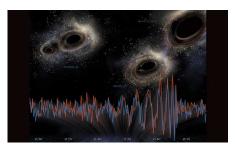
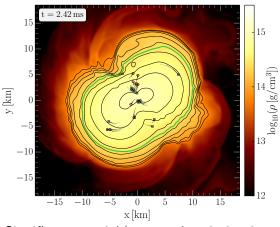
Transport and dissipation in neutron star mergers

Prof. Mark Alford Washington University in St. Louis


Alford, Bovard, Hanauske, Rezzolla, Schwenzer arXiv:1707.09475

Outline

- ► Neutron star mergers
- ► Thermal conductivity
- ► Bulk viscosity
- Conclusions


Neutron star mergers

LIGO has seen black hole mergers And one neutron star merger.

- Neutron star mergers are believed to be an important site for nucleosynthsis of heavy elements (e.g Gold), so they should occur often enough to account for the observed abundances.
- ▶ If we can achieve a quantitative understanding of neutron star mergers, perhaps we could use their gravitational wave, electromagentic, and neutrino signals to learn about properties of nuclear matter under extreme conditions

Nuclear material in a neutron star merger

Density: up to 4 n_{sat}

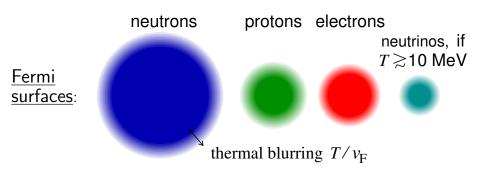
Temperature: 5 to 20 MeV

Significant spatial/temporal variation in:
temperature
fluid flow velocity
density

so we need to allow for thermal conductivity shear viscosity bulk viscosity

Summary

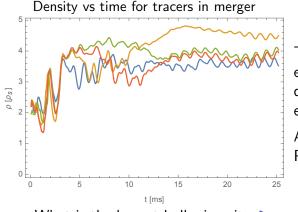
- ▶ It is useful to have estimates of the equilibration times for various forms of dissipation, to decide which is the most important.
- ► Thermal equilibration: If neutrinos are trapped, and there are short-distance temperature gradients then thermal transport might be fast enough to play a role.


$$\tau_{\kappa}^{(\nu)} \approx 700 \text{ms} \, \left(\frac{z_{\text{typ}}}{1 \, \text{km}}\right)^2 \left(\frac{T}{10 \, \text{MeV}}\right)^2 \left(\frac{0.1}{x_p}\right)^{1/3} \left(\frac{m_n^*}{0.8 \, m_n}\right)^3 \left(\frac{\mu_e}{2\mu_\nu}\right)^2$$

- Shear viscosity: similar conclusion.
- Bulk viscosity: If Direct Urca processes remain suppressed at the relevant densities and temperatures, bulk viscosity will quickly damp density oscillations

$$au_{\zeta}^{\mathrm{min}} pprox 3 \, \mathrm{ms} \, \left(rac{t_{\mathrm{comp}}}{1 \, \mathrm{ms}}
ight) \, \left(rac{\mathcal{K}}{250 \, \mathrm{MeV}}
ight) \left(rac{0.25 \, \mathrm{MeV}}{Y_{\zeta}}
ight)$$

Nuclear material constituents


Temperature: 5 to 20 MeV Density: up to 4 $n_{\rm sat}$

neutrons: $\sim 90\%$ of baryons $p_{Fn} \sim 350 \, \text{MeV}$ protons: $\sim 10\%$ of baryons $p_{Fp} \sim 150 \, \text{MeV}$ electrons: same density as protons $p_{Fe} = p_{Fp}$ neutrinos: only present if mfp $\lesssim 1 \, \text{km}$ $p_{F\nu} \sim \frac{1}{2} p_{Fe}$

Bulk viscosity: compression dissipation

Bulk viscosity turns compression energy of density oscillations into heat.

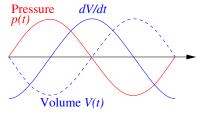
Tracers (co-moving fluid elements) show dramatic density oscillations especially in the first 5 ms.

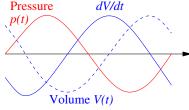
Amplitude: up to 50% Period: \sim 2 ms

- ▶ What is the largest bulk viscosity ζ_{max} we could expect?
- What is the equilibration time τ_{ζ} ? le how long does it take for bulk viscosity to dissipate a good fraction of the energy of a density oscillation?

