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Preface

This manuscript is prepared for the DSGE modelling course at the Re-

serve Bank of New Zealand, Wellington, October 6-10, 2008. The aim is to

provide a cook-book for the first-time users of the IRIS Toolbox in Matlab,

and its use for dynamic stochastic general equilibrium (DSGE) modelling.

We presume basic Matlab literacy of the users. Being written for beginners,

the manuscript deals only with standard modelling problems. For demon-

stration purposes we work with a simple non-linear but stationary DSGE

model.

We appreciate your feedback on the manuscript, in particular, if you find

it incomprehensive, find errors or omissions, or you seek more clarification.

Any comments are welcome. Please approach the corresponding author Mar-

tin Fukač at martin.fukac@rbnz.govt.nz .
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Chapter 1

Simulating stationary models

Creating a model structure in IRIS involves three basic steps:

1. Rewrite the model dynamic equilibrium in Iris.

2. Find the model steady state.

3. Solve the model.

The goal of this chapter is to take you through each individual step so that

at the end of the chapter you are able to rewrite your own models in the

syntax of IRIS and simulate them. We will show you a simple way how to

perform an intervention analysis, and how to run Monte Carlo experiments.

In practice, you can deal with linear models, non-linear models, and their

stationary or non-stationary variant. Iris has the capacity to deal with all

these models. For demonstration purposes, it is sufficient to begin with

a simple non-linear and stationary model. The non-linearity property is

suitable for demonstrating how to solve for the steady state (the solution is

trivial for linear models). And stationarity makes the solution simple.

9
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1.1 Write a model in IRIS

1.1.1 The theoretical model

For demonstration purposes we will use the model from ? adjusted for price

indexation, and modified households’ preferences. We also use an ad hoc

policy rule. The dynamic (competitive) equilibrium of the model economy is

characterised by the following set of equations:

Households:

MUCt = (1− χ)/[Ct exp(−εc
t)− χCt−1], (1.1)

MDLt = Lη
t , (1.2)

MUCt = β(1 + rt)Et(MUCt+1), (1.3)

∆wt −∆wt−1 = βEt(∆wt+1 −∆wt)

+κw

[
log

(
MDLt

MUCt

)
− log Qt

]
+ εw

t . (1.4)

Producers:

Yt = XKγL1−γ (1.5)

MPLt = (1− γ)
Y

L
(1.6)

∆pt −∆pt−1 = βEt(∆pt+1 −∆pt) + κp(log Qt − log MPLt) + εp
t (1.7)

log Xt = ρx log Xt−1 + εx
t (1.8)

Monetary policy:

rt = ρrrt−1 + (1− ρr)(r̄ + µp∆pt + µggt) + εr
t (1.9)

Market clearing condition:

Yt = Ct (1.10)
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Definitions:

gt = log
MDLt

MUCt

− log MPLt (1.11)

Qt = Qt−1
1 + ∆wt

1 + ∆pt

(1.12)

MUCt is the marginal utility of consumption, MDLt is the marginal disu-

tility of labour, MPLt is the marginal product of labour, Ct is consumption,

Lt is labour, ∆wt is wage inflation, ∆pt is price inflation, rt is the interest

rate, Qt is the effective output, Yt is the output, Xt is the level of technology.

εc
t , εw

t , εp
t , εr

t is the preference shock, wage setting shock, price setting shock,

and monetary policy shock, respectively.

In Chapter 3, the model is estimated for 4 observable variables: output

growth dy , Q2Q price inflation dp , Q2Q wage inflation dw and policy rate

r . We use the US data ranging from 1990:Iq to 2008:IIq.
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1.1.2 Iris model syntax

Writing a model file is the first step in obtaining a model structure. Through-

out the manuscript, we will call a model that is uploaded in the Matlab’s

workspace the model structure. Writing a model in to IRIS format takes

creating an ASCII file. Such a file must contain the following model charac-

teristics:

1. !variables:transition

2. !parameters

3. !variables:residual

4. !equations:transition

5. !variables:measurement

6. !equations:measurement

Among optional characteristics belong:

1. !variables:log

2. !substitutions

We will employ !substitutions for rbar to demonstrate its use. It will

shorten the expression for the steady-state real interest rate 1/β − 1, which

repeats in the model code. The use of !substitutions makes the model code

shorter and more easily readable. Instead of typing 1/beta-1 many times,

you use $rbar$ . $...$ characters tell to Iris that the particular expression

defined in !substitutions must be substituted in when solving the model.

A model file for the Erceg et al. (EHL, 2000) from section 1.1.1 is de-

scribed below.

Open a new file in the m-editor, and save it as EHL2000.model (model is

the file extension). Then rewrite the model (1.1)-(1.12) following the struc-

ture outlined above. When rewriting the actual model, the time subscripts
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(forward, and backward looking ones) come in curly braces {}.1 You do not

(need to) declare contemporaneous time subscript.

1In Iris, there is no limit on the order of backward or forward lookiness of your model.
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!variables:transition

’Marginal utility of consumption’ MUC

’Marginal disutility of labour’ MDL

’Consumption’ C, ’Real wage rate’ Q, ’Nominal wage rate, Q/Q’ dw

’Marginal product of labour’ MPL

’Output’ Y, ’Labour’ L, ’Final goods price, Q/Q’ dp

’Productivity’ X, ’Nominal rate’ r, ’Inefficiency gap’ g

!variables:log

!allbut dw, dp, r, g

!parameters

% Steady-state parameters

beta, eta, K = 1, gamma

% Transitory parameters

chi, kappaw, kappap, rhox

% Policy parameters

rhor, mup, mug

!variables:residual

’Consumption preference shock’ ec , ’Wage setting shock’ ew

’Price setting shock’ ep, ’Produtivity shock’ ex

’Policy shock’ er

!substitutions

rbar = (1/beta - 1);

!equations:transition

% Households

MUC = (1-chi)/(C*exp(-ec) - chi*C {-1 });
MDL = L̂eta;

dw - dw{-1 } = beta*(dw {1} - dw) + kappaw*[log(MDL/MUC) - log(Q)] + ew;

% Producers

Y = X*Kĝamma*L(̂1-gamma);

MPL = (1-gamma)*Y/L;

dp - dp {-1 } = beta*(dp {1} - dp) + kappap*[log(Q) - log(MPL)] + ep;

log(X) = rhox*log(X {-1 }) + ex;

% Monetary policy

r = rhor*r {-1 } + (1-rhor)*[$rbar$ + mup*dp + mug*g] + er;
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% Market clearing

Y = C;

% Definitions

g = log(MDL/MUC) - log(MPL);

Q = Q{-1 }*(1 + dw)/(1 + dp);

!variables:measurement

’Output, Q/Q’ dy , ’Final goods prices, Q/Q’ dp

’Nominal wage rate, Q/Q’ dw , ’Nominal rate’ r

!variables:log

!allbut dy , dp , dw , r

!equations:measurement

dy = Y/Y {-1 } - 1;

dp = dp;

dw = dw;

r = r - $rbar$;

When the model file EHL2000.model is completed and saved, the next step

is uploading the model in to Matlab. We will use the Iris command model()

that does the trick. The model is uploaded in the Matlab’s memory as an

active model structure, which you can already work with (e.g., checking basic

properties). Before we proceed, it is useful to open a new m-file in which you

code the sequence of commands that upload, solve and simulate the model.

