Surprises in the Columbia plot

Philippe de Forcrand ETH Zürich & CERN

Fire and Ice, Saariselkä, April 7, 2018

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Ξ

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

Fire and Ice

Launch Audio in a New Window

BY ROBERT FROST (1874 - 1963)
Some say the world will end in fire,
Some say in ice.
From what I've tasted of desire
I hold with those who favor fire.
But if it had to perish twice,
I think I know enough of hate
To say that for destruction ice
Is also great
And would suffice.

Fire and Ice

QCD at finite temperature !

QCD at finite temperature !

No: in this talk, keep $\mu = 0$ but vary quark masses

Columbia plot: expectations for QCD-like theories vs Temperature

via crossover or

(Irst, 2nd order)

N. Christ et al, PRL 1990

- Hot: deconfined + chirally_symmetric phase diagramsatomu=
- Cold: confined + chirally broken

Upper right: YM w/ center symmetry Upper/Lower left: chiral symmetry

Columbia plot: expectations for QCD-like theories vs Temperature

- Goal: determine red lines & blue line, i.e. 2nd order transitions QCD phase diagram at mu=
- To check our understanding of phase diagram

Numerical simulations

- $\mu = 0$ No sign problem!
- Still, computer cost at $T \sim T_c \gg$ at $T \sim 0$: Nb. of Monte Carlo iterations to explore both phases
 - $\sim \xi^2$ for crossover or second-order transition $\sim \exp^{L_s^2}$ for first-order transition Need box $L_s^3 \times 1/T$, $(L_sT) \gg 1$ cf. finite-size effects
- Further large factor for chiral limit $m_q \rightarrow 0$
- Continuum limit: $T \sim T_c, N_t = 4$ time-slices $\rightarrow a \sim 0.3$ fm

 \implies Need $N_t \gtrsim 12$

Wilson versus staggered in the crossover region

The good news: thermodynamics of stout-smeared staggered and Wilson "agree perfectly" (Fodor et al, 1205.0440)

Note: $N_f = 2 + 1, m_\pi = 545 \text{ MeV}, m_K = 614 \text{ MeV}, a \searrow 0.057 \text{ fm}$

Warm-up: Yang-Mills SU(3), upper right corner m_{s}

- L(x) Polyakov loop (closed by finite-T b.c.)
- Order parameter $|\langle \mathrm{Tr}L \rangle| = \exp(-F_q/T)$
- Global center symmetry: $L(x) \to \exp(i\frac{2\pi}{3})L(x) \ \forall x$ ("large gauge transformation" \to action invariant)
- Deconfinement transition: $|\langle \mathrm{Tr}L \rangle| = 0$ (low T) $\rightarrow \neq 0$ (high T)

Order of the transition: Svetitsky-Yaffe conjecture

Svetitsky-Yaffe (1982): any gauge group G, (d+1) dimensions

• Suppose transition is second-order $(\xi \to \infty)$

Long-range physics governed by fluctuations of order parameter $\text{Tr}L \to H_{\text{eff}}$ If $H_{\text{eff}}(\text{Tr}L)$ is short-range, then only symm. group and dimension matter

Universality class is that of ker(G) symm. d-dim. scalar field theory

• Consequences: IF second-order transition **THEN** $SU(2) \sim 3d$ Ising? True $SU(3) \sim 3d$ Z_3 ? no known such univ. class \rightarrow first-order? $Sp(2) \sim 3d$ Ising? NO: first-order hep-lat/0312022 Svetitsky-Yaffe does NOT predict order of transition

SU(3) Yang-Mills deconfinement transition is first-order

Allowed domain in complex plane for $\operatorname{Tr} L$, $L \in SU(3)$

Upper right corner?

QCD phase diagram at mu=0

- Deconfinement transition
- First-order for pure gauge
- $m_q^{\rm crit} \sim \mathcal{O}(2-3) \ {\rm GeV} \gg T_c$
 - \rightarrow need large N_t

(and $N_t \ll N_s$: multiscale problem)

• So far, $N_t^{\max} = 8$ Philipsen et al. $(am_\pi^{\text{crit}} \sim 2)$ I609.05745

Upper and lower left corners? Pisarski & Wilczek

QCD phase diagram at mu=0

• Chiral transition: all $m_q = 0$

(1984)

- Global symmetry $SU(N_f)_A$
- spontaneously broken/restored at T_c
 - Order parameter $\langle \bar{\psi}\psi \rangle$
 - IF 2nd order,

THEN univ. class of $3d \ SU(N_f)$

•
$$N_f = 2 \rightarrow O(4)$$

•
$$N_f \geq 3 \rightarrow$$
 first-order

from Ginzburg-Landau analysis

Pisarski & Wilczek critique

- Argument does not exclude first-order (for $N_f = 2$)
- Global symmetry $SU(N_f)_A \to U(N_f)_A$ if $U(1)_A$ restored at T_c
- Ginzburg-Landau analysis of effective potential for $\langle \bar{\psi}\psi \rangle$

may **FAIL**:

Vicari et al.: $3d \ ACP^{N-1}$ (1706.04365) $3d \ ARP^{N-1}$ (1711.04567)

- 6-loop G-L analysis: No stable fixed point \rightarrow **first-order**
- Monte Carlo: solid evidence for second-order transition

Explanation?? - 6-loop not enough??

(w/T. Rindlisbacher) - gauge d.o.f. absent from Ginzburg-Landau potential

Pisarski & Wilczek critique

Summary:

- When 2nd-order predicted, may still be first-order
- When first-order predicted, may still be 2nd-order

Zero predictive power!

Renewed interest in Monte Carlo simulations...

