# Hyperons in a thermal medium: chiral symmetry, parity doubling and the lattice

Gert Aarts



Swansea University Prifysgol Abertawe

## Mesons in a medium

mesons in a medium very well studied

- hadronic phase: thermal broadening, mass shift
- QGP: deconfinement/dissolution/melting
- quarkonia survival as thermometer
- transport: conductivity/dileptons from vector current
- chiral symmetry restoration

relatively easy on the lattice

high-precision correlators

what about baryons?

#### Baryons in a medium

lattice studies of baryons at finite temperature very limited

- **SCREENING MASSES** De Tar and Kogut 1987
- Source And Annual Control And Annual Annual Stamatescu et al 2005
- Iemporal correlators Datta, Gupta, Mathur et al 2013

not much more ...

• effective models, mostly at  $T \sim 0$  and nuclear density  $\Rightarrow$  parity doubling models De Tar & Kunihiro 89 Mukherjee, Schramm, Steinheimer & Dexheimer, Sasaki 17

## Baryons in a medium

but understanding of in-medium effects highly relevant for

hadron resonance gas descriptions in confined phase

- benchmarking models for dense QCD
- extensions into QCD phase diagram

## Outline

baryons across the deconfinement transition:

- baryon correlators
- FASTSUM collaboration
- in-medium effects below  $T_c$
- parity doubling above  $T_c$
- spectral functions

FASTSUM: PRD 92 (2015) 014503 [arXiv:1502.03603 [hep-lat]]

- + JHEP 06 (2017) 034 [arXiv:1703.09246 [hep-lat]]
- + EPJ WoC 171 (2018) 14005 [arXiv:1710.00566 [hep-lat]]
- + in preparation

# Baryons

- correlators  $G^{\alpha\alpha'}(x) = \langle O^{\alpha}(x) \overline{O}^{\alpha'}(0) \rangle$
- examples:  $N, \Delta, \Omega$  baryons

$$O_{N}^{\alpha}(x) = \epsilon_{abc} u_{a}^{\alpha}(x) \left( d_{b}^{T}(x) C \gamma_{5} u_{c}(x) \right)$$
  

$$O_{\Delta,i}^{\alpha}(x) = \epsilon_{abc} \left[ 2u_{a}^{\alpha}(x) \left( d_{b}^{T}(x) C \gamma_{i} u_{c}(x) \right) + d_{a}^{\alpha}(x) \left( u_{b}^{T}(x) C \gamma_{i} u_{c}(x) \right) \right]$$
  

$$O_{\Omega,i}^{\alpha}(x) = \epsilon_{abc} s_{a}^{\alpha}(x) \left( s_{b}^{T}(x) C \gamma_{i} s_{c}(x) \right)$$

essential difference with mesons: role of parity

$$\mathcal{P}O(\tau, \mathbf{x})\mathcal{P}^{-1} = \gamma_4 O(\tau, -\mathbf{x})$$

positive/negative parity operators

$$O_{\pm}(x) = P_{\pm}O(x)$$
  $P_{\pm} = \frac{1}{2}(1 \pm \gamma_4)$ 

1

## Baryons

positive/negative parity operators

$$O_{\pm}(x) = P_{\pm}O(x)$$
  $P_{\pm} = \frac{1}{2}(1 \pm \gamma_4)$ 

• no parity doubling in Nature: nucleon ground state positive parity:  $m_+ = m_N = 0.939 \text{ GeV}$ negative parity:  $m_- = m_{N^*} = 1.535 \text{ GeV}$ 

thread: what happens as temperature increases?

how are pos/neg parity states encoded in correlators?

 $G_{\pm}(x-x') = \langle \operatorname{tr} P_{\pm} O(x) \overline{O}(x') \rangle \qquad \rho_{\pm}(x-x') = \langle \operatorname{tr} P_{\pm} \{ O(x), \overline{O}(x') \} \rangle$ 

# Charge conjugation

charge conjugation symmetry (at vanishing density):

 $G_{\pm}(\tau, \mathbf{p}) = -G_{\mp}(1/T - \tau, \mathbf{p}) \qquad \rho_{\pm}(-\omega, \mathbf{p}) = -\rho_{\mp}(\omega, \mathbf{p})$ 

relates pos/neg parity channels

using  $G_+(\tau, \mathbf{p})$  and  $\rho_+(\omega, \mathbf{p})$ 

- positive- (negative-) parity states propagate forward (backward) in euclidean time
- negative part of spectrum of  $\rho_+ \leftrightarrow$  positive part of  $\rho_-$

example: single state

$$G_{+}(\tau) = A_{+}e^{-m_{+}\tau} + A_{-}e^{-m_{-}(1/T-\tau)}$$
$$\rho_{+}(\omega)/(2\pi) = A_{+}\delta(\omega - m_{+}) + A_{-}\delta(\omega + m_{-})$$