You can save is as read model.m .

m = model(’EHL2000.model’);

You can check that the model was uploaded correctly by running the

read model.m file and typing m in to the Matlab command window. It prints

out the following message:

non-linear model object: 1 parameterisation(s) solution not

available for any parameterisation
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The solution not available means that the model is in its structural form,

and needs to be solved – linearised and solved for rational expectations.

When uploading the model in to Matlab’s memory, you should count with

problems. It is very common that you make an error or typo when rewriting

the model in to the model file. Usually, you make typos in variable names,

forget declare some parameters, etc., which will be revealed when uploading

the model. In most cases, Iris is able to name and locate the error. The only

thing you have to do is to go back to your model file and correct it. For large

models, or complicated models the problems may be such that Iris cannot

name or locate them exactly. Then it depends on the modeler’s experience

to fix the problem.2

Creating the EHL2000.model file and uploading the model in to the Mat-

lab’s working memory completes the first step of creating a workable model

structure. The second step is to solve the model.

1.2 Solve model

We recall that we deal with a stationary model in this chapter, which sig-

nificantly simplifies the model solution. In general, solving a model in Iris

consists of three steps: (i) linearising the model around its steady state, (ii)

solving for forward-looking variables, and (iii) creating a state-space repre-

sentation (idoc sspace() ).

Because the methods we are going to use is numerical, we begin by as-

sessing initial values for the model parameters. In the read model.m , create

a structure P, which will store the initial values

2Please see the IRIS web page, which offers an on-line support.
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P = struct {};

% Steady-state parameters

P.beta = 0.99ˆ(1/4);

P.eta = 1;

P.gamma = 0.40;

% Transitory parameters.

P.chi = 0.80;

P.kappaw = 0.05;

P.kappap = 0.10;

P.rhox = 0.80;

% Policy parameters.

P.rhor = 0.80;

P.mup = 1.50;

P.mug = 0.50;

To check that the structure is correctly created, run read model.m , and

type P in to the command window to print the parametrisation. If everything

is correct, the next step is to assign the parameters to the model structure

m. It is done by the Iris command assign() .

m = assign(m,P);

Again, you can double check the assigned parametrisation by typing in

the command window get(m,’parameters’) , which is another Iris command

that prints the set of parameters associated with the model. We will talk

about the use of get() a little later.

The assign() command works for a set of parameters, but can also be

used for subsets or individual parameters. For example, you can assign

structural parameters and shock standard errors in two separate sets, e.g.

P1 and P2. If you are up to changing a single parameter, Iris offers a fast

way of changing it directly in the uploaded model structure. The syntax

is m.parameter name = new value. For example, if you want to change the

the value of policy parameter mup from 1.50 to 0, you simply type: m.mup =
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0. But you have to remember that if the change is made in the command

window and not in the read model.m file, it is only temporary, and when

you run the file again, the parameter will return to its preset value in the

file. But you will find the possibility of the fast change in parametrisation

useful when you experiment with the model (testing its sensitivity to shocks,

etc). When changing parameter values, you have to know the nature of the

changed parameter. If it is a parameter that determines the steady state,

after changing it, you have to remember to re-solve (re-evaluate) the steady

state (sstate() ) and the model (solve() ) again. If it is a transitory pa-

rameter, i.e., it only affects model dynamics but not the steady state, after

changing it you only have to re-solve the model (solve() ), and do not need

to re-solve (re-evaluate) the steady state.

Having the initial parameter values, we can finally solve for the steady

state. We use the command sstate() , which uses numerical procedures to

get the steady state: sstate() .

m = sstate(m,’fix’,{’X’,’dp’,’dw’,’g’,’r’,’dy_’,’dp_’,’dw_’});

To help the numerical algorithm, it is always good to fix the steady-state

values that we already know. Here it is for variables X, dp, dw, g, r, dy ,

dp , dw .

The final step is solving the model using the Iris command solve() .

m = solve(m);

Iris will give you the model structure m, which is ready to be worked with:

simulated, estimated, etc.

A simple check of the solution property is by typing m in the command

window, which prints out

non-linear model object: 1 parameterisation(s)

solution(s) available for a total of 1 parameterisation(s)

If the model solution is stable, it is available, and you will get the message

solution(s) available . If the solution is not available, it means that the
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model could not be solved.3

Now it is a good opportunity to talk about the command get() . It is

one of the most frequently used Iris commands. It gives you information

about the model properties, e.g., list of parameters, steady state values, list

of stationary and unit-root variables, initial conditions, etc. The command

has many options and for their list we refer to Iris help (idoc model/get ).

The command get() helps you to extract useful information about the

model structure. If you type idoc model/get in your Matlab command

window, you receive a list of options of what information you can get. The

most commonly used are:

get(m,’parameters’) List values of model parameters.

get(m,’xlist’) List of transition (state) variables.

get(m,’ylist’) List of observable variables.

get(m,’SState’) Steady-state values.

get(m,’Omega’) Variance-covariance matrix of model shocks.

get(m,’StationaryList’) List of stationary (transitory and observable) vari-

ables

get(m,’NonstationaryList’) List of non-stationary variables.

Because we are also going to work with the model structure created here

in the following chapters, it is useful to save it as a mat-file:

savestruct(’EHL2000.mat’,m);

It is an Iris structure, and it can be uplodaded (loadstruct() )at any other

occasion and the model structure is ready to be worked with. It will save

you steps of uploading the model file, parametrising, and solving the model

again.

3The model structure in Iris is very flexible. Advanced users, may use the possibility to
assign multiple parametrisations of the model, which can be useful in evaluating solution
stability regions, etc.
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1.3 Simulate model

Having declared the model dynamic equilibrium, and solving it, we are now

ready to work with the model. In this section, we show you how to run an

intervention analysis, and how to simulate artificial time series of the model

variables. Because the model structure is kept in the Matlab’s work memory,

each model operation is simple and quick to perform.4

1.3.1 Impulse responses

The example below produces an impulse response to a unitary monetary pol-

icy shock in the EHL(2000) model:

startdate = qq(1990,1);

enddate = qq(2008,2);

d = zerodb(m,startdate-1:enddate);

d.er(startdate+12) = 1;

s = simulate(m,d,startdate:enddate,...

’deviation’,true,’anticipate’,false);

The first two lines define the time horizon for simulation: startdate and

enddate . The third line of code, uses the command zerodb to create a zero

database related to the model. It contains all model’s mvariables, including

shocks, defined as time series on the time span startdate-1:enddate . The

time span is expanded for the period startdate-1 , which caries the infor-

mation on initial conditions. If the reduced system is of the second order,

then the zero database must count with two initial conditions, i.e. we create

the database for periods startdate-2:enddate . Note that the time format

is specific to IRIS (use of qq() or mm()), and significantly simplifies handling

of time series. We talk about it in more detail in section 3.1. If you wish,

you can define the time span simply by the number of observations, that is

startdate = 2; % Counting w/t init. condition

enddate = 40;

4Presenting the results will take you more coding than actually simulating the model.
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The third line of the code above sets the value of the monetary policy

shock er to 1 at the time period startdate+12 . It is zero otherwise. You

can double check by plotting it

plot(d.er);

The reason for shocking the system at the period startdate+12 is to demon-

strate the effect of anticipated and unanticipated shocks.

The last line of the code above simulates the model. s is an output

database structure, similar to d. It contains the impulse responses of the

system. The use of ’deviation’, true states the option that the impulse

response is produced as a deviation from the steady state. It is set to true

if the model variables and observables are deviations from the steady state.