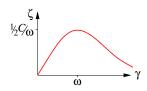
Bulk viscosity: phase lag in system response

Some component in the material is equilibrating slowly. Baryon density n and hence fluid element volume V gets out of phase with applied pressure p:


Dissipation =
$$-\int p \, dV = -\int p \, \frac{dV}{dt} dt$$


No phase lag. Dissipation = 0

Some phase lag. Dissipation > 0

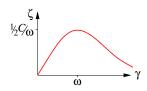


Bulk viscosity: a resonant phenomenon

Bulk viscosity is maximum when

(internal equilibration rate)
$$~\sim~$$
 (freq of density oscillation) $~\sim~$ $~\omega~$

$$\zeta = C \frac{\gamma}{\gamma^2 + \omega^2}$$


What quantity would equilibrate on the timescale of the density oscillations in neutron star mergers (milliseconds)?

Bulk viscosity: a resonant phenomenon

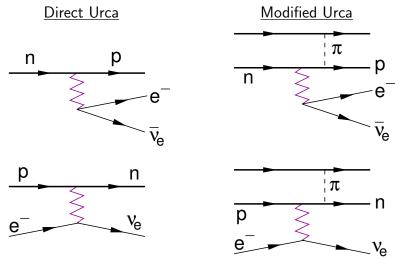
Bulk viscosity is maximum when

(internal equilibration rate)
$$~\sim~$$
 (freq of density oscillation) $~\sim~$ $~\omega~$

$$\zeta = C \frac{\gamma}{\gamma^2 + \omega^2}$$

What quantity would equilibrate on the timescale of the density oscillations in neutron star mergers (milliseconds)?

Flavor, via weak interactions


Bulk viscosity and flavor equilibration

When you compress nuclear matter, the proton fraction wants to change.

Weak interactions convert $n \leftrightarrow p$

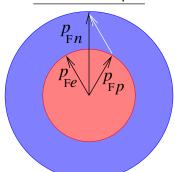
But exactly what is the timescale? Is it similar to the millisecond timescale of density oscillations in neutron star mergers?

Flavor equilibration processes

Only occurs if proton density is high enough: $p_{Fn} < p_{Fe} + p_{Fp}$

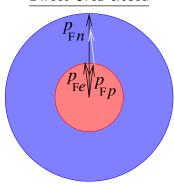
Rate
$$\gamma_D \sim T^4$$

$$\gamma_{
m M}\sim {\it T}^{
m 6}$$


When can Direct Urca happen?

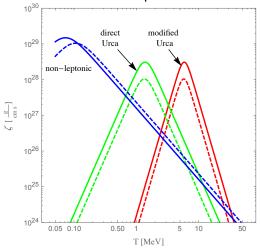
$$n
ightarrow p \ e^- \ ar{
u}_e, \quad p \ e^-
ightarrow n \
u_e$$

For T=0 and the case of no neutrino trapping $(\mu_{\nu}=0)$


High proton fraction:

<u>Direct Urca open</u>

$$\vec{p}_n = \vec{p}_p + \vec{p}_e$$
 is possible because $p_{Fn} < p_{Fp} + p_{Fe}$


Low proton fraction: Direct Urca closed

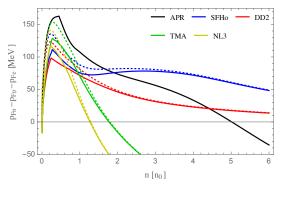
$$\vec{p}_n = \vec{p}_p + \vec{p}_e$$
 is impossible because $p_{Fn} > p_{Fp} + p_{Fe}$

Bulk viscosity: resonant peak

For oscillations of freq $\omega = 2\pi \times 1\,\mathrm{kHz}$

Bulk visc reaches maximum when flavor equilibration rate $\gamma(T) = \omega$.

Direct Urca is faster, so $\gamma_D(T) = \omega$ at $T \sim 1 \, \text{MeV}$ ζ suppressed at $T \gtrsim 5 \, \text{MeV}$


 $\gamma_M(T) = \omega$ at $T \sim 7 \, \text{MeV}$ ζ_{max} is determined by EoS, indp of equilibration rate

Modified Urca is slower, so

Typical temperature in first 5ms of post-merger (where density oscillations are large) is 5-20 MeV, so we expect strong bulk viscosity if the Direct Urca channel is suppressed (proton density low).

Does Direct Urca occur?

Direct Urca happens when
$$p_{Fn} < p_{Fe} + p_{Fp}$$

i.e. when $p_{Fn} - p_{Fe} - p_{Fp} < 0$

At T=0, there is no consensus among candidate nuclear matter equations of state about the threshold density for Direct Urca.

