Realistic Equation of State for Neutron Star Mergers

Veronica Dexheimer and Jacob Roark

Phys.Rev. C81 (2010) 045201 Phys.Rev. C88 (2013) 014906 Publ. Astron. Soc. Aust. 34 (2017) e066 **ArXiv 1803.02411 (Mar 2018)** * Neutron Star Structure:

- nuclear saturation density $\rho_0 \sim 0.15 \text{ fm}^{-3} (0.25 \text{ x} 10^{15} \text{ g/cm}^3)$

- * QCD Phase Diagram:
 - very little information at low temperature
 - strength of transition
 - population

- neutron star mergers?

* Assuming Continuous Line:

- results from CMF model (no mixtures of phases)

* CMF (Chiral Mean Field) Model:

- extended non-linear realization of SU(3) sigma model
- uses pseudo-scalar mesons as parameters of chiral transformation
- includes baryon octet (+ leptons) and quarks
- fitted to reproduce nuclear, lattice QCD and astrophysical constraints
- effective masses

$$m_{b}^{*} = g_{b\sigma}\sigma + g_{b\delta}\tau_{3}\delta + g_{b\zeta}\zeta + \delta m_{b} + g_{b\Phi}\Phi^{2}$$
$$m_{q}^{*} = g_{q\sigma}\sigma + g_{q\delta}\tau_{3}\delta + g_{q\zeta}\zeta + \delta m_{q} + g_{q\Phi}(1 - \Phi)$$

- 1st order phase transitions or crossovers (order parameters $\sigma, \ \Phi)$

- potential for Φ (deconfinement)

$$U = (a_0 T^4 + a_1 \mu^4 + a_2 T^2 \mu^2) \phi^2 + a_3 T_0^4 \ln (1 - 6\phi^2 + 8\phi^3 - 3\phi^4)$$

- * Neutron Star Matter: Local vs Global Charge Neutrality:
 - absence / presence of mixture of phases: surface tension ???
 - "mixed" quantities like $\rho_B = \lambda \rho_B^Q + (1 \lambda) \rho_B^H$

* Non-congruent Phase Transitions:

- more than one globally conserved charge within 2 macroscopic phases within a Coulomb-less model: baryon #, electric charge
- local concentration of a charges vary during phase transition
- same chemical potential (assoc. to charge) in both phases (μ_q)
- very different from symmetric matter liquid-gas (LGS)

- * More Comparisons with Nuclear L-G:
 - Clausius-Clapeyron equation

$$\frac{dP}{dT} = \frac{s^I - s^{II}}{1/\rho_B^I - 1/\rho_B^{II}}$$

$$\label{eq:sq_II} \begin{split} &-s_{q}{}^{\rm II} > s_{h}{}^{\rm I} \,, \, \rho_{Bq}{}^{\rm II} > \rho_{Bh}{}^{\rm I} \\ & {\rm so } \; dP/dT < o \; for \; deconfinement! \end{split}$$

- heavy ion collisions

200

150

100

50

0

10⁻¹

2

T [MeV]

 more than one conserved charge (baryon #, isospin) but a congruent phase transition! (µ_q=0)

jump

5

 $\rho_{\rm B}$ [fm⁻³]

1

- *****Asymmetric Matter:
 - heavy ion collisions with $Y_0 = 0.3$

HIAS

HIAS

2

200

150

100

50

0

10⁻¹

T [MeV]

- more than one conserved charge (baryon #, charge fraction): non-congruent phase transition! $\tilde{\mu} = \mu_B + Y_Q \mu_Q$

200

* Proto-Neutron-Star Matter:

- * Perturbative QCD:
 - figure from: Fraga, Kurkela and Vuorinen, Astrophys. J. 2014
 - 3-flavor QGP at zero temperature including β -equilibrium and charge neutrality

- Bag model failure !

- * Perturbative limit at T=0
 - Chiral EoS until central density of most massive star (~2 M_{Sun})
 - no vector interactions for quarks

* Perturbative limit at finite temperature

- * Conclusions and Outlook
 - more investigation of high density part of phase diagram is required! Signature for 1st order phase transition from astrophysics?
 - better understanding of congruent/non-congruent deconfinement phase transitions: finite temperature description, unified EOS (used for L-G transitions) and that provides particle population
 - we already have a 3D star merger hadronic EoS table available online at CompOSE (Publ. Astron. Soc. Aust. 34 (2017) e066)
 - we are testing the effects of quarks on star mergers using a 3D table
 - we are about to include magnetic field and quark pairing effects