Then there is another option anticipate , which relates to how exogenous

shocks will be treated in the simulation (and perceived by rationally behav-

ing economic agents in the model economy). If the option is set to false ,

the shock is a standard exogenous shock, which causes surprise. If you use

’anticipate’, true instead, the shock is anticipated and agents react to it

well before it actually takes place (at startdate+12 ). In Figure 1.3.1 you can

see that that the response is quite different. We put the economics behind

aside.

You can experiment with anticipate/unanticipate options, and plot indi-

vidual variable’s responses by

plot(s.variable_name);

1.3.2 Monte Carlo experiments

You can also run a Monte Carlo experiment, in which you produce random

draws for all shocks, and simulate the model. The Iris command resample()

does all that for you. Here is an example:

N = 2;

y = resample(m,[],startdate:enddate,N,’output’,’dbase’);
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Figure 1.1: Impulse responses to unanticipated and anticipated monetary
policy shocks (EHL, 2000, model)
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Figure 1.2: Monte Carlo simulation of EHL’s(2000) model (N=2)
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You have the option to simulate one or more realisations of model series.

You just change the number of draws N. An example of two MC experiments

is plotted in Figure 1.3.1.

The the command resample() can be used for Bootstrap experiments as

well. You have to have the estimates of model shocks available (either from

model estimation, or likelihood evaluation for a particular parametrisation).

We keep the use of Bootstrap for section 4.1, where we analyse the data

matching properties of the EHL(2000) model.
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1.4 Matlab code

1.4.1 Read model

%% Get the model into Matlab.

%% Clear memory of everything.

clear all;

%% Read the model.

% Read the model code into Matlab as an IRIS model object.

% Set all std deviations to 0.01.

m = model(’EHL2000.model’,’std’,0.01);

disp(m);

%% Assign parameters.

% Create a parameter database, and assign this database

% to the model object.

% Assign also some of the known steady-state values.

% These are then fixed and taken as granted when we call

% the sstate function.

P = struct();

% Steady-state parameters.

P.beta = 0.99ˆ(1/4);

P.eta = 1;

P.gamma = 0.40;

% Transitory parameters.

P.chi = 0.80;

P.kappaw = 0.05;

P.kappap = 0.10;

P.rhox = 0.80;

% Policy parameters.

P.rhor = 0.80;

P.mup = 1.5;

P.mug = 0.5;

P.X = 1;

P.dp = 0;

P.dw = 0;

P.g = 0;

P.r = 1/P.beta - 1;

P.dy_ = 0;

P.dp_ = 0;

P.dw_ = 0;
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P.r_ = 0;

m = assign(m,P); disp(get(m,’parameters’));

%% Find steady state.

% Use Optimisation Toolbox to solve the model for steady state.

% Fix some of the known steady-state values.

% Note that there are other, more sophisticated options in IRIS

% how to handle the problem of finding steady state in more complex models.

m = sstate(m,’fix’,{’X’,’dp’,’dw’,’g’,’r’,’dy_’,’dp_’,’dw_’});

% Display steady-state database.

S = get(m,’sstatelevel’); disp(S);

% Make sure all equations hold with the currently computed steady state.

disp(’ ’); [flag,discrep,list] = chksstate(m); if flag

disp(’Steady state OK.’);

else

error(’Steady state invalid: "%s".\n’,list{:});

end

%% Solve the model.

% Linearise the model around its steady state

% and solve the model by generlised Schur decomposition.

[m,npath] = solve(m);

if npath == 1

disp(’1st-order accurate solution OK.’);

end

disp(’ ’); disp(m);

%% Save the model.

% Save the solved model object.

% SAVESTRUCT more efficient than SAVE.

savestruct(’EHL2000.mat’,m);
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1.4.2 Simulate model

%% Read the model.

% Read the model as an IRIS model object.

m = loadstruct(’..\Model\EHL2000.mat’);

disp(m);

%% Ask questions about model

% Use the IRIS function get() to see the model’s characteristics

isstationary(m)

get(m,’sstate’)

list = get(m,’ylist’);

names = get(m,’yComments’);

%% Simulate impulse responses

% Define simulation range, create a zero database, shock and simulate the

% system.

startdate = qq(1990,1);

enddate = qq(1999,4);

d=zerodb(m,startdate-1:enddate);

d.ex(startdate+12) = -1;

s1 =

simulate(m,d,startdate:enddate,’deviation’,true,’anticipate’,false);

s2 =

simulate(m,d,startdate:enddate,’deviation’,true,’anticipate’,true);

figure(); for i = 1:length(list);

subplot(2,2,i)

plot([s1.(list{i}), s2.(list{i})]);

title(names(i),’interpreter’,’none’);

axis tight

end hold on legend(’unanticipated’,’anticipated’)

%% Monte Carlo experiments

% Simulate time series out of the model. The number of experiments controls

% for the number of realisations that you get for an individual variable.

N = 2; % number of experiments

y = resample(m,[],startdate:enddate,N,’output’,’dbase’);

figure(); for i = 1:length(list);

subplot(2,2,i)

plot(y.(list{i}));

title(names(i),’interpreter’,’none’);

axis tight

end



Chapter 2

Solving stationary models for

steady state

As the problem of steady state requires a special attention, we were postpon-

ing the topic until now. In this chapter we discuss the principles of finding

a steady state solution to structural models using Iris. We will discuss how

the solution differs for stationary models: linear and non-linear.

There are two ways how to calculate the steady state for a stationary

model. If you have available the Symbolic toolbox, you may want to try

to find an analytical solution. We say “try”, because for some models the

analytical solution may not exist. The advantage of having the analytical

solution is that it significantly speeds up computations. The second possi-

bility is to solve for the steady state numerically by using the Optimisation

toolbox. There is also a third approach – solve for the steady state in hand

– but we do not cover it here.

2.1 Analytical solution

The first step is to adjust the original model in to the form, which will be

used to solve for the steady state. It is basically a strip-off version of the

original model structure with eliminated time subscripts, expectations terms,

and stochastic parts.

27
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Open a new file and save it as Ireland.sstate , with sstate as the file

extension. The structure of such a file contains declaration of !parameters ,

and !equations . If !equations is followed by !symbolic , it declares that

the following block of equation will be solved analytically. If this command

is skipped, IRIS will solve the equation numerically. Each equation block is

completed by !solvefor , which declares what variables it will be solved for

from the system. Of course, the number of endogenous variables must be

equal to the number of equations.

In some complicated cases, it may be that an explicit solution does not

exist. In such a case we try to separate such steady state, and evaluate it

numerically. A combination of analytical and numerical solution is possible

in IRIS. A system of equations that determine the steady state can be di-

vided in to subsets, and each subset can be solved individually. There is

one condition that applies in such a case. The subsystems has to be ordered

hierarchically. That is the first subsystem has to be solved independently

from the subsystem that follows.

This is an example how such a steady state file looks like.

!parameters

!equations

!symbolic

!equations:transition

!solvefor

In the above example we divided the original model in to two subsystems:

transition equations, and measurement equations. This is only for demon-

stration purposes. The steady state can be solved for the whole system.

The next step is the analytical solution itself:

sstatefile(’Ireland.sstate’,’Ireland_sstate.m’);

The IRIS command sstatefile will do the trick. Using the command,
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first, you have to declare the name of the file that describes the steady state

to be solved for. Second, you declare the name of an m-file that this com-

mand will automatically create, and in which the solution will be stored.

In our example, we solve Ireland.sstate , and the result will be stored in

Ireland sstate.m .

