining “1/1098” can be expressed as (1098 = 61×18)
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Contribution from MQCD?
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Divergence from 2-loop graphs

Apart from many gauge-dependent finite contributions, there is

also a gauge-independent divergent contribution:
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The divergence cancels perfectly, and all is fine, provided that

dimension-six operators are included in EQCD and MQCD :)
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Purely soft effects

(= another 3-loop computation)
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Now integrate out mE without Chapman vertices

To distinguish these effects from the previous ones, we denote

the 2-point contribution by Z̃B + δZ̃B.

Direct computation up to 2 loops:12,13
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12
P. Giovannangeli, Two loop renormalization of the magnetic coupling in hot QCD,

hep-ph/0312307.
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3-loop computation of Z̃B + δZ̃B

We make use of standard automated tools: QGRAF for diagram

generation, integration-by-part identities (IBP) for systematic

reduction to masters, FORM for efficient implementation.14

The master integrals are all known in analytic form, e.g.15
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14
P. Nogueira, Automatic Feynman graph generation, J. Comput. Phys. 105 (1993)

279; S. Laporta, High precision calculation of multiloop Feynman integrals by difference
equations, hep-ph/0102033; A. von Manteuffel and C. Studerus, Reduze 2 - Distributed

Feynman Integral Reduction, 1201.4330; J. Kuipers, T. Ueda, J.A.M. Vermaseren and
J. Vollinga, FORM version 4.0, 1203.6543.

15
A.K. Rajantie, Feynman diagrams to three loops in 3d field theory, hep-ph/9606216.
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3-loop result after renormalization of m2
E:
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Again there is an uncancelled IR divergence.
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MQCD contribution

Now we consider Chapman operators induce by the scale mE.

δLMQCD =
g2
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2
+ igMc̃3 FijFjkFki} .

The coefficients read17
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1
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1
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.

17
Originally: P. Giovannangeli (unpublished, 2005); C.P. Korthals Altes, The unbearable

smallness of magnetostatic QCD corrections, 1801.00019.
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2-loop result from Chapman operators

The computation is like before, just with different coefficients.
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• divergences on both sides are gauge independent.

• all crosschecks we could think of have passed.

• but there is no cancellation :(
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A possible interpretation

EQCD is a confining theory, so physics at the scale m2
E may be

affected by non-perturbative ambiguities of O(g4T 2/π2).

This is clear for “physical states” (i.e. screening lengths)18, but

perhaps also for the IR-sensitivity of Lagrangian parameters?

Inserting an ambiguity inside the 1-loop result yields
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18
A.K. Rebhan, Non-Abelian Debye mass at next-to-leading order, hep-ph/9308232;

P.B. Arnold and L.G. Yaffe, The non-Abelian Debye screening length beyond leading order,
hep-ph/9508280.
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Conclusions
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Even if the Debye scale mE ∼ gT is formally larger than the

magnetic scale ∼ g2T
π , it plays an essential role in IR dynamics.

In terms of an IR divergence in the 3-loop gauge coupling, it is

1097 times more important than the magnetic scale.

Chapman operators are needed in EQCD for good precision, and

are a likely culprit for its failure close to Tc.

We also find “trouble” if we integrate out the Debye scale with

high precision: once Chapman operators are included in MQCD,

g2
M needs to be simultaneously determined non-perturbatively.
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