

Plan

- When isn't there a Sign Problem?
- GN_{2+1}
- NJL_{3+1}
- NJL_{2+1}
- Bilayer Graphene
- excitonic condensate
- quasiparticle dispersion
- Friedel oscillations
- medium modification of σ propagator
- mesons and zero sound
- superfluid condensate and gap
- isospin chemical potential
- superfluid condensate
- helicity modulus

Thin film superfluid

- Summary

When isn't there a Sign Problem?

QCD simulations fail due to light qq $^{\text {c }}$ bound states carrying non-zero baryon charge

2 cases where this isn't an issue
A: $q \bar{q}$ and $q q^{c}$ states bind with different
dynamics and are not degenerate
eg. Gross-Neveu, NJL

Generic channel binding ~ O(1/N)

B: Goldstone baryons are a feature, not a bug
eg. $\mathrm{QC}_{2} \mathrm{D}$, isospin QCD, adjoint QCD, 6 in $\mathrm{SU}(4), 7$ in G_{2}, bilayer graphene....

Goldstone channel binding ~ O(1)
Today we're mostly focussed on Case A

Gross-Neveu model in $2+1$ dimensions...

$$
\mathcal{L}=\sum_{i=1}^{N_{f}} \bar{\psi}_{i}(\not \partial+m) \psi_{i}-\frac{g^{2}}{2 N_{f}}\left(\bar{\psi}_{i} \psi_{i}\right)^{2}
$$

... just about the simplest QFT with fermions
Can also write in terms of an auxiliary scalar σ :

$$
\mathcal{L}=\bar{\psi}_{i}\left(\not \partial+m+\frac{g}{\sqrt{ } N_{f}} \sigma\right) \psi_{i}+\frac{1}{2} \sigma^{2} .
$$

For $g^{2}>g_{c}^{2} \sim O\left(\Lambda^{-1}\right)$ the ground state has a dynamically-generated fermion mass $\Sigma_{0}=\frac{g}{\sqrt{N_{f}}}\langle\sigma\rangle \neq 0$ given in the $N_{f} \rightarrow \infty$ limit by the chiral Gap Equation

$$
\Sigma_{0}=g^{2} \operatorname{tr} \int_{p} \frac{1}{i p p+\Sigma_{0}}
$$

In same limit σ acquires non-trivial dynamics:

$$
D_{\sigma}^{-1}\left(k^{2}\right)=1-\Pi\left(k^{2}\right) \propto\left\{\begin{array}{cc}
k^{2}+4 \Sigma_{0}^{2} & k \ll \Sigma_{0} \\
k^{d-2} & k \gg \Sigma_{0}
\end{array}\right.
$$

\Rightarrow For $2<d<4$ model is unexpectedly renormalisable
ie. GN model has an UV-stable renormalisation group fixed point and an interacting continuum limit as $g \rightarrow g_{c}$.

In $2+1 d$ GN can be regarded as a fundamental QFT

In $3+1 d$ this property ceases to hold, and the GN model (like NJL) must be regarded as an effective field theory requiring an explicit UV cutoff.

GN Thermodynamics

The large- N_{f} approach can also to be applied to $T, \mu \neq 0$ and predicts a chiral symmetry restoring phase transition:

$$
\left.T_{c}\right|_{\mu=0}=\frac{\Sigma_{0}}{2 \ln 2} ;\left.\quad \mu_{c}\right|_{T=0}=\Sigma_{0}
$$

Remarkably, lattice Monte Carlo simulations can be applied to $N_{f}<\infty$ even for $\mu \neq 0$ Action is real!