Ireland sstate.m is a function type of file. You can open it and view its

structure. It evaluates the model’s steady state for a given set of parameters.

You have to supply them. For example, we have the following set of initial

parameters. We create a structure P, and then declare the parameters

P = struct {};

% Steady-state parameters

P.beta = 0.99ˆ(1/4);

P.eta = 1;

P.gamma = 0.40;

% Transitory parameters.

P.chi = 0.80;

P.kappaw = 0.05;

P.kappap = 0.10;

P.rhox = 0.80;

% Policy parameters.

P.rhor = 0.80;

P.mup = 1.50;

P.mug = 0.50;

Now we can evaluate the steady state. We take the set of initial param-

eters, and evaluate the Ireland sstate.m for them.

P = Ireland_sstate(P);

As the output, we get the original structure P expanded for the steady-

state values. If you print P in your Matlab command window, you will see

that now the structure P also contains the endogenous variables, e.g. P.y =

0, P.infl = 0 , etc. The values associated with endogenous variable is the

appropriate steady state.
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The third, and last step is to assign the parametrisation and steady state

to the original dynamic model, and solve the model. The solution takes

linearisation, and solution for rational expectations. The resulting workhorse

model is stored as a state-space system.

m = assign(m,P);

m = solve(m);

The assign command assigns the parametrisation P to the model struc-

ture m. The solve() command then solves the model. If you now type m

in your Matlab command window, it will print the properties of the model

structure

nonlinear model object: 1 parameterisation(s)

solution(s) available for a total of 1 parameterisation(s)

2.2 Numerical solution

An alternative approach to obtain a model steady state is a numerical so-

lution. This solution is always available, and users that do not have the

Symbolic toolbox may always use it. To obtain a numerical solution takes

two steps. First we have to parametrise the model. For our example, we can

use the same parameters as before. You have to create the structure P again.

Then the parameter structure P has to be assign to the model m

m = assign(m,P);

To check that the parameters have been assigned correctly, type get(m,’parameters’) .

get() is another useful IRIS command. The parameter ’parameters’ tells

IRIS to print out model parameters. get() is one of the most frequently

used commands in IRIS. It has many more useful options see the help to the

command: idoc model/get() .

The last step is to solve the model. The command for a numerical solution

is simply

m = sstate(m);



2.2. NUMERICAL SOLUTION 31

The output is a model mstructure, which is already linearised and solved

for rational expectations, and it is ready to be used for simulation, estimation,

etc.

For large models the numerical solution might be the only option. How-

ever, it might not be straightforward to use. For really large and non-linear

models, to help the numerical algorithm to converge, you might have to use

a similar approach as in the analytical solution case. You will have to create

a special sstate-file, in which you divide the original model in to a number of

subsystems, which will be sequentially solved for the steady state. Recalling

that a numerical solution is obtained if you do not declare !symbolic in the

Ireland.sstate file.
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Chapter 3

Estimation

The goal of this chapter is to show how you estimate a structural model in

IRIS. IRIS offers three basic methods in its toolbox: maximum likelihood,

regularised maximum likelihood, and posterior mode maximisation. In this

chapter, you learn how to apply these three methods to stationary mod-

els. All three methods are performed by the Iris command estimate() , and

choosing an appropriate option. In estimating your model, you will typically

follow this pattern:

1. Load model structure;

2. Load database structure;

3. Define time span for estimation;

4. Choose parameters to estimate;

5. Run the estimation.

By default, the command estimate() uses the Optimisation toolbox in

Matlab. But Iris is flexible enough to maximise objective functions by other

methods as well, e.g., you can use csminwel. You only have to declare it

as one of the parameters in estimate() , see idoc model/estimate . But we

leave this option for later as an advanced problem for coding.

33
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3.1 Iris data format

Iris uses its own data format. Before estimation or data manipulation using

any Iris commands, the data that you use must be transformed in to the

time series object. But do not worry. The process is very straightforward

and quick. First, you define the data span. Second, you upload raw data

series (either from Excel, ASCII file, or any other external database). Third,

you use the Iris command tseries() , which associates the raw data with the

defined time subscripts, and creates the time series object. The advantage of

such a structure is that it allows for an easy data manipulation: extracting

sub-samples, changing frequencies, plotting, etc. When plotting a time series

object, Matlab automatically treats the horizontal axis as the time domain.

An example below creates a quarterly time series from randomly drawn

numbers. The sample code follows the three steps outlined above. The Iris

command qq(YYYY,Q) is used to create the quarterly data range.1

startdate = qq(1990,1);

enddate = qq(1990,4);

range = stardate:enddate;

y = rand(size(range));

Y = tseries(range,y);

If you print the time series Y in the command window, it will be a 4-by-1

time series object, where the random numbers are linked to the time domain.

1990Q1: 0.24065

1990Q2: 0.00885

1990Q3: 0.67159

1990Q4: 0.90481

The data manipulation is then made very easy. For example, if you wish

to create a sub-sample from observations in the 2nd and 3rd quarter of 1990,

you simply specify the time range:

Y1 = Y{qq(1990,2):qq(1990,3)};

1Similarly, a monthly range can be created: mm(YYYY,MM).
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Note that the range (index) of the sub-sample must be in curly braces {}.
If you use parentheses (), then Iris will return data as a vector of numbers

(without time subscript). If you estimate your model on a data sub-sample,

a quite common mistake is the use parenthesis () instead of curly braces

{}. Sometimes it happens that you will not notice that you made such a

mistake, until you use the data to evaluate a likelihood function. For example

if you use such a sub-sample in estimate() , the command will not function

properly, and you get back the initial values associated with zero likelihood.2

It may take some time before you find out that there is a problem in the

time series object.

Similarly, if you have long time series, the Iris time format allows you to

easily locate particular observations. E.g. in a sample of inflation INFL from

1990 to 2008, if you wish to know what the inflation rate was in 1995:IIIq,

you simply type INFL {qq(1995,3) }.

3.2 Maximum likelihood

In this section, we estimate EHL(2000) model by the method of maximum

likelihood (MLE). Again, we suggest to open a new m-file where you can

code the sequence of commands that estimate the model, and save it in your

Matlab workspace.

Following the step given in the chapter’s introduction, we first upload

the model structure created in Chapter 1: EHL2000.mat . We use the Iris

command loadstruct() :

m = loadstruct(’EHL2000.mat’);

m is the model structure. You can use the command get() and check its

properties (see idoc model/get ).

The second step is to upload a database, and define the data time range.

From the model file created in Chapter 1 EHL2000.model , we know that the

model has three observables: output growth dy , price inflation rate dp , wage

2In recent Iris versions this problem might be fixed.
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inflation rate dw , and short term interest rate r . We use the US data.3 We

skip the step of creating a database, the principles are described in section 3.1

above, and upload a database that is pre-prepared and saved in US data.mat .

We use the same command to upload a database structure as for uploading

a model structure:

d = loadstruct(’EHL2000.mat’);

The third step is to define the time span for the data. For our example, the

data range is from 1990:Iq to 2008:IIq:

d = loadstruct(’US_data.mat’);

startdate = qq(1990,1);

enddate = qq(2008,2);

When the database is uploaded, it is always useful to check the properties

of your data, in particular, if they are ready to be used in estimation. You

should check if the data have correct units, if they are seasonally adjusted,

and if they are really in the Iris time series format. If the data are not in the

time series format, Iris estimation procedures will not function properly.