#### Nucleon correlators

• euclidean correlator  $G_+(\tau)$ 



- not symmetric around  $\tau = 1/2T$  below  $T_c$
- more symmetric as temperature increases

## Chiral symmetry

propagator

$$G(x) = \sum_{\mu} \gamma_{\mu} G_{\mu}(x) + \mathbb{1}G_m(x)$$

chiral symmetry  $\{\gamma_5, G\} = 0 \Rightarrow G_m = 0$  hence

$$G_{+}(\tau, \mathbf{p}) = -G_{-}(\tau, \mathbf{p}) = G_{+}(1/T - \tau, \mathbf{p}) = 2G_{4}(\tau, \mathbf{p})$$

degeneracy of  $\pm$  parity channels

$$\rho_+(p) = -\rho_-(p) = \rho_+(-p) = 2\rho_4(p)$$

#### parity doubling

In Nature at T = 0: no chiral symmetry/parity doubling

## Parity and chiral symmetry

however, if chiral symmetry is unbroken ( $m_q = 0$  and no SSB)

degeneracy between pos/neg parity channels already at the level of the correlators

what happens at the confinement/deconfinement transition?

- SU(2)<sub>A</sub> chiral symmetry restored
- expect degeneracies to emerge
- how does this affect mass spectrum?
- role of  $m_s > m_{u,d}$ ?

#### FASTSUM

#### • anisotropic $N_f = 2 + 1$ Wilson-clover ensembles

#### FASTSUM collaboration

GA (Swansea) Chris Allton (Swansea) Simon Hands (Swansea) Benjamin Jäger (Odense) Seyong Kim (Sejong University) Maria-Paola Lombardo (Frascati) Sinead Ryan (Trinity College Dublin) Jonivar Skullerud (Maynooth) Don Sinclair (Argonne)

Jonas Glesaaen (Swansea) Alan Kirby (Swansea) Sam Offler (Swansea) Davide de Boni (Swansea->) Tim Harris (TCD->Mainz->Milan) Ale Amato (Swansea->Helsinki->) Wynne Evans (Swansea->Bern->) Pietro Giudice (Swansea->Münster->) Aoife Kelly (Maynooth->) Bugra Oktay (Utah->) Kristi Praki (Swansea->)

#### This work

GA, Chris Allton, Simon Hands, Kristi Praki, Jonivar Skullerud

#### Davide de Boni, Benjamin Jäger

PRD 92 (2015) 014503, arXiv:1502.03603 [hep-lat]
JHEP 06 (2017) 034, arXiv:1703.09246 [hep-lat]
EPJ WoC 171 (2018) 14005 [arXiv:1710.00566 [hep-lat]]
in preparation

## FASTSUM ensembles

- $N_f = 2 + 1$  dynamical quark flavours, Wilson-clover
- many temperatures, below and above  $T_c$
- anisotropic lattice,  $a_s/a_{\tau} = 3.5$ , many time slices
- strange quark: physical value
- two light flavours: somewhat heavy  $m_{\pi} = 384(4)$  MeV

| $N_s$        | 24   | 24   | 24   | 24   | 24   | 24   | 24   | 24   |
|--------------|------|------|------|------|------|------|------|------|
| $N_{	au}$    | 128  | 40   | 36   | 32   | 28   | 24   | 20   | 16   |
| $T/T_c$      | 0.24 | 0.76 | 0.84 | 0.95 | 1.09 | 1.27 | 1.52 | 1.90 |
| $N_{ m cfg}$ | 140  | 500  | 500  | 1000 | 1000 | 1000 | 1000 | 1000 |
| $N_{ m src}$ | 16   | 4    | 4    | 2    | 2    | 2    | 2    | 2    |

• tuning and  $N_{\tau} = 128$  data from HadSpec collaboration

#### **Baryon correlators**

computed all octet and decuplet baryon correlators



for each baryon: positive and negative parity channels

technical remarks

- studied various interpolation operators
- Gaussian smearing for multiple sources and sinks
- same smearing parameters at all temperatures

#### Lattice correlators

nucleon



- pos/neg parity channels nondegenerate
- more T dependence in negative-parity channel

#### Lattice correlators

**)** (



- at low T pos/neg parity channels nondegenerate
- more T dependence in negative-parity channel