There is even evidence for a tricritical point at small $\frac{T}{\mu}$!
[J.B. Kogut and C.G. Strouthos PRD63(2001)054502]

Fermi Surface Phenomena

Consider $q \bar{q}$ "jawbone" diagram

$$
C\left(\vec{y}, x_{0}\right)=\sum_{\vec{x}} \operatorname{tr} \int_{p} \int_{q} \Gamma \frac{e^{i p x}}{i p p+\mu \gamma_{0}+M} \Gamma \frac{e^{-i q x} e^{-i \vec{q} \cdot \vec{y}}}{i \phi q+\mu \gamma_{0}+M}
$$

$\mu<\mu_{c}$:
$C \propto \int_{0}^{\infty} p d p J_{0}(p y) e^{-2 x_{0} \sqrt{p^{2}+M^{2}}} \sim \frac{M}{x_{0}} e^{-2 M x_{0}} \exp \left(-\frac{\mid \vec{y}^{2} M}{4 x_{0}}\right)$
Gaussian width $O\left(\sqrt{ } x_{0}\right)$
$\mu>\mu_{c}:$
$C \propto \int_{\mu}^{\infty} p d p J_{0}(p y) e^{-2 p x_{0}} \sim \frac{\mu}{x_{0}} e^{-2 \mu x_{0}} J_{0}(\mu|\vec{y}|) \propto J_{0}\left(k_{F} y\right)$
Oscillatory profile; shape constant as x_{0}
y dependence yields Bethe-Salpeter wave function

GN on 32²×48 SJH, JB Kogut, CG Strouthos, TN Tran, PRD68 016005

Oscillations develop as μ Graphic evidence for existence of a sharp Fermi surface Why does free-field theory prediction work so well?

Hadron Wavefunctions in Two Color $\mathrm{QC}_{2} \mathrm{D}$

both meson and diquark channels

no Friedel oscillations, indicating a blurred Fermi surface?
\Leftrightarrow

superfluid gap
free field results

$\Delta>0$?

A Amato, P Giudice \& SJH, EPJA5 I 39

Fermion Dispersion relation

μ	K_{F}	β_{F}	$K_{F} / \mu \beta_{F}$
0.2	$0.190(1)$	$0.989(1)$	$0.962(5)$
0.3	$0.291(1)$	$1.018(1)$	$0.952(4)$
0.4	$0.389(1)$	$0.999(1)$	$0.973(1)$
0.5	$0.485(1)$	$0.980(1)$	$0.990(2)$
0.6	$0.584(3)$	$0.973(1)$	$1.001(2)$

The fermion dispersion relation is fitted with

$$
E(|\vec{k}|)=-E_{0}+D \sinh ^{-1}(\sin |\vec{k}|)
$$

yielding the Fermi liquid parameters

$$
K_{F}=\frac{E_{0}}{D} ; \quad \beta_{F}=D \frac{\cosh E_{0}}{\cosh K_{F}}
$$

σ Propagator in Quark Matter $\left(N_{f} \rightarrow \infty\right)$

Given by $D_{\sigma}^{-1}(k ; \mu)=1-\Pi(k ; \mu)=$
Static Limit $k_{0}=0: \quad D_{\sigma}^{-1}=\frac{g^{2}}{\pi}\left(\mu-\mu_{c}\right)$
Complete screening for $r>0 \quad \Leftrightarrow$ Debye mass $M_{D}=\infty$ Explains free-field Friedel oscillations

Zero Momentum Limit $\vec{k}=\overrightarrow{0}: D_{\sigma}^{-1}=\frac{g^{2}}{4 \pi \mu}\left[M_{\sigma}^{2}+k_{0}^{2}\right]$
Conventional boson of mass $M_{\sigma}=2 \sqrt{\mu\left(\mu-\mu_{c}\right)}$
Stable because decay into $q \bar{q}$ requires energy 2μ and is Pauli-blocked.
\Leftrightarrow Plasma frequency $\omega_{P}=M_{\sigma}$

Numerical Results with $N_{f}=4$

CR Allton, JE Clowser, SJH, JB Kogut, CG Strouthos PRD66 094511
In the bulk chirally symmetric phase ($g<g_{c}, \mu=T=0$), the σ correlator does not resemble that of a bound state, but rather a resonance with width Γ increasing as $g \searrow 0$ ie. $D_{\sigma}^{-1} \propto(k+\Gamma) \Rightarrow \rho_{\sigma}(\omega) \propto \frac{\Gamma \omega}{\omega^{2}+\Gamma^{2}}$