The fourth step is to declare parameters that we want to estimate. For

demonstration purposes, we estimate the whole set of model parameters,

except of the time preference parameter β. In practice, you can estimate

only a subset of them, and the rest of parameters can be calibrated. If you

wish to keep your parameters fixed at preferred values, simply do not declare

them for estimation. Declaring a parameter for estimation consists of (i)

setting up an initial parameter value (this is necessary to launch the Kalman

filter; if NaN is supplied, then IRIS takes the parameter value assigned in

the model structure m as the initial value - typically the one used to solve

for the steady state), and setting a (ii) lower and (iii) upper bound for the

parameter:

3Source: Fed. The tick for original time series is: TB3MS (3-month Treasury bill:
Secondary market) for r , PCEC96 (real personal consumption expenditures) for the con-
struction of dy , PCE (nominal personal consumption expenditures) for the construction
of final goods price deflator, AHETPI (Average hourly earnings: Total Private Industries)
for construction of dw . The original data frequency is monthly, which we transform to
quarterly.
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E.parameter = [ init_value, Lower_Bound, Upper_bound ];

This is the parameter set that we estimate for the EHL(2000) model on the

US data:

E = struct();

E.chi = [0.80,0.50,0.95];

E.kappaw = [0.05,0.01,1];

E.kappap = [0.10,0.01,1];

E.rhox = [0.80,0.01,0.95];

E.rhor = [0.90,0.01,0.99];

E.mup = [1.50,1.10,5];

E.mug = [0.50,0.01,5];

The information on parameters is stored in the structure E. Iris uses

the Kalman filter to evaluate the likelihood. Because we are using routines

form Matlab Optimisation toolbox, it is useful not to set lower and upper

bounds on the exact boundaries of the parameter space. It is because of the

nature of most of the optimisation procedures that, for some reason, evaluate

the boundaries first, and which may lead to numerical problems. A typical

example is the estimation of the parameter on the inflation rate in the Taylor

rule. If you allow for unitary values, the optimisation procedure may crash

because if it hits 1, the Taylor principle will be violated, the model becomes

unstable and the optimisation procedure may not converge. For exactly this

reason, you see the lower bound for mup set to 1.10. For similar reasons, the

lower and upper bounds for the AR(1) parameters are set to something like

0.10 and 0.95, respectively.

You also declare the standard errors for estimation. For estimating the

standard errors, IRIS offers two options: (i) take one standard error as a

numereaur, and estimate the rest in relative terms, (ii) estimate all standard

errors in absolute terms. The choice between the two options depends on

user’s preferences, and likelihood fuzziness. Estimating the standard errors

in the relative terms might be computationally convenient, and in some cases

speeds up optimisation. We use this approach in our example. The nam-

ing convention for standard errors estimation in Iris is E.std name of shock .
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Otherwise the standard errors are declared for estimation in exactly the same

way as any other parameter.

E.std ec = [0.01,0.001,0.20];

E.std ew = [0.01,0.001,0.20];

E.std ep = [0.01,0.001,0.20];

E.std ex = [0.001,0.0001,0.02];

E.std er = [0.01,0.001,0.20];

Here we are estimating the standard errors for five shocks: ec, ew, ep,

ex, er .

The fifth and last step is the estimation step. The maximum likelihood

estimation is the default option in the Iris command estimate() . You run

[P,mloglik,Grad,Hess,m,se2,F,pe,A,Pa,setup,pred,smooth] =

estimate(m,d,startdate:enddate,E,’relative’,true,’deviation’,true);

As inputs, you have to supply the model m, database d, data range range ,

set of parameters to be estimated E. Further you have to specify that the stan-

dard errors will be estimated in relative terms of each other ’relative’,true .

If the model and data are defined in deviations from steady state, you also

have to declare it by setting the option ’deviation’,true . As an output

you receive a database of estimated parameters P, the value of the likelihood

function at its maximum mloglik . You also obtain Gradient and Hessian

at optimum, an updated model structure for newly estimated parameters

m,4 estimated variance factor se2 , and predicted pred and smoothed smooth

variables. The variance factor is estimated if you use the option ’relative’,

true . If you multiply the standard errors estimated and stored in P, you get

the absolute values. We recall that, in the model structure m, which is the

output of estimate , the standard errors are already re-scaled, and are ready

to be used.

4Estimated standard errors in such an updated model structure are already in absolute
terms. That is if the standard errors are estimated in relative terms, in the output model
structure they are multiplied by the variance factor se2 and thus re-scaled in to their
correct magnitudes.
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3.3 Regularised maximum likelihood

The second estimation method that Iris offers is the regularised maximum

likelihood (RMLE).5 If a model contains parameters that lack identification,

the likelihood function is flat in their dimension. A possible sign of such a

problem is a non-converging algorithm searching maximum. But the lack

of identification can be solved by regularising the likelihood function by a

quadratic penalty function.6 The penalty function helps to shape up the

likelihood in the singular directions. It is equivalent to imposing normal

priors on all initial parameter values. If the information on a particular

parameter is insignificant, its estimate is pushed towards the initial value (or

towards zero; depending on user’s preferences).

You run the regularised likelihood in IRIS by declaring the option ’penalty’

in estimate() . ’penalty’ is followed by a numeric value, which multiplies

the parameters specific penalty function. Because of the different magnitudes

of parameters, the penalty has to be normalised (made parameter specific).

For example, the penalty can be normalised so that if t-ratio for any estimate

will not be greater than 2, it will be pulled towards its initial value. Tech-

nically it means, that the likelihood that is nearly flat will be shaped up by

a normal prior centered around the parameter’s initial value, with variance

such that the t-ratio implied by the prior is 2. To run the RMLE you have to

supply the parameter specific penalty as the fourth parameter when declar-

ing the parameters for estimation, and then in the function estimate() , you

use option ’penalty’,1 .

For the EHL(2000) model, the information on estimated parameters is

below. We define a variable t ratio , which will be used to control the cur-

vature of the prior. In our exercise we use such a prior curvature that gives

t-ratio of 2. Note the penalty expression as the fourth parameter in E.

5We refer to Ljung (1999) for details on this method.
6It is similar idea as the ridge regression.
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t ratio = 2

E = struct();

E.chi = [0.80,0.50,0.95,(t ratio/0.80)ˆ2/2];

E.kappaw = [0.05,0.01,1 ,(t ratio/0.05)ˆ2/2];

E.kappap = [0.10,0.01,1 ,(t ratio/0.10)ˆ2/2];

E.rhox = [0.80,0.01,0.95,(t ratio/0.80)ˆ2/2];

E.rhor = [0.90,0.01,0.99,(t ratio/0.90)ˆ2/2];

E.mup = [1.50,1.10,5 ,(t ratio/1.50)ˆ2/2];

E.mug = [0.50,0.01,5 ,(t ratio/0.50)ˆ2/2];

E.std ec = [0.01,0.001,0.20 ,(t ratio/0.01)ˆ2/2];

E.std ew = [0.01,0.001,0.20 ,(t ratio/0.01)ˆ2/2];

E.std ep = [0.01,0.001,0.20 ,(t ratio/0.01)ˆ2/2];

E.std ex = [0.001,0.0001,0.02,(t ratio/0.01)ˆ2/2];

E.std er = [0.01,0.001,0.20 ,(t ratio/0.01)ˆ2/2];

Now you use the option ’penalty’ in the estimate command:

[P,mloglik,Grad,Hess,m,se2,F,pe,A,Pa,setup,pred,smooth] =

estimate(m,d,startdate:enddate,E,’relative’,true,...