#### Lattice correlators

 $\square$ 



• at low T pos/neg parity channels nondegenerate

more T dependence in negative-parity channel

## Baryons in the hadronic phase

- determine masses of pos/neg parity groundstates
- in-medium effects

#### Masses of pos/neg parity groundstates (in MeV)

| S  | $T/T_c$            | 0.24      | 0.76      | 0.84      | 0.95     | $PDG\;(T=0)$ |
|----|--------------------|-----------|-----------|-----------|----------|--------------|
| 0  | $m^N_+$            | 1158(13)  | 1192(39)  | 1169(53)  | 1104(40) | 939          |
|    | $m^N$              | 1779(52)  | 1628(104) | 1425(94)  | 1348(83) | 1535         |
|    | $m^{\Delta}_+$     | 1456(53)  | 1521(43)  | 1449(42)  | 1377(37) | 1232         |
|    | $m_{-}^{\Delta}$   | 2138(114) | 1898(106) | 1734(97)  | 1526(74) | 1700         |
| -1 | $m_+^{\Sigma}$     | 1277(13)  | 1330(38)  | 1290(44)  | 1230(33) | 1193         |
|    | $m_{-}^{\Sigma}$   | 1823(35)  | 1772(91)  | 1552(65)  | 1431(51) | 1750         |
|    | $m^{\Lambda}_+$    | 1248(12)  | 1293(39)  | 1256(54)  | 1208(26) | 1116         |
|    | $m^{\Lambda}_{-}$  | 1899(66)  | 1676(136) | 1411(90)  | 1286(75) | 1405–1670    |
|    | $m_+^{\Sigma^*}$   | 1526(32)  | 1588(40)  | 1536(43)  | 1455(35) | 1385         |
|    | $m_{-}^{\Sigma^*}$ | 2131(62)  | 1974(122) | 1772(103) | 1542(60) | 1670–1940    |
| -2 | $m_+^{\Xi}$        | 1355(9)   | 1401(36)  | 1359(41)  | 1310(32) | 1318         |
|    | $m_{-}^{\Xi}$      | 1917(27)  | 1808(92)  | 1558(76)  | 1415(50) | 1690–1950    |
|    | $m^{\Xi^*}_+$      | 1594(24)  | 1656(35)  | 1606(40)  | 1526(29) | 1530         |
|    | $m_{-}^{\Xi^{*}}$  | 2164(42)  | 2034(95)  | 1810(77)  | 1578(48) | 1820         |
| -3 | $m^{\Omega}_+$     | 1661(21)  | 1723(32)  | 1685(37)  | 1606(43) | 1672         |
|    | $m^{\Omega}_{-}$   | 2193(30)  | 2092(91)  | 1863(76)  | 1576(66) | 2250         |

# Baryons in the hadronic phase

masses  $m_{\pm}(T)$ , normalised with  $m_{\pm}$  at lowest temperature



in each channel:

- emerging degeneracy around  $T_c$
- negative-parity masses reduced as T increases
- $\bullet$  positive-parity masses nearly T independent

Saariselkä April 2018 – p. 21

## Baryons in the hadronic phase

findings

- positive-parity masses nearly T independent
- negative-parity masses reduced as T increases
- characteristic behaviour

$$m_{-}(T) = w(T, \gamma)m_{-}(0) + [1 - w(T, \gamma)]m_{-}(T_{c})$$

with one-parameter transition function

$$w(T,\gamma) = \tanh[(1 - T/T_c)/\gamma]/\tanh(1/\gamma)$$

small (large)  $\gamma \Leftrightarrow$  narrow (broad) transition region

fits in each  $0.22 \lesssim \gamma \lesssim 0.35$ , mean  $\gamma = 0.27(1)$ channel  $0.85 \lesssim m_{-}(T_c)/m_{+}(0) \lesssim 1.1$ 

## Baryons and parity partners

- distinct temperature dependence in hadronic phase
- understand further using
  - effective parity doublet models?

Mukherjee, Schramm, Steinheimer & Dexheimer, Sasaki 17

- holography?
- relevant for heavy-ion phenomenology?

## Baryons and parity partners

- distinct temperature dependence in hadronic phase
- understand further using
  - effective parity doublet models?
     Mukherjee, Schramm, Steinheimer & Dexheimer, Sasaki 17
     holography?
- relevant for heavy-ion phenomenology?

application to HRG

- use states in PDG (not QM)
- $\checkmark$  T-dependent groundstates in neg parity channels