Numerical Results with $N_{f}=4$

In contrast with behaviour in the chirally-symmetric bulk phase, in quark matter the σ exhibits a sharply-defined pole at $M_{\sigma}(\mu)$ consistent with $O\left(1 / N_{f}\right)$ corrections to the leading order result $M_{\sigma}=2 \sqrt{\mu\left(\mu-\mu_{c}\right)}$ with $\mu_{c} a \approx 0.16$

Note σ tightly bound for $\frac{\mu-\mu_{c}}{\mu} \ll 1$

For states in motion must consider retarded propagator, yielding the dispersion relation

$$
E(\vec{k}) \simeq M_{\sigma}+\frac{|\vec{k}|^{2}}{4}\left(\frac{1}{M_{\sigma}}+\frac{1}{2 \mu}\right)
$$

\Rightarrow non-relativistic particle of mass 2μ as $\mu \rightarrow \infty$.

The σ dispersion relation $E(|\vec{k}|)$ is also modified as $\mu \nearrow$ in qualitative agreement with the large- N_{f} result.
Discretisation artifacts near the zone edge?

Meson Correlation Functions

For $\vec{k} \neq 0$ can always excite a particle-hole pair with almost zero energy \Rightarrow algebraic decay of correlation functions
$|\vec{k}| \ll \mu$
zero energy
pairs

$$
\Rightarrow C \sim \frac{1}{x_{0}^{2}}
$$

$|\vec{k}|=2 \mu$

Overhauser instability

$$
\Rightarrow C \sim \frac{1}{x_{0}^{3 / 2}}
$$

$|\vec{k}|>2 \mu$

$$
\Rightarrow C \sim \frac{e^{-(|\vec{k}|-2 \mu) x_{0}}}{x_{0}^{3 / 2}}
$$

Plots of $C_{\gamma_{5}}\left(\vec{k}, x_{0}\right)$ show special behaviour for $|\vec{k}| \approx 2 \mu$

eg. in the spin- 1 channel at $\mu a=0.6, C_{\gamma_{\perp}}$ (left) looks algebraic as predicted by free field theory, but $C_{\gamma_{\|}}$(right) decays exponentially.

The interpolating operator for $C_{\gamma_{\|}}$in terms of continuum fermions is $\bar{q}\left(\gamma_{0} \otimes \tau_{2}\right) q$
ie. with same quantum numbers as baryon charge density

Dispersion relation $E(|\vec{k}|)$ extracted from $C_{\gamma_{\|}}$
A massless vector excitation?

Longiludinal

Sounds Unfamiliar?

Light vector states in medium are of of great interest: Brown-Rho scaling, vector condensation. . . In the Fermi liquid framework a possible explanation is a collective excitation thought to become important as $T \rightarrow 0$: Zero Sound

Ordinary FIRST sound is a breathing mode
 of the Fermi surface: velocity $\beta_{1} \simeq \frac{1}{\sqrt{ } 2} \frac{k_{F}}{\mu}$

ZERO sound is a propagating distortion
 of the Fermi surface: velocity β_{0} must be determined self-consistently

Basic idea: dominant low energy excitations are quasiparticles carrying same quantum numbers as fundamental particles

Quasiparticle energy: $\varepsilon_{\vec{k}} \quad$ Width: $\sim\left(\varepsilon_{\vec{k}}-\mu\right)^{2}$
Equilibrium distribution: $n_{\vec{k}}=\left(\exp \left(\frac{\varepsilon_{\vec{k}}-\mu}{T}\right)+1\right)^{-1}$

$$
\text { For } \mathrm{T} \rightarrow 0 \quad \varepsilon_{\vec{k}} \simeq \mu+\beta_{F}\left(|\vec{k}|-k_{F}\right)
$$