’deviation’,true,’penalty’,2);
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The second way how to use the regularised likelihood is to apply it only

on specific parameters. The likelihood function can be shaped only over the

parameters that are expected to be weakly identified or they are not identified

at all. Here is an example:
t ratio = 2

E = struct();

E.chi = [0.80,0.50,0.95,0];

E.kappaw = [0.05,0.01,1 ,0];

E.kappap = [0.10,0.01,1 ,0];

E.rhox = [0.80,0.01,0.95,0];

E.rhor = [0.90,0.01,0.99,0];

E.mup = [1.50,1.10,5 ,(t ratio/1.50)ˆ2/2];

E.mug = [0.50,0.01,5 ,0];

E.std ec = [0.01,0.001,0.20 ,0];

E.std ew = [0.01,0.001,0.20 ,0];

E.std ep = [0.01,0.001,0.20 ,0];

E.std ex = [0.001,0.0001,0.02,0];

E.std er = [0.01,0.001,0.20 ,0];

The parameter mup is estimated using RMLE, the remaining parameters

are estimated by the (constrained) MLE.

3.4 Prediction error minimisation

Except of likelihoodfunction, estimate allows for optimisation of different

objective functions. The user has the option to supply her or his own pre-

ferred criteria. This section is devoted to (one-step-ahead) prediction error

minimisation (PEM), which is built in Iris.

Asymptotically, the prediction error minimisation is equivalent to max-

imum likelihood, but in short samples this objective can provide different

parameter estimates (in particular starndard errors), and, of course, differ-

ent forecasting performance. If you are after tuning the model for forecasting,

this might be the criteria to look at. However, it might not be the best crite-

ria if you are seeking an economically interpretable value of your parameter
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estimates. In small samples, the estimates can be quite different from what

you would expect, and also what you get by the MLE.

The set-up for PEM is exactly the same as in the MLE case. To make

a distinction, you only use the option ’objective’,prederr . The complete

syntax for PEM is

[P,mloglik,Grad,Hess,m,se2,F,pe,A,Pa,setup,pred,smooth] =

estimate(m,d,range,E,’relative’,true,’deviation’,true,...

’objective’,’prederr’);

3.5 Posterior mode maximisation

The final option of the estimate() command that we cover in this chapter

is the posterior mode maximisation (PMM). The objective function in this

maximisation is a product of parameters’ prior probability densities and data

information. We refer to Hamilton (1994) for more on Bayesian estimation.

Running PMM is technically the same as running the MLE. Th eonly dif-

ference is that you supply their prior densities, when you declare parameters

for estimation. A prior distribution comes as the fourth parameter in the

set E. So for PMM, E contains: (i) parameter’s initial value, (ii) lower, (iii)

upper bound, and (iv) prior distribution (including parameters of the distri-

bution, eg., mean and variance). If it happens that your prior is not laying

fully within the lower-upper bound interval, estimate() will automatically

truncate the distribution (the tails outside the lower-upper bound interval

are cut off, and the distribution is re-scaled so that the integral of the prior

distribution within the interval is 1).

Below is an sample set-up of PMM. We use the normal distribution for all

parameters (including standard errors), centered around initial values, and

with arbitrary standard deviation. Note that now when you are supplying

the prior as an external function, you have to substitute the square brackets

[ ], for curly braces {}. This is the way how you combine numerical values

with functions in one string in Matlab.
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Table 3.1: Estimates depending on the estimation criteria

MLE RMLE RMLE(2) PEM PMM
χ 0.925 0.894 0.926 0.928 0.921
κw 0.018 0.029 0.017 0.049 0.025
κp 0.059 0.094 0.059 1.903 0.038
ρx 0.651 0.91 0.652 0.758 0.638
ρr 0.956 0.906 0.967 0.801 0.914
µp 1.1 1.387 1.396 2.026 1.46
µg 2.552 0.601 3.48 0.006 0.742

σec 0.004 0.004 0.004 0.2 0.004
σew 0.001 0.002 0.002 0.035 0.002
σep 0.003 0.004 0.004 0.148 0.004
σex 0.003 0.0004 0.003 0.088 0.004
σer 0.0004 0.001 0.0004 0.002 0.0005

The estimates are obtained for the EHL(2000) model, estimated on the US data from
1990:Iq to 2008:IIq.

E = struct();

E.chi = {0.80,0.50,0.95,@(x) normpdf(x,0.80,0.2) };
E.kappaw = {0.05,0.01,1 ,@(x) normpdf(x,0.05,0.2) };
E.kappap = {0.10,0.01,1 ,@(x) normpdf(x,0.10,0.2) };
E.rhox = {0.80,0.01,0.95,@(x) normpdf(x,0.80,0.2) };
E.rhor = {0.90,0.01,0.99,@(x) normpdf(x,0.90,0.2) };
E.mup = {1.50,1.10,5 ,@(x) normpdf(x,1.50,0.2) };
E.mug = {0.50,0.01,5 ,@(x) normpdf(x,0.50,0.2) };];

E.std ec = {0.01,0.001,0.20 ,@(x) normpdf(x,0.01,0.005) };];
E.std ew = {0.01,0.001,0.20 ,@(x) normpdf(x,0.01,0.005) };];
E.std ep = {0.01,0.001,0.20 ,@(x) normpdf(x,0.01,0.005) };];
E.std ex = {0.001,0.0001,0.02,@(x) normpdf(x,0.001,0.0005) };];
E.std er = {0.01,0.001,0.20 ,@(x) normpdf(x,0.01,0.005) };];

And again we use the estimate() command:

[P,mloglik,Grad,Hess,m,se2,F,pe,A,Pa,setup,pred,smooth] =

estimate(m,d,startdate:enddate,E,’relative’,true,’deviation’,true);

Iris offers a decomposition of the Hessian matrix evaluated at the posterior
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mode. It is a very handy tool. After running the PMM, print the Hessian

matrix Hess in the command window. You will get two matrices. The first

is the Hessian at the posterior mode, and the second matrix is the Hessian

evaluated for the prior information. Subtracting the latter from the former,

you get the value of the Hessian due to the data. Thus you learn, in a very

elegant and straight forward way, how much information you are gaining

from the data, and how much your estimates are influenced by the prior

information.

For comparison, we report in Table 3.1 estimates that we obtain for all

five estimation criteria discussed in this chapter.
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3.6 Matlab code

%% Use a range of methods to estimate non-steady-state parameters

%%

clear all;

%% Load the model and data.

m = loadstruct(’..\Model\EHL2000.mat’);

d = loadstruct(’..\Data\model_data_gaps.mat’);

startdate = qq(1990,1);

enddate = qq(2008,2);

%% Constrained maximum likelihood.

% Specify a database with the parameters that are to be

% estimated as 1x3 vectors:

%

% E.parameter_name = [initial-value, lower-bound, upper-bound];

%

E = struct();

E.chi = [0.8,0.5,0.95];

E.kappaw = [0.05,0.01,1];

E.kappap = [0.10,0.01,1];

E.rhox = [0.8,0,0.95];

E.rhor = [0.9,0,0.99];

E.mup = [1.5,1.1,5];

E.mug = [0.5,0,5];

E.std_ec = [0.01,0.001,0.20];

E.std_ew = [0.01,0.001,0.20];

E.std_ep = [0.01,0.001,0.20];

E.std_ex = [0.001,0.0001,0.02];

E.std_er = [0.01,0.001,0.20];

[P_mle,mloglik,Grad,Hess,m_mle,se2_mle,F,pe,A,Pa, ...

setup,pred,smooth] = estimate(m,d,startdate:enddate,E,...

