Numerical relativity in the aftermath of GW170817

Luke Bovard – Fire and ice: Hot QCD meets cold and dense matter – 03.04.2018

NSF/LIGO/Sonoma State University/A. Simonnet

Gravitational Waves

- Distortions of spacetime predicted by Einstein in 1916
- Indirectly observed in the Hulse-Taylor binary in 1974
- Directly observed from a merger of binary black holes on September 14th, 2015 by LIGO

 $⁽Abbott \ 2016)$

strain $h \sim \Delta L/L \sim 10^{-21}$

Animation created by T. Pyle, Caltech/MIT/LIGO Lab

The Gravitational Wave Spectrum

NASA Goddard Space Flight Center

Masses in the Stellar Graveyard

Caltech/MIT/LIGO

LIGO/University of Oregon/Ben Farr

Caltech/MIT/LIGO

BH-BH in NR

NR simulations of BH-BH mergers agree perfectly with observations

GW170817

- On August 17th, 2017 LIGO detected a NS-NS merger
- Not just in the GW spectrum! EM counterpart also observed
- Waveform only inspiral
- Still can constrain EOS

GW170817

	Low-spin priors $(\chi \le 0.05)$	High-spin priors $(\chi \le 0.89)$
Primary mass m_1	$1.36-1.60 M_{\odot}$	1.36–2.26 M _☉
Secondary mass m_2	$1.17 - 1.36 M_{\odot}$	$0.86 - 1.36 M_{\odot}$
Chirp mass \mathcal{M}	$1.188^{+0.004}_{-0.002} M_{\odot}$	$1.188^{+0.004}_{-0.002} M_{\odot}$
Mass ratio m_2/m_1	0.7-1.0	0.4–1.0
Total mass $m_{\rm tot}$	$2.74^{+0.04}_{-0.01}{M}_{\odot}$	$2.82^{+0.47}_{-0.09}{M}_{\odot}$
Radiated energy $E_{\rm rad}$	$> 0.025 M_{\odot}c^{2}$	$> 0.025 M_{\odot} c^2$
Luminosity distance $D_{\rm L}$	40^{+8}_{-14} Mpc	40^{+8}_{-14} Mpc
Viewing angle Θ	$\leq 55^{\circ}$	$\leq 56^{\circ}$
Using NGC 4993 location	$\leq 28^{\circ}$	$\leq 28^{\circ}$
Combined dimensionless tidal deformability $\tilde{\Lambda}$	≤ 800	≤ 700
Dimensionless tidal deformability $\Lambda(1.4M_{\odot})$	≤ 800	≤ 1400
Dimensionless tidal deformability $\Lambda(1.4M_{\odot})$	≤ 800	≤ 1400

GW170817

(Abbott 2017)

(Abbott 2017)

How to constrain the EOS

Slides courtesy of Luciano Rezzolla

Inspiral: well approximated by PN/EOB; tidal effects important

Merger: highly nonlinear but analytic description possible

post-merger: quasi-periodic emission of bar-deformed HMNS

Collapse-ringdown: signal essentially shuts off.

A BNS merger in frequency space

100 Mpc

Read et al. (2013)

Extracting information from the EOS Takami, LR, Baiotti (2014, 2015), LR+ (2016)

A new approach to constrain the EOS

Oechslin+2007, Baiotti+2008, Bauswein+ 2011, 2012, Stergioulas+ 2011, Hotokezaka+ 2013, Takami 2014, 2015, Bernuzzi 2014, 2015, Bauswein+ 2015, Clark+ 2016, LR+2016, de Pietri+ 2016, Feo+ 2017, Bose+ 2017 ...

A spectroscopic approach to the EOS

 $\begin{aligned} \text{Oechslin} + 2007, \ \text{Baiotti} + 2008, \ \text{Bauswein} + \ 2011, \ 2012, \ \text{Stergioulas} + \ 2011, \ \text{Hotokezaka} + \ 2013, \ \text{Takami} \ 2014, \ 2015, \ \text{Bernuzzi} \ 2014, \ 2015, \ \text{Bauswein} + \ 2015, \ \text{Clark} + \ 2016, \ \text{LR} + 2016, \ \text{de Pietri} + \ 2016, \ \text{Feo} + \ 2017, \ \text{Bose} + \ 2017 \ ... \end{aligned}$

merger frequency

Quasi-universal behaviour

Quasi-universal behaviour: inspiral

"surprising" result: quasi-universal behaviour of GW frequency at amplitude peak (Read+2013)

Many other simulations have confirmed this (Bernuzzi+ 2014, Takami+ 2015, LR+2016).

