Holographic modeling of hot and cold QCD

Matti Järvinen

Utrecht University

"Fire and ice" workshop – Saariselkä – 5 April 2018

[arXiv:1112.1261, 1210.4516, 1312.5199 with Alho, Kajantie, Kiritsis, Rosen, Tuominen] [ongoing work with Jokela, Nijs, Remes]

- 1. Introduction and motivation
- 2. The V-QCD models
- 3. Comparing V-QCD with QCD data
- 4. Conclusions

1. Introduction

Motivation

- Behavior of QCD unclear at intermediate chemical potentials and small temperatures
 - Region relevant for neutron stars
- Large uncertainties also elsewhere (except for certain well known regions)
 - In particular in the EoS at finite μ and T
- Can (bottom-up) holography be used to reduce the uncertainties or to pick a favored EoS?

Modeling QCD in bottom-up holography

Idea: constrain holographic model using available data

- \blacktriangleright In particular, extrapolate lattice data to finite μ
- Complementary to the top-down approach

Goal: a good model of the (deconfined) QCD EoS for all ${\cal T}$ and μ Warning: work in progress!

2. V-QCD

Holographic V-QCD: the fusion

The fusion:

1. IHQCD: model for glue inspired by string theory (dilaton gravity)

[Gursoy, Kiritsis, Nitti; Gubser, Nellore]

2. Adding flavor and chiral symmetry breaking via tachyon brane actions

 $[{Klebanov, Maldacena; Bigazzi, Casero, Cotrone, Iatrakis, Kiritsis, Paredes}] \\$

Consider 1. + 2. in the Veneziano limit with full backreaction: $N_c \rightarrow \infty$ and $N_f \rightarrow \infty$ with $x \equiv N_f/N_c$ fixed \Rightarrow V-QCD models

[MJ, Kiritsis arXiv:1112.1261]

V-QCD at finite T and μ

Two bulk scalars: $\lambda \leftrightarrow g^2 N_c$, $\tau \leftrightarrow \bar{q}q$

$$S_{V-QCD} = N_c^2 M^3 \int d^5 x \sqrt{g} \left[R - \frac{4}{3} \frac{(\partial \lambda)^2}{\lambda^2} + V_g(\lambda) \right]$$
$$-N_f N_c M^3 \int d^5 x \ V_{f0}(\lambda) e^{-\tau^2}$$
$$\times \sqrt{-\det(g_{ab} + \kappa(\lambda)\partial_a \tau \partial_b \tau + \mathbf{w}(\lambda) F_{ab})}$$

$$F_{rt} = \Phi'(r) \qquad \Phi(0) = \mu$$

- Four functions V_g, V_{f0}, κ, w and two parameters: M and the dynamical energy scale Λ to be determined
- Find numerically black brane/horizonless saddle points with/without tachyon and compare free energies

[Alho,Kajantie,Kiritsis,MJ,Tuominen arXiv:1210.4516; Alho,Kajantie,Kiritsis,MJ,Rosen,Tuominen arXiv:1312.5199]

Constraining the potentials

In the UV ($\lambda \rightarrow 0$):

► UV expansions of potentials matched with perturbative QCD beta functions ⇒ asymptotic freedom and logarithmic flow of the coupling and quark mass, as in QCD

[Gürsoy, Kiritsis arXiv:0707.1324; MJ, Kiritsis arXiv:1112.1261]

In the IR $(\lambda \to \infty)$: various qualitative constraints

- Linear confinement, discrete glueball & meson spectrum, linear radial trajectories
- Existence of a "good" IR singularity
- Correct behavior at large quark masses
- Working potentials often string-inspired power-laws, multiplied by logarithmic corrections (i.e, first guesses usually work!)

[Gürsoy, Kiritsis, Nitti arXiv:0707.1349; MJ, Kiritsis arXiv:1112.1261; Arean, latrakis,

MJ, Kiritsis arXiv:1309.2286, arXiv:1609.08922; MJ arXiv:1501.07272]

Final task: determine the potentials in the middle, $\lambda = \mathcal{O}(1)$

Qualitative comparison to lattice/experimental data

Phase diagram: example

3. V-QCD: data comparison

Fitting: glue sector

Determine precise form of V_g(λ) with UV and IR asymptotics fixed (at N_f = 0)

- Follow roughly the strategy in [Gürsoy, Kiritsis, Mazzanti, Nitti arXiv:0903.2859]
- Stiff fit to large N_c YM lattice data [Panero, arXiv:0907.3719]

Fitting flavor sector: strategy

The different ongoing projects:

- 1. Overall fit to the properties of QCD: spectrum of mesons, glueballs, baryons, thermodynamics, decay constants,...
 - Not covered in this talk (results too preliminary)
- 2. Precision fit of QCD EoS at finite μ and ${\cal T}$
 - The rest of the talk
 - Fit to lattice data at μ = 0 as well as possible + require agreement with pQCD at large μ and T
 - Predict the EoS elsewhere
 - "Guided analytic continuation"
 - Rather constrained description even at μ = O(Λ_{QCD})
 - Related approach describes the critical point using Einstein-Maxwell-dilaton gravity

[DeWolfe, Gubser, Rosen, arXiv:1012.1864]

Possible caveats

- Comparing to data at N_c = 3: what about O(1/N_c) corrections?
- Issues due to sizeable N_f/N_c :
 - Unsuppressed open string loop corrections not properly treated?
 - Maybe I should write a different (more general?) Ansatz for the flavor/DBI action?
- Lattice data for 2 + 1 quarks, whereas I will set all quark masses to zero
- ► No critical point, 1st order transition at µ = 0, so how to fit lattice data which has a crossover?
 - Could matching with hadron resonance gas help? [Alho,Kajantie,Kiritsis,MJ,Tuominen, arXiv:1501.06379]
- All T = 0 solutions have finite entropy, sign of instabilities?

Fitting: flavor sector

Extrapolated EoS of cold QCD

16/18

Limit of high μ

All holographic EoSs hit the pQCD band

[A. Kurkela, P. Romatschke, A. Vuorinen arXiv:0912.1856]

Conclusions and outlook

- V-QCD EoS in the deconfined phase can be tuned to agree with lattice data and pQCD ⇒ a rough model for all (µ, T)
- The model is more general than just EoS
 - Dynamics can be studied directly in the model
 - Also finite B and CP-odd physics can be "turned on" [Arean, latrakis, MJ, Kiritsis arXiv:1609.08922; Gürsoy, latrakis, MJ, Nijs arXiv:1611.06339]
- Other ongoing projects:
 - Including baryons on the holographic side [with T. Ishii and G. Nijs]
 - Overall fit to QCD data, taking into account also meson and glueball spectra, decay constants, baryon mass
- Future work (?): flavor dependent quark masses

Extra slides

Limit of high T and μ