The heart of Landau's approach is the variation of $\varepsilon_{\vec{k}}$ under small departures from equilibrium:

$$
\delta \varepsilon_{\vec{k}}=\int \frac{d^{2} \vec{k}^{\prime}}{(2 \pi)^{2}} \mathcal{F}_{\vec{k}, \vec{k}^{\prime}} \delta n_{\vec{k}^{\prime}}
$$

The Fermi Liquid Interaction is related to the 2-particle forward scattering amplitude

$$
\mathcal{F}_{\vec{k}, \sigma, \vec{k}^{\prime}, \sigma^{\prime}}=-\mathcal{M}_{\vec{k}, \sigma, \vec{k}^{\prime}, \sigma^{\prime}}
$$

Direct
attractive
vanishes in chiral limit

Exchange repulsive naturally $O\left(1 / N_{f}\right)$

$$
\begin{aligned}
\mathcal{F}_{\vec{k}, \vec{k}^{\prime}} & =\frac{g^{2}}{4 N_{f}}\left[1-\frac{\vec{k} \cdot \vec{k}^{\prime}}{\varepsilon_{\vec{k}} \varepsilon_{\overrightarrow{k^{\prime}}}}\right] D_{\sigma}\left(\varepsilon_{\vec{k}}-\varepsilon_{\overrightarrow{k^{\prime}}}, \vec{k}-\vec{k}^{\prime}\right) \\
& =\frac{\pi \mu}{N_{f} M_{\sigma}^{2}(\mu)}(1-\cos \theta)
\end{aligned}
$$

Since at Fermi surface $\varepsilon_{\vec{k}}-\varepsilon_{\vec{k}^{\prime}} \simeq 0$
we can take the static limit of D_{σ}.

Boltzmann equation in collisionless limit:

$$
\frac{s-\cos \theta}{\cos \theta} \Phi(\theta)=\frac{\mu \mathfrak{g}}{4 \pi^{2}} \oint_{\theta^{\prime}} \mathcal{F}_{\theta, \theta^{\prime}} \Phi\left(\theta^{\prime}\right)=G \int \frac{d \theta^{\prime}}{2 \pi}\left[R-\cos \left(\theta-\theta^{\prime}\right)\right] \Phi\left(\theta^{\prime}\right)
$$

for GN model $G \simeq \frac{\mathfrak{g} \mu}{8 N_{f}\left(\mu-\mu_{c}\right)}, R=\frac{2+G}{2-G}, s \equiv \frac{\beta_{0}}{\beta_{F}}$.

A solution with $s>1$ exists for almost all $\mu>\mu_{c}$
$\Phi(\theta)$ highly peaked in the forward direction

The NJL Model

Effective description of soft pions interacting with nucleons/constituent quarks

$$
\begin{aligned}
\mathcal{L}_{N J L} & =\bar{\psi}\left(\not \partial+m+\mu \gamma_{0}\right) \psi-\frac{g^{2}}{2}\left[(\bar{\psi} \psi)^{2}-\left(\bar{\psi} \gamma_{5} \vec{\tau} \psi\right)^{2}\right] \\
& \sim \bar{\psi}\left(\not \partial+m+\mu \gamma_{0}+\sigma+i \gamma_{5} \vec{\pi} \cdot \vec{\tau}\right) \psi+\frac{2}{g^{2}}\left(\sigma^{2}+\vec{\pi} \cdot \vec{\pi}\right)
\end{aligned}
$$

Introduce isopsin indices so full global symmetry is $\mathrm{SU}(2)_{L} \otimes \mathrm{SU}(2)_{R} \otimes \mathrm{U}(1)_{B}$
Dynamical χ SB for $g^{2}>g_{c}^{2} \Rightarrow$ isotriplet Goldstone $\vec{\pi}$
Scalar isoscalar diquark $\psi^{\text {tr }} C \gamma_{5} \otimes \tau_{2} \otimes A^{\text {color }} \psi$ breaks $\mathrm{U}(1)_{B}$
\Rightarrow diquark condensation signals high density ground state is superfluid