Upper left corner

- Technical difficulty: chiral limit
- Bypass difficulty with *imaginary chemical potential*

- Extended Columbia plot
- Red surfaces are 2nd-order PT

bounded by tricritical lines

Magenta point separates O(4) [above] and first-order [below] \rightarrow track blue line

Upper left corner

Results: staggered fermions, $N_t = 4$ 1311.0473, 1408.5086

- Scaling consistent with tricritical point (mean field in 3d)
- $(\mu = 0, m_q = 0)$ point is in the first-order region

Pisarski & Wilczek wrong ? to be confirmed on finer lattices

1711.05658

Chirad Imit With physical marsh et al.

Lower left corner: critical pion mass $N_f = 3$

- Tune quark mass for 2nd order thermal transition
- Measure T = 0 pion mass

or
$$m_\pi/T_c$$

Varnhorst, LAT14:	N_t	action	$m_{\pi,c}$	Ref.	
	4	stagg.,unimproved	$\sim 260{ m MeV}$	[5]	Karsch et al, 2001
More improvement.	6	stagg.,unimproved	$\sim 150{ m MeV}$	[6]	PdF & OP, 2007
more smearing	4	stagg.,p4	$\sim 70{ m MeV}$	[7]	Karsch et al, 2004
\downarrow	6	stagg.,stout	$\leq 50 \text{MeV}$	[8]	Endrodi et al, 2007
smaller m_{π}	6	stagg.,HISQ	\leq 45 MeV	[9]	Karsch et al, 2011
	6	Wilson-Clover	$\sim 135{ m MeV}$	[4]	Ukawa et al, 2014

The first-order region is small

Staggered vs Wilson, $N_f = 3$: agreement when $a \rightarrow 0$?

Considerable discrepancy for $N_t = 4, 6$. Extrapolate?

Staggered vs Wilson, $N_f = 3$: agreement when $a \rightarrow 0$?

Considerable discrepancy for $N_t = 4, 6$. Extrapolate? Discretization error $\mathcal{O}(100\%)$ for staggered and Wilson!

Staggered vs Wilson, $N_f = 3$: agreement when $a \rightarrow 0$?

- Need finer lattices for reliable extrapolation: $N_t = 6 \Rightarrow a \sim 0.2 \text{ fm}$
- Careful: (am_q) decreases much faster than a:

Can "rooting"
$$(\det_{KS})^{3/4}$$
 be playing tricks on us?
Famous quote: "rooting is evil" (Mike Creutz)
 \bigvee
Check universality for $N_f = 4$
(bonus: cheaper, because m_{π}/T_c increases)

Staggered $N_f = 4, N_t = 4, 6, 8, 10$

w/ M.D'Elia 1702.00330

• Determine critical quark mass the usual way: $B_4(\bar{\psi}\psi) = 1.604$

3d-Ising finite-size scaling Here, $N_t = 4 \rightarrow am_q^{\text{crit}} = 0.0548(11)$ Then, at $T = 0: m_\pi (am_q^{\text{crit}})/T_c = 2.39(1)$ Staggered $N_f = 4, N_t = 4, 6, 8, 10$

w/ M.D'Elia 1702.00330

 m_{π}/T_c consistent with zero (with large error) in continuum limit

Caveats: spatial size too small, finite-size scaling incomplete, stats..

- $N_f = 4$: no rooting here
- "Taste" doublers? effective N_f increases as $a \to 0$ Larger N_f makes transition stronger (ie. opposite effect)
- Vicari et al.: failure of Pisarski & Wilczek ?

Wilson-clover, $N_f = 3$, $N_t = 4, 6, 8, 10$

Wilson $N_f = 3$ qualitatively similar to staggered $N_f = 4$

Conclusions

- Pisarski & Wilczek make NO trustworthy prediction
- The time is ripe for revisiting the Columbia plot
- Catering C

Thank you Aleksi!

Thank you Aleksi!

Now I believe in Santa Claus!

Center symmetry

• Consider "center transformation" ("large gauge transformation" in continuum):

$$U_4(x,\tau_0) \rightarrow \underbrace{\exp\left(i\frac{2\pi}{N}k\right)}_{z_k \in \mathbb{Z}_N} U_4(x,\tau_0) \quad \forall x; \quad \tau_0 \quad \text{fixed}$$

- space-like plaquettes unaffected

- time-like plaquettes at $\tau = \tau_0$ multiplied by $z_k \times z_k^{\dagger} = 1$ (z_k commutes with all links)

Action
$$S_L = \beta \sum_{\Box} \frac{1}{N} \operatorname{ReTr} \Box$$
 invariant

- But Polyakov loop rotated: $L(x) \to z_k L(x) \ \forall x$, ie. $\langle \text{Tr}L \rangle \longrightarrow z_k \langle \text{Tr}L \rangle$
 - Center symmetry realized $\Longrightarrow \langle {\rm Tr}L
 angle = 0$, ie. confinement - Center symmetry spontaneously broken $\Longrightarrow \langle {\rm Tr}L
 angle
 eq 0$, ie. deconfinement

Note: "inverse" symmetry breaking, i.e. at high temperature (YM: less disorder at high T)

• Complex generalization of non-linear σ -model

•
$$z_x \in C^N, |z_x|^2 = 1$$

•
$$H = -J \sum_{\langle x,y \rangle} |z_x^{\dagger} \cdot z_y|^2$$

• Global symmetry: $z_x \to \Omega_G \ z_x \ \forall x, \ \Omega_G \in U(N)$

Local symmetry: $z_x \to \Omega_L(x) \ z_x$, $\Omega_L(x) \in U(1)$

•
$$ACP^{N-1}$$
: $J < 0 \rightarrow z_x \perp z_y$ in ground-state

• RP^{N-1} : same but $z_x \in R^N \to \Omega_G \in O(N), \ \Omega_L(x) \in \mathbb{Z}_2$