Quasi-universal behaviour in the inspiral implies that once f_{max} is measured, so is tidal deformability

Quasi-universal behaviour: post-merger

We have found quasiuniversal behaviour: i.e., the properties of the spectra are only weakly dependent on the EOS.

This has profound implications for the analytical modelling of the GW emission: "what we do for one EOS can be extended to all EOSs."

Quasi-universal behaviour: post-merger

• Important correlation also between compactness and deformability

- Correlations with Love number found also for high frequency peak <u>f</u>₂.
- This and other correlations are weaker but equally useful.

Non-GW observations Electromagnetic Counterparts

NSF/LIGO/Sonoma State University/A. Simonnet

Electromagnetic Counterparts

• What can we learn about the EOS from E&M follow-up?

- Observational channels
 - SGRBs
 - *r*-process
 - kilonova

(Abbott et al. 2017 ApJL)

⁽Abbott et al. 2017 ApJL)

EOS constraints?

What object could power the SGRB?

- merger remnant collapsed to a rotating BH with disk that powered the SGRB (Shibata et al. 2006)
- merger formed a rapidly rotating, strongly magnetized NS (millisecond magnetar) with an accretion disk (Metzger et al. 2008)
- Not very constraining, better can be done: see talks later today

The Origin of the Solar System Elements

1 H		big	bang t	fusion	<		cosi	mic ray	/ fissio	n ·							2 He
3 Li	4 Be	merging neutron stars?					exploding massive stars 📓				5 B	6 C	Z Z	8 O	9 F	10 Ne	
11 Na	12 Mg	dying low mass stars				exploding white dwarfs 🧖				13 Al	14 Si	15 P	16 S	17 Cl	18 Ar		
19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 1	54 Xe
55 Cs	56 Ba		72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn
87 Fr	88 Ra																
			57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
			La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu

Pu

Np

Very radioactive isotopes; nothing left from stars

Graphic created by Jennifer Johnson http://www.astronomy.ohio-state.edu/~jaj/nucleo/

89

Ac

Th

Pa

Astronomical Image Credits: ESA/NASA/AASNova

Fernández & Metzger 2013

Magnetic driven wind~ O(50 ms)

Siegel et al. 2014

Temperature $\sim 0.01-100 \text{ MeV}$ Electron fraction $\sim 0.0 - 0.5$ Density $\sim 10^{3-} 10^{15} \text{ g/cm}^{3}$

(Bovard et al. 2017)

Mass ejection

(Bovard et al. 2017)

Mass ejection

Changing selection criteria can change mass ejection by factor of 3 (Bovard et al. 2017)

(Bovard et al. 2017)

Detectability

adapted from Hotokezaka 2015, Rosswog 2017

Nucleosynthesis

(Bovard et al. 2017)

Nucleosynthesis

r-process is robust against changes in EOS, initial masses, mass ratio

(Bovard et al. 2017)

Kilonova

- Where do the heavy elements come from? Rapid neutron capture (r-process) is main formation channel
- Need neutron rich astrophysical site for main source of r-process: supernovas (some) or neutron star mergers (confirmed)
- r-process material undergoes radioactive decay (Li & Paczyński 1998) and emits radiation in a kilonova
- Modeling still has a long way to go (see reviews by Metzger 2017, Tanaka 2016)

Angular Ye distribution

Electron fraction distribution directly influences kilonova lightcurve

(Bovard et al. 2017)

Angular mass distribution

(Bovard 2017)

