

Gravitational-wave constraints on the neutron-star-matter Equation of State

Eemeli Annala¹, Tyler Gorda¹, Aleksi Kurkela², Aleksi Vuorinen¹ 3 April 2018 — "Fire and Ice" Conference

¹University of Helsinki ²CERN, University of Stavanger

[arXiv: 1711.02644]

1. Matching EoSs: the idea

2. cEFT-pQCD EoS band Theory + Observations

3. Results: Plots

Matching: the idea

Source: Compressed Baryonic Matter (CBM) experiment

Source: Compressed Baryonic Matter (CBM) experiment

Source: Compressed Baryonic Matter (CBM) experiment

• Matching two (controlled) **perturbative** regimes can give us information about the complex, **nonperturbative** regime in between.

- Matching two (controlled) **perturbative** regimes can give us information about the complex, **nonperturbative** regime in between.
- This philosophy, applied to the QCD phase diagram at T = 0 can shed light on NSs and their properties.

- Matching two (controlled) **perturbative** regimes can give us information about the complex, **nonperturbative** regime in between.
- This philosophy, applied to the QCD phase diagram at T = 0 can shed light on NSs and their properties.
- Observations can further improve these conclusions.

cEFT-pQCD EoS band

We follow Kurkela et al. 2014 and match **cEFT** (Tews et al. 2013) to **pQCD** (Fraga et al. 2014, Kurkela et al. 2010) with *N* interpolating polytropes: $p_i(n) = \kappa_i n^{\gamma_i}$:

Kurkela et al. [arXiv:1402.6618], Fraga et al. [arXiv:1508.05019]

We follow Kurkela et al. 2014 and match **cEFT** (Tews et al. 2013) to **pQCD** (Fraga et al. 2014, Kurkela et al. 2010) with *N* interpolating polytropes: $p_i(n) = \kappa_i n^{\gamma_i}$:

Kurkela et al. [arXiv:1402.6618], Fraga et al. [arXiv:1508.05019]

We follow Kurkela et al. 2014 and match **cEFT** (Tews et al. 2013) to **pQCD** (Fraga et al. 2014, Kurkela et al. 2010) with *N* interpolating polytropes: $p_i(n) = \kappa_i n^{\gamma_i}$:

nuclear:
$$h/s \xrightarrow{\gamma_1 \dots \gamma_i} \mu_{1} \dots \mu_i \xrightarrow{\gamma_{i+1} \dots \gamma_N} pQCD: X \in [1, 4]$$

2*N* – 3 free parameters per polytropic EoS, plus nuclear & pQCD parameters.

Thermodynamic consistency, subluminality, matching to nuclear & pQCD, place stingent constraints on values of γ_i , μ_i .

In past, N = 2,3 taken to be sufficient: e.g.,

Kurkela et al. [arXiv:1402.6618], Fraga et al. [arXiv:1508.05019]

Our current procedure: Generate 90,000 3-trope and 170,000 4-trope matched EoSs that are

- thermodynamically consistent
- subluminal ($c_s^2 < 1$) everywhere

Take no constraints on the parameters ($\gamma_i \in [0, 15], \mu_i \in [\mu_{nucl}, \mu_{pQCD}]$, and $X \in [1, 4]$.) \therefore effectively allow for 1st order phase transitions.

We find EoSs to be roughly uniformly distributed in γ_i , μ_i and X so the entire parameter space is satisfactorily covered.

Observations

- 1. Old: existence of $2M_{\odot}$ star (Demorest et al. 2010, Antoniadis et al. 2013)
- 2. New: LIGO/Virgo GW constraint on tidal deformability: $\Lambda(1.4M_{\odot}) < 800$:

Results: Plots

 $\cdot \,\, 2M_\odot$ constraint removes small stars.

- $\cdot \ 2M_{\odot}$ constraint removes small stars.
- LIGO/Virgo constraint removes largest stars.
- Bounds: 9.9 km < $R(1.4M_{\odot})$ < 13.6 km $2.0M_{\odot} < M_{max} < 3.0M_{\odot}$

- $\cdot \ 2M_{\odot}$ constraint removes small stars.
- LIGO/Virgo constraint removes largest stars.
- Bounds: 9.9 km < $R(1.4M_{\odot})$ < 13.6 km $2.0M_{\odot} < M_{max} < 3.0M_{\odot}$

- $\cdot \ 2M_{\odot}$ constraint removes small stars.
- LIGO/Virgo constraint removes largest stars.
- Bounds: 9.9 km < $R(1.4M_{\odot})$ < 13.6 km $2.0M_{\odot} < M_{max} < 3.0M_{\odot}$

- $\cdot \ 2M_{\odot}$ constraint removes small stars.
- LIGO/Virgo constraint removes largest stars.
- Bounds: 9.9 km < $R(1.4M_{\odot})$ < 13.6 km $2.0M_{\odot} < M_{max} < 3.0M_{\odot}$
- Constraint on $0.6 \le \gamma_1 \le 6.7$, if first polytrope required to last until $1.5n_s$.

TIDAL DEFORMABILITIES

TIDAL DEFORMABILITIES

• $\Lambda(R) = 2.88 \times 10^{-6} (R/\text{km})^{7.5}$ approximates well.

• $2M_{\odot}$ constraint gives $\Lambda(1.4M_{\odot}) > 120.$

\wedge_1 vs. \wedge_2 of LIGO/Virgo measurment

 Good qualitative agreement with 90% contour: a different way to measure credence level.

\wedge_1 vs. \wedge_2 of LIGO/Virgo measurment

- Good qualitative agreement with 90% contour: a different way to measure credence level.
- Using 90% curve here instead: 9.9 km $< R(1.4M_{\odot}) < 13.8$ km 2.0M $_{\odot} < M_{max} < 3.0M_{\odot}$ Robust.

Summary

- No fully first-principles approach to the QCD EoS currently exists to apply to NSs.
- Matching cEFT to pQCD + observations provides constraints

- No **fully first-principles** approach to the QCD EoS currently exists to apply to NSs.
- Matching cEFT to pQCD + observations provides constraints
 - Bounds from $2M_{\odot}$ and LIGO/Virgo: 9.9 km < $R(1.4M_{\odot})$ < 13.6 km, 2.0 M_{\odot} < M_{max} < 3.0 M_{\odot}
 - Observational astronomy now providing stringent bounds on the collective properties of dense QCD matter.

Thank you!