The NJL model informs phenomenology of colour superconductivity

Model is renormalisable in $2+1 d$ so $\mathbf{G N}$ analysis holds In $3+1 d$, an explicit cutoff is required. We follow the large- N_{f} (Hartree) approach of Klevansky (1992) and match lattice parameters to low energy phenomenology:

Phenomenological Observables fitted	Lattice Parameters extracted
$\Sigma_{0}=400 \mathrm{MeV}$	$m a=0.006$
$f_{\pi}=93 \mathrm{MeV}$	$1 / g^{2}=0.495$
$m_{\pi}=138 \mathrm{MeV}$	$a^{-1}=720 \mathrm{MeV}$ Barely a field theory!

The lattice regularisation preserves
$\operatorname{SU}(2)_{L} \otimes \mathrm{SU}(2)_{R} \otimes \mathrm{U}(1)_{B}$
SJH, DN Walters PRD69 076011

Equation of State and Diquark Condensation

Add source $j\left[\psi^{t r} \psi+\bar{\psi} \bar{\psi}^{t r}\right]$
Diquark condensate estimated by taking $j \rightarrow 0$
Our fits exclude $j \leq 0.2$

The Superfluid Gap

Quasiparticle propagator:

$$
\begin{aligned}
\left\langle\psi_{u}(0) \bar{\psi}_{u}(t)\right\rangle & =A e^{-E t}+B e^{-E\left(L_{t}-t\right)} \\
\left\langle\psi_{u}(0) \psi_{d}(t)\right\rangle & =C\left(e^{-E t}-e^{-E\left(L_{t}-t\right)}\right)
\end{aligned}
$$

Results from $96 \times 12^{2} \times L_{t}, \mu a=0.8$ extrapolated to $L_{t} \rightarrow \infty$ (ie. $T \rightarrow 0$) then $j \rightarrow 0$

The gap at the Fermi surface signals superfluidity

- Near transition, $\Delta \sim$ const, $\langle\psi \psi\rangle \sim \Delta \mu^{2}$
- $\Delta / \Sigma_{0} \simeq 0.15 \Rightarrow \Delta \simeq 60 \mathrm{MeV}$
in agreement with self-consistent approaches
$-\Delta / T_{c}=1.764$ (BCS) $\Rightarrow L_{t c} \sim 35$ explains why $j \rightarrow 0$ limit is problematic

Study of $\mu_{I}=\left(\mu_{u}-\mu_{d}\right) \neq 0$, reintroduces a sign problem!

partially quenched study of $\langle\bar{u} u\rangle$ vs $\langle\bar{d} d\rangle$ SJH, DN Walters NPhys.Proc.Suppl. 140532

baryon and isospin densities via imaginary μ_{1}

NJL Model in $\mathbf{2 + 1} d$

Condensate vanishes as

$$
\langle\psi \psi\rangle \propto j^{\frac{1}{\delta}}
$$

High density phase $\mu>\mu_{c}$ is critical, rather like the low-T phase of the $2 d$ XY model Kosterlitz \& Thouless (1973)
$\delta=\delta(\mu) \simeq 3-5 \quad$ Cf. $2 d$ XY model $\delta \geq 15$
New universality class due to massless fermions
No long-range ordering, but phase coherence

$$
\langle\psi \psi(0) \psi \psi(r)\rangle \propto r^{-\eta(\mu)} \Rightarrow \text { Thin Film Superfluidity }
$$

Use a twisted source $\quad j(x)=j_{0} e^{i \theta(x)} \quad$ with θ periodic so $\nabla \theta=2 \pi / L$

Expect $\vec{J}_{s}=\langle\bar{\psi} \vec{\gamma} \psi\rangle=\frac{2 \pi}{L} \Upsilon$ as $j_{0} \rightarrow 0$ where Υ is the helicity modulus