Kilonova estimates

$$t_{\text{peak}} = 4.9 \text{ days} \times \left(\frac{M_{ej}}{10^{-2}M_{\odot}}\right)^{\frac{1}{2}} \left(\frac{\kappa}{10\text{cm}^2\text{g}^{-1}}\right)^{\frac{1}{2}} \left(\frac{v_{\text{ej}}}{0.1}\right)^{-\frac{1}{2}},$$

$$L_{\text{peak}} = 2.5 \cdot 10^{40} \text{erg s}^{-1} \times \left(\frac{M_{ej}}{10^{-2}M_{\odot}}\right)^{1-\frac{\alpha}{2}} \left(\frac{\kappa}{10\text{cm}^2\text{g}^{-1}}\right)^{-\frac{\alpha}{2}} \left(\frac{v_{\text{ej}}}{0.1}\right)^{\frac{\alpha}{2}},$$

$$T_{\text{peak}} = 2200\text{K} \times \left(\frac{M_{ej}}{10^{-2}M_{\odot}}\right)^{-\frac{\alpha}{8}} \left(\frac{\kappa}{10\text{cm}^2\text{g}^{-1}}\right)^{-\frac{\alpha+2}{8}} \left(\frac{v_{\text{ej}}}{0.1}\right)^{\frac{\alpha-2}{8}}.$$

Grossman et al. 2014

• $\alpha = 1.3$

Kilonova observations before GW170817

(Tanaka 2016)

Kilonova observations after GW170817

Photometry for GW170817

kilonova.space

Kilonova

Kilonova light curves depends sensitively on initial mass, mass ratio, EOS

(Bovard et al. 2017)

Kilonova properties

Table 1: Key Properties of GW170817							
Property	Value	Reference					
Chirp mass, M (rest frame)	$1.188^{+0.004}_{-0.002} M_{\odot}$	1					
First NS mass, M_1	$1.36 - 1.60 M_{\odot}$ (90%, low spin prior)	1					
Second NS mass, M_2	$1.17 - 1.36 M_{\odot}$ (90%, low spin prior)	1					
Total binary mass, $M_{\text{tot}} = M_1 + M_2$	$\approx 2.74^{0.04}_{-0.01} M_{\odot}$	1					
Observer angle relative to binary axis, θ_{obs}	$11 - 33^{\circ}$ (68.3%)	2					
Blue KN ejecta $(A_{\text{max}} \lesssim 140)$	$pprox 0.01 - 0.02 M_{\odot}$	e.g., 3,4,5					
Red KN ejecta $(A_{\text{max}} \gtrsim 140)$	$\approx 0.04 M_{\odot}$	e.g., 3,5,6					
Light r-process yield $(A \lesssim 140)$	$\approx 0.05 - 0.06 M_{\odot}$						
Heavy r-process yield $(A \gtrsim 140)$	$pprox 0.01 M_{\odot}$						
Gold yield	$\sim 100-200 M_\oplus$	8					
Uranium yield	$\sim 30-60 M_{\oplus}$	8					
Kinetic energy of off-axis GRB jet	$10^{49} - 10^{50} \text{ erg}$	e.g., 9, 10, 11, 12					
ISM density	$10^{-4} - 10^{-2} \mathrm{~cm^{-3}}$	e.g., 9, 10, 11, 12					

Metzger 2017

Ejecta requirements

Metzger 2017

WAGER II: What year will the first EM-GW detection you believe will be?

14

- 2017:0
- 2018: Albino
- 2019: Mansi, Bruno, Shibata, Oliver, Luke, Cristine, Stephan, Siegel, Tominaga, Brian
- 2020:Kasen, Rodrigo, Yong, Gabriel, Phil, Francois, Edo, Masaomi, Kenta, Eddie, Meng
- Next Decade: Tsvi, Sasha
- Never: 0

Conclusions

- GW170817 has opened the door to gravitational wave multi-messenger astronomy providing multiple channels to constrain the EOS
- With 1 observation, already can constrain the EOS through inspiral, but post-merger is where things really get interesting!
- GW170817 tells us we need sophisticated microphysics (e.g. advanced neutrino evolution schemes) and long term evolution in our simulations to interpret observations → feed input into kilonova models
- More fully temperature-dependent EOSs are needed to better explore parameter space in NR simulations