 $m_{-}(T) = w(T, \gamma)m_{-}(0) + [1 - w(T, \gamma)]m_{-}(T_{c})$ 

with  $\gamma = 0.3$  and  $1 < m_{-}(T_c)/m_{+}(0) < 1.1$ 

#### In-medium HRG

contributions to pressure from baryons with strangeness



compare with lattice data from Alba, Ratti et al, 1702.01113

#### In-medium HRG



compare with lattice data from Budapest-Wuppertal

# QGP: fate of light baryons

consider now the quark-gluon plasma

no clearly identifiable groundstates: baryons dissolved

example: use conventional exponential fits



no clearly defined groundstates above  $T_c$ 

# QGP: fate of light baryons

- no clearly identifiable groundstates: baryons dissolved
- chiral symmetry restoration  $\Leftrightarrow$  parity doubling
- Study correlator ratio
  Datta, Gupta, Mathur et al 2013

$$R(\tau) = \frac{G_{+}(\tau) - G_{-}(\tau)}{G_{+}(\tau) + G_{-}(\tau)}$$

- no parity doubling and  $m_- \gg m_+$ :  $R(\tau) = 1$
- **•** parity doubling:  $R(\tau) = 0$

by construction:  $R(1/T - \tau) = -R(\tau)$  and R(1/2T) = 0

- integrated ratio
- $\Rightarrow$  quasi-order parameter

$$R = \frac{\sum_{n} R(\tau_n) / \sigma^2(\tau_n)}{\sum_{n} 1 / \sigma^2(\tau_n)}$$

#### Nucleon channel



- $\checkmark$  ratio close to 1 below  $T_c$ , decreasing uniformly
- ratio close to 0 above  $T_c$ , parity doubling

#### Quasi-order parameter





- subscription crossover behaviour, tied with deconfinement transition and hence chiral transition note:  $m_q \neq 0$
- effect of heavier s quark visible

# Parity doubling

- clear signal for parity doubling even with finite quark masses
- crossover behaviour, coinciding with transition to QGP
- visible effect of heavier s quark

spectral functions

## Spectral properties: fermions

$$G^{\alpha\alpha'}(\tau, \mathbf{p}) = \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} K(\tau, \omega) \rho^{\alpha\alpha'}(\omega, \mathbf{p})$$

fermionic Matsubara frequencies

$$K(\tau,\omega) = T \sum_{n} \frac{e^{-i\omega_n \tau}}{\omega - i\omega_n} = \frac{e^{-\omega \tau}}{1 + e^{-\omega/T}} = e^{-\omega \tau} \left[1 - n_F(\omega)\right]$$

kernel not symmetric, instead

$$K(1/T - \tau, \omega) = K(\tau, -\omega)$$

**s** positivity:  $\rho_4(p), \pm \rho_{\pm}(p) \ge 0$  for all  $\omega$ 

•  $\rho_m(p) = [\rho_+(p) + \rho_-(p)]/4$  not sign definite

## Spectral functions

#### extract same information from spectral functions

$$G_{\pm}(\tau) = \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} K(\tau,\omega)\rho_{\pm}(\omega) \qquad \qquad K(\tau,\omega) = \frac{e^{-\omega\tau}}{1 + e^{-\omega/T}}$$

#### *ill-posed* inversion problem

- use Maximum Entropy Method (MEM)
- featureless default model
- construct  $\rho_+(\omega) \ge 0$  for all  $\omega$

$$\ \, \rho_{-}(\omega) = -\rho_{+}(-\omega)$$

nucleon 12 10 Ł Ν Ν ۲ 10 ĥ  $0.24 T_{c}$  $1.09 T_{c}$ 8 ł  $0.76T_{c}$  $1.27 T_{c}$ 8  $0.84 T_c$  $1.52 T_c$ 6  $0.95 T_c$  $1.90 T_{c}$ <u>ρ</u>(ω) <u>ρ</u>(ω) 6 4 4 2 2 0 0 -16 -12 -8 8 -16 -12 -8 8 12 16 12 16 -4 4 -4 0 4 0  $\omega$  [GeV]  $\omega$  [GeV]

- $\checkmark$  groundstates below  $T_c$
- degeneracy emerging above  $T_c$



- $\checkmark$  groundstates below  $T_c$
- $\checkmark$  degeneracy emerging above  $T_c$



- $\checkmark$  groundstates below  $T_c$
- degeneracy emerging above  $T_c$ , finite  $m_s$

all channels: low and high temperature



- $\bullet$  groundstates below  $T_c$
- degeneracy emerging above  $T_c$

- results consistent with correlator analysis
- Iatter is on firmer ground, due to inversion uncertainties
- effect of heavier s quark nevertheless visible

## Summary: hyperons in medium

in hadronic phase

- pos-parity groundstates mostly T independent
- characteristic T dep. in neg-parity groundstates reduction in mass, near degeneracy close to  $T_c$

application

heavy-ion phenomenology: in-medium HRG

in quark-gluon plasma

- pos/neg parity channels degenerate: parity doubling
- Iinked to deconfinement transition and chiral symmetry restoration
- effect of heavier s quark noticeable