’relative’,true,’deviation’,true);
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%% Regularised maximum likelihood

% A.) Regularised likelihood in all dimensions

t_ratio = 2;

E = struct();

E.chi = [0.8,0.5,0.95,(t_ratio/0.80)ˆ2/2];

E.kappaw = [0.05,0.01,1 ,(t_ratio/0.05)ˆ2/2];

E.kappap = [0.10,0.01,1 ,(t_ratio/0.10)ˆ2/2];

E.rhox = [0.8,0,0.95 ,(t_ratio/0.80)ˆ2/2];

E.rhor = [0.9,0,0.99 ,(t_ratio/0.90)ˆ2/2];

E.mup = [1.5,1.1,5 ,(t_ratio/1.50)ˆ2/2];

E.mug = [0.5,0,5 ,(t_ratio/0.50)ˆ2/2];

E.std_ec = [0.01,0.001,0.20 ,(t_ratio/0.01)ˆ2/2];

E.std_ew = [0.01,0.001,0.20 ,(t_ratio/0.01)ˆ2/2];

E.std_ep = [0.01,0.001,0.20 ,(t_ratio/0.01)ˆ2/2];

E.std_ex = [0.001,0.0001,0.02,(t_ratio/0.001)ˆ2/2];

E.std_er = [0.01,0.001,0.20 ,(t_ratio/0.01)ˆ2/2];

[P_rmle1,mloglik,Grad,Hess,m_rmle1,se2_rmle1,F,pe,...

A,Pa,setup,pred,smooth] = estimate(m,d,startdate:enddate,E,...

’relative’,true,’deviation’,true,’penalty’,1);

% B.) Partialy regularised likelihood

t_ratio = 2;

E = struct();

E.chi = [0.8,0.5,0.95, 0];

E.kappaw = [0.05,0.01,1 , 0];

E.kappap = [0.10,0.01,1 , 0];

E.rhox = [0.8,0,0.95 , 0];

E.rhor = [0.9,0,0.99 , 0];

E.mup = [1.5,1.1,5 ,(t_ratio/1.50)ˆ2/2];

E.mug = [0.5,0,5 , 0];

E.std_ec = [0.01,0.001,0.20 , 0];

E.std_ew = [0.01,0.001,0.20 , 0];

E.std_ep = [0.01,0.001,0.20 , 0];

E.std_ex = [0.001,0.0001,0.02, 0];

E.std_er = [0.01,0.001,0.20 , 0];

[P_rmle2,mloglik,Grad,Hess,m_rmle2,se2_rmle2,F,pe,...

A,Pa,setup,pred,smooth] = estimate(m,d,startdate:enddate,E,...

’relative’,true,’deviation’,true,’penalty’,1);
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%% Prediction error minimisation

E = struct();

E.chi = [0.8,0.5,0.95];

E.kappaw = [0.05,0.01,1];

E.kappap = [0.10,0.01,2];

E.rhox = [0.8,0,0.95];

E.rhor = [0.9,0,0.99];

E.mup = [1.5,1.1,10];

E.mug = [0.5,0,5];

E.std_ec = [0.01,0.001,0.20];

E.std_ew = [0.01,0.001,0.20];

E.std_ep = [0.01,0.001,0.20];

E.std_ex = [0.001,0.0001,0.1];

E.std_er = [0.01,0.001,0.20];

[P_pem,mloglik_pem,Grad,Hess_pem,m_pem,se2_pem,F,pe,...

A,Pa,setup,pred,smooth] = estimate(m,d,startdate:enddate,E,...

’relative’,true,’deviation’,true,’output’,dbase,...

’objective’,’prederr’,’maxiter’,5000);

%% Posterior mode maximisation

E = struct();

E.chi = {0.8,0.5,0.95,@(x) normpdf(x,0.80,0.2)};

E.kappaw = {0.05,0.01,1, @(x) normpdf(x,0.05,0.2)};

E.kappap = {0.10,0.01,2, @(x) normpdf(x,0.10,0.2)};

E.rhox = {0.8,0,0.95, @(x) normpdf(x,0.80,0.2)};

E.rhor = {0.9,0,0.99, @(x) normpdf(x,0.90,0.2)};

E.mup = {1.5,1.1,10, @(x) normpdf(x,1.50,0.1)};

E.mug = {0.5,0,5, @(x) normpdf(x,0.50,0.2)};

E.std_ec = {0.01,0.001,0.20, @(x) normpdf(x,0.01,0.2)};

E.std_ew = {0.01,0.001,0.20, @(x) normpdf(x,0.01,0.2)};

E.std_ep = {0.01,0.001,0.20, @(x) normpdf(x,0.01,0.2)};

E.std_ex = {0.001,0.0001,0.1,@(x) normpdf(x,0.001,0.2)};

E.std_er = {0.01,0.001,0.20, @(x) normpdf(x,0.01,0.2)};

[P_mode,mloglik_mode,Grad,Hess_mode,m_mode,se2_mode,F,pe,...

A,Pa,setup,pred,smooth] = estimate(m,d,startdate:enddate,E,...

’relative’,true,’deviation’,true,’output’,dbase);

% This file is used later (for forecasting)

savestruct(’../Model/EHL2000_mode.mat’ ,m_mode);
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Chapter 4

Evaluation

In this chapter, you learn the basic commands in Iris that you use for evalu-

ation of the model data fit. We show how to check the basic data matching

properties of the structural model. We focus the on the second moments

implied by the model, and compare them to the second moments implied

by an unrestricted, statistical model, which is treated as a benchmark. The

spectral analysis is covered here as an advanced topic. We again compare the

model implied spectral densities with the benchmark model. It is a complex

way for checking the properties of a structural model.

4.1 Comparison second moments

Comparing how well a model matches data moments belongs among basic

tools for assessing the model empirical fit. In Iris, the problem of computing

the complete set of second moments is solved by the command acf() . It uses

known analytical expressions to compute model implied second moments. In

this section, we compare these model properties, to an unrestricted VAR(4)

model estimated on the US data.

You can analytically solve and evaluate the implied second moments for

any reduced form model (see e.g. Hamilton 1994, p ???). acf() does exactly

that. It is much faster, and you avoid any Monte carlo experiments.1 You

1It might a disappointment if you are that kind of person that likes MC experiments.
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only supply a model structure, and the order of autocorrelation function

(default is 0) to acf() , and as an output, you obtain autocovariance (AC)

and autocorrelation (AR) matrices. If the order of AC and AR functions is

non-zero, the AC and AR matrices are 3-dimensional. The general structure

of AC matrix is

ACk =




cov(x1
t , x

1
t−k) cov(x1

t , x
2
t−k) ... cov(x1

t , x
n
t−k)

cov(x2
t , x

1
t−k) cov(x2

t , x
2
t−k) ... cov(x2

t , x
n
t−k)

... ... ... ...

cov(xn
t , x1

t−k) cov(xn
t , x2

t−k) ... cov(xn
t , x

n
t−k)




(4.1)

It is useful to remember the basic logic of structure (4.1), because you need

to know it when summarising or plotting the results (in particular for high-

dimensional models). The elements of the AC matrix are the second moments

among n variables. The third dimension to the matrix comes through time

lag k = 0, ..., p ≥ 0. If k = 0, its default value, the AC matrix is a standard

2D matrix. Of course, the AR matrix is of the same structure as AC.

Similarly as in the previous chapters, we recommend to open an m-file

where you run the sequence of commands from, and work with the results.