For $L_{s} \rightarrow \infty$ with $\mu \mathrm{a}=0.8$

$$
\Upsilon / \Sigma=0.200(2)
$$

SJH, AS Sehra PLB637 229

Relativity in Graphene

$$
H=-t \sum_{\mathbf{r} \in \mathbf{B}} \sum_{i=1}^{3} b^{\dagger}(\mathbf{r}) a\left(\mathbf{r}+\mathbf{s}_{i}\right)+a^{\dagger}\left(\mathbf{r}+\mathbf{s}_{i}\right) b(\mathbf{r})
$$

"tight-binding" Hamiltonian

describes hopping of electrons in π-orbitals from A to B sublattices and vice versa

Define modified operators $a_{ \pm}(\vec{p})=a\left(\vec{K}_{ \pm}+\vec{p}\right)$ yielding a "4-spinor" $\Psi=\left(b_{+}, a_{+}, a_{-}, b_{-}\right)^{t r}$

$$
\left.H \simeq v_{F} \sum_{\vec{p}} \Psi^{\dagger}(\vec{p})\left(\begin{array}{cc}
p_{y}-i p_{x}+i p_{x} & \\
& -p_{y}+i p_{x}
\end{array}\right) \Psi p_{y}-i p_{x}\right) \Psi(\vec{p})
$$

 with velocity $\quad v_{F}=\frac{3}{2} t l \approx \frac{1}{300} c$

$$
=v_{F} \sum_{\vec{p}} \Psi^{\dagger}(\vec{p}) \vec{\alpha} \cdot \vec{p} \Psi(\vec{p})
$$

For monolayer graphene the number of flavors $N_{f}=2$
(2 C atoms $/$ cell $\times 2$ Dirac points/zone $\times 2$ spins $=2$ flavors $\times 4$ spinor)

Bilayer graphene

Coupling $\gamma_{3} \neq 0$ results in trigonal distortion of band and doubles number of Dirac points Mucha-Kruczynski et al, PRB84(20 I I)04I 404

$$
\mathrm{N}_{\mathrm{f}}=4 \text { EFT description plausible for } \mathrm{ka} \leq \gamma_{1} \gamma_{3} / \gamma_{0}{ }^{2}
$$

Could also realise with a dielectric sheet sandwiched between two graphene monolayers

> Introduction of a bias voltage μ between the layers induces electrons on one, holes on the other.

Inter-layer exciton condensation driven by enhanced density of (e,h) states at Fermi surface leads to gap formation?

Bilayer effective theory

$$
\begin{aligned}
\mathcal{L} & =(\bar{\psi}, \bar{\phi})\left(\begin{array}{cc}
D[A ; \mu]+m & i j \\
-i j & D[A ;-\mu]-m
\end{array}\right)\binom{\psi}{\phi}+\frac{1}{2 g^{2}} A^{2} \\
& \equiv \bar{\Psi} \mathcal{M} \Psi \cdot+\frac{1}{2 g^{2^{2}}} A^{2}
\end{aligned}
$$

Bias voltage μ couples to layer fields ψ, φ with opposite sign (Cf. isospin chemical potential in QCD)

Intra-layer $(\psi \psi)$ and inter-layer $(\psi \phi)$ interactions have same strength "Gap parameters" m, j are IR regulators
"Covariant" derivative $D^{\dagger}[A ; \mu]=-D[A ;-\mu]$. inherited from gauge theory
为 $\operatorname{det} \mathcal{M}=\operatorname{det}\left[(D+m)^{\dagger}(D+m)+j^{2}\right]>0$ No sign problem! Case B
lattice sizes $32^{3}, 48^{3}$
$\left(g^{2} \mathrm{a}\right)^{-1}=0.4 \Rightarrow$ close to QCP on chirally symmetric side

$$
\text { Carrier Density } \quad n_{c}=\frac{\partial \ln Z}{\partial \mu}=\left\langle\bar{\psi} D_{0} \psi\right\rangle-\left\langle\bar{\phi} D_{0} \phi\right\rangle .
$$