Need to consider:

- Thermal effects
- Interaction effects
- Gradual opening of Direct Urca phase space
- ullet Effects of u_e trapping

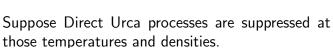
The amount of bulk visc dissipation is a probe of the nuclear EoS

Bulk viscosity equilibration time

Density oscillation of amplitude Δn on timescale t_{comp} :

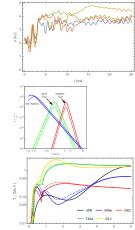
$$n(t) = \bar{n} + \Delta n \cos(2\pi t/t_{\text{comp}})$$

Energy of density oscillation:
$$\mathcal{E}_{\text{comp}} = \frac{K}{18} \bar{n} \left(\frac{\Delta n}{\bar{n}} \right)^2$$


Compression dissipation rate:
$$W_{\text{comp}} = \frac{2\pi^2 \zeta}{t_{\text{comp}}^2} \left(\frac{\Delta n}{\bar{n}}\right)^2$$

Damping Time:
$$au_{\zeta} = rac{\mathcal{E}_{\mathrm{comp}}}{W_{\mathrm{comp}}} = rac{K \bar{n} \, t_{\mathrm{comp}}^2}{36 \pi^2 \, \zeta}$$

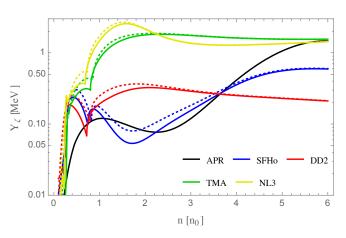
Bulk visc is important if $\tau_{\zeta} \lesssim 10 \, \mathrm{ms}$


Is bulk visc big enough to matter?

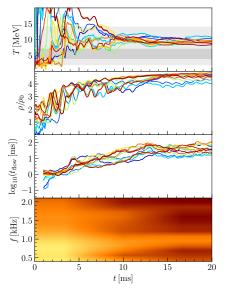
There are high-amplitude density oscillations with $f\sim 1\,\mathrm{kHz}$ in regions at $T\sim 5$ to $10\,\mathrm{MeV}$

Then flavor equilibration via modified Urca will achieve its maximum value

Max bulk visc from flavor equilibration is $\zeta_{\max} = Y_{\zeta} \bar{n} \, t_{\text{comp}}$



$$au_{\zeta}^{\min} = \left(\frac{K}{36\pi^2 Y_{\zeta}}\right) t_{\text{comp}}$$


$$\approx \boxed{3 \text{ ms}} \left(\frac{t_{\text{comp}}}{1 \text{ ms}}\right) \left(\frac{K}{250 \text{ MeV}}\right) \left(\frac{0.25 \text{ MeV}}{Y_{\zeta}}\right)$$

Max bulk visc "Y" factor

Typical value is in the 0.1 to 1 MeV range

State of post-merger matter

Temperature is in the range that maximizes bulk viscosity. (assuming Modified Urca only)

Large amplitude $\sim 1\, kHz$ density oscillations during the first 5-10 ms

Density oscillation freq in kHz range

Summary

- ▶ It is useful to have estimates of the equilibration times for various forms of dissipation, to decide which is the most important.
- ► Thermal equilibration: If neutrinos are trapped, and there are short-distance temp gradients then thermal transport might be fast enough to play a role.

$$\tau_\kappa^{(\nu)} \approx 700 \text{ms} \, \left(\frac{z_{\rm typ}}{1\,{\rm km}}\right)^2 \left(\frac{T}{10\,{\rm MeV}}\right)^2 \left(\frac{0.1}{x_p}\right)^{1/3} \left(\frac{m_n^*}{0.8\,m_n}\right)^3 \left(\frac{\mu_e}{2\mu_\nu}\right)^2$$

- Shear viscosity: similar conclusion.
- Bulk viscosity: If Direct Urca processes remain suppressed at the relevant densities and temperatures, bulk viscosity will quickly damp density oscillations

$$au_{\zeta}^{
m min} pprox 3\,{
m ms}\,\left(rac{t_{
m comp}}{1\,{
m ms}}
ight)\,\left(rac{{\cal K}}{250\,{
m MeV}}
ight) \left(rac{0.25\,{
m MeV}}{Y_{\zeta}}
ight)$$

The Future

- ▶ Incorporate bulk viscosity in numerical simulations
- ▶ What density and temperature range allows Direct Urca?
- ► Understand neutrino trapping. At what temp/density is there neutrino-domination of thermal and shear viscous transport?
- ▶ Are there short-range gradients ($z_{\rm typ} \sim 0.1\,{\rm km}$) that would lead to rapid shear viscous or thermal equilibration?
- ► Explore the role of dissipation in the collapse of a single star to a denser "third family" or "twin star" configuration