Fit small- μ data:
$\mathrm{n}_{\mathrm{c}}(\mathrm{j}=0) \propto \mu^{3} \cdot \mathbf{3 2 (1)}$
Cf. free-field
$n_{c}{ }^{\text {free }} \propto \mu^{d} \propto \mu^{2}$
$\mathrm{NB} \mathrm{n}_{\mathrm{c}} \propto \mathrm{K}_{\mathrm{F}}{ }^{2}$ (Luttinger's theorem)

Observe premature saturation (ie. one fermion per site) at $\mu \mathrm{a} \approx 0.5$
(other lattice models typically saturate at $\mu \mathrm{a} \gtrless 1$)

$$
\Rightarrow \mu \mathrm{a}_{\mathrm{t}} \approx \mathrm{E}_{\mathrm{F}} \mathrm{a}_{\mathrm{t}}<\mathrm{k}_{\mathrm{F}} \mathrm{a}_{\mathrm{s}}
$$

no discernable onset $\mu_{0}>0$

$$
\mathrm{n}_{\mathrm{c}}^{\text {free }}(\mu) \ll \mathrm{n}_{\mathrm{c}}^{\text {free }}\left(\mathrm{k}_{\mathrm{F}}\right) \approx \mathrm{n}_{\mathrm{c}}(\mu)
$$

Exciton Condensate

$\langle\Psi \Psi\rangle \equiv \frac{\partial \ln Z}{\partial j}=i\langle\bar{\psi} \phi-\bar{\phi} \psi\rangle$

Fit small- μ data: $\langle\Psi \Psi(\mathrm{j}=0)\rangle \propto \mu^{2.39(2)}$

Cf. weak BCS pairing

$$
\langle\Psi \Psi\rangle \propto \Delta \mu^{d-1} \propto \mu ?
$$

rapid rise with μ to exceed free-field value; then peak at $\mu \mathrm{a} \approx 0.3$; then fall to zero at saturation

Exciton (ie superfluid) condensation, with no discernable onset $\mu_{0}>0$

Quasiparticle Dispersion

$<\Psi(\mathrm{k}) \bar{\Psi}(\mathrm{k})>\sim \mathrm{e}^{-\mathrm{E}(\mathrm{k}) \mathrm{t}}$

Normal $\quad C_{N}(\vec{k}, t)=\langle\psi(\vec{k}, t) \bar{\psi}(\vec{k}, t)\rangle=A e^{-E_{N} t}+B e^{-E_{N}\left(L_{t}-t\right)} ;$
Anomalous $C_{A}(\vec{k}, t)=\langle\psi(\vec{k}, t) \bar{\phi}(\vec{k}, t)\rangle=C\left[e^{-E_{A} t}-e^{-E_{A}\left(L_{t}-t\right)}\right]$.

Amplitudes A, B, C show crossover from holes to particles

Dispersions $\mathrm{E}(\mathrm{k})$ show k_{F} varying with μ with $\mathrm{k}_{\mathrm{F} \mathrm{a}_{\mathrm{s}}}>\mu_{\mathrm{a}}$

And the gap Δ ?

Again, consistent with a gapped Fermi surface with $\Delta / \mu=\mathrm{O}(1)$
Both Δ and k_{F} scale superlinearly with μ
This is a much more strongly correlated system than the GN model!

Summary

Simple models support rich behaviour once $\mu \neq 0$ which can be exposed with orthodox simulation techniques

- in-medium modification of interactions
- Friedel oscillations
- sound
- Fermi surface pairing
- thin-film superfluidity
- strongly-correlated superfluidity

Left hanging:
how can we identify a Fermi surface in a gauge theory?
what extra physics does the Sign Problem "buy" for us? superconductivity through pairing?

There is life beyond the Sign Problem!