In the new file again, first you have to upload the model and data structures:

loadstruct(’EHL2000.mat’) and loadstruct(’US data.mat’) . And set the

time horizon for simulations: starthist , and endhist .

Now everything is ready to compute the AC and AR functions for the

EHL(2000) model

order = 2;

[AC,AR] = acf(m,order);

In the Matlab command window, print the AC and AR matrices. Model

implied variances lay on the diagonal of the AC matrix for k = 0. You

can print them on the screen by executing diag(AC {1}) . The parameter {1}
here relates to the part of the AC matrix that corresponds to k = 0. The

off-diagonal elements are cross-covariances.

You do not already avoid Monte Carlo (MC) simulations (or Bootstrap) if

you seek the intervals of significance for the estimates. Unfortunately, there is
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not a simple analytical solution available. Obtaining, the confidence intervals

is straightforward, but as any MC or Bootstrap experiments, it takes time

to run. In principle, the procedure takes three steps:

1. Simulate the structural model (resample() )

2. Estimate unrestricted VAR on the simulated model variables (rvar() )

3. Evaluate autocovariance and autocorrelation functions (acf() )

4.1.1 Monte Carlo experiment

For demonstration purposes, we take the Monte Carlo approach to simu-

late the model. The code below follows the three steps. First, we simulate

the EHL(2000) model as in Chapter 1 for 1,000 times using the command

resample() . Then we use the database of model observable variables, and

estimate a VAR(1) model on them. We use the command rvar() for that.

The choice of the order of the VAR model depends on the order of the re-

duced form of the original structural model. In our case, it is 1. As the third

step, we evaluate the AC and AR functions implied by the estimated VAR

by using the acf() command again

ndraw = 1000;

% Monte Carlo simulate the model.

Ym = resample(m,d,starthist-4:endhist,ndraw);

Wm = rvar(Ym,ylist,starthist:endhist,’order’,4);

[C_mc, R_mc] = acf(Wm,’order’,1);

The strength of Iris lays in its simplicity and efficiency of coding. Note

that to run Monte Carlo or Bootstrap experiments, you do not need to code

any loops, and that all simulations are done within the single execution of

the function resample() .

The best way to analyse and present the data matching results is plot-

ting them. In Figure 4.1, we show the distribution of standard errors. The
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shadow area depicts the model implied distribution. Similarly, Figure 4.2

shows the cross-correlations. Remember that they are estimates that hold

asymptotically. To visualise how well the model matches the data moments,

it is useful to plot them next to data implied distributions.

Figure 4.1: Standard deviations: model vs. data
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4.1.2 Bootstrap

The second moments of the data are obtained in a similar way as for the

model. We estimate a VAR(p) on the data, compute second moments, and

then simulate the model to obtain their distributions. In the code below, the

order of VAR model is picked arbitrarily, but you can use a selection criteria

to pick the right order. To practice a different method, we show you how

to use the Bootstrap technique to generate distributions in Iris. The VAR

exercise serves well to this purposes, because Bootstrap is based on random

draws from residuals. The code bellow bootstraps a VAR(4) model on the

US data:



4.2. SPECTRAL ANALYSIS 53

Figure 4.2: Autocorrelation: model vs. data
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Yb = resample(m_var4,data_var,ndraw,...

’distribution’,’bootstrap’,’wild’,true);

Wb = rvar(Yb,Inf,’order’,4);

[C_var4,R_var4] = acf(Wb,’order’,1);

DOPLNIT!!!! The Bootstrap experiment is performed by the resample()

command and employing the option ’bootstrap’,’wild’ . The ’wild’ option

allows for a possibility of heteroscedastic residuals, which makes the Boot-

strap more robust (see ??).

The Bootstrap results are plotted together with the structural model

results in Figures 4.1 and 4.2.

4.2 Spectral analysis

A spectral analysis provides a complex view on models and their data match-

ing properties. A spectral density summarises information about second mo-

ments. We refer to Hamilton (1994, chapter 6) for details. Iris has the
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function xsf() , which performs the analysis. The input arguments are (i)

the model to be evaluated, (ii) frequency for evaluation. As an output you

receive a power spectrum function, and spectrum density function. An ex-

ample of the use of xsf() is below

% VAR

frq = 0 : pi/100 : pi;

[m_var4,data_var] =

rvar(d,ylist,starthist:endhist,’order’,4,’comment’,ylabels);

[psz,sdz] = xsf(m_var4,frq);

% EHL2000 Model

[psm,sdm] = xsf(m,frq);

The model implied and data (approximated by a VAR model) spectra

are plotted in Figure 4.3. The continuous line represents the model spec-

trum density, and dashed line is the data spectrum density. The gray area

highlights business cycle frequencies.

Figure 4.3: Model and data spectra
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4.3 Matlab code

%% Model evaluation: Second momements, and spectral analysis

%% Clear memory of everything.

clear all;

close all;

%% Set up working environment

m = loadstruct(’../Model/EHL2000_rmle.mat’); % Model

d = loadstruct(’../Data/US_data_gaps.mat’); % Data

starthist = qq(1990,1);

endhist = qq(2008,2);

ylist = get(m,’ylist’); % list of measurement variables

ylabels = get(m,’ycomments’); % comments attached to measurement variables

%% Spectral density

% Estimate reduced-form VAR.

% Compute power spectrum and spectral density.

% Compute the same characteristics implied by the model.

% VAR

frq = 0 : pi/100 : pi;

[m_var4,data_var] = rvar(d,ylist,starthist:endhist,’order’,4,’comment’,ylabels);

[psz,sdz] = xsf(m_var4,frq);

% EHL2000 Model

[psm,sdm] = xsf(m,frq);

% Plotting

figure(’defaultaxesfontsize’,8,’defaultlinelinewidth’,1,...

’defaulttextinterpreter’,’none’);

N = 4;

for i = 1 : N

subplot(2,2,i);

plot(frq,[vec(sdz(i,i,:)),vec(sdm(i,i,:))]);

hold on;

set(gca,’xlim’,[0,pi]);

grid on;

xlabel quarters;

title(ylabels{i});

xtickfrq2per(gca());

if i == N

legend(’VAR’,’Model’,’location’,’northeast’);

end

highlight(gca(),2*pi./[32,4]);

end
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%% ACF

% Model implied second momemnts

[C,R,acf_list] = acf(m,’order’,1);

disp(size(C));

disp(’1nd-order correlation matrix:’);

disp(acf_list(1:4));

disp(R(1:4,1:4,2));

%% Bootstrap and Monte Carlo simulation

% Comparing the model to the data

ndraw = 10;

% Bootstrap resample from the estimated VAR.

Yb = resample(m_var4,data_var,ndraw,’distribution’,’bootstrap’,’wild’,true);

return

Wb = rvar(Yb,Inf,’order’,4);

[C_var4,R_var4] = acf(Wb,’order’,1);

% Monte Carlo simulate the model.

Ym = resample(m,d,starthist-4:endhist,ndraw);

Wm = rvar(Ym,ylist,starthist:endhist,’order’,4);

[C_mc, R_mc] = acf(Wm,’order’,1);

%% PLOTTING THE RESULTS

%% Standard errors

f = [];

mdlcolour = 0.7*[1,1,1];

f(end+1) = figure(’defaultlinelinewidth’,1,’defaultaxesfontsize’,10);

for i = 1 : N

subplot(2,2,i)

hold on;

% model distribution

mm = vec(sqrt(C_mc(i,i,1,:)));

mm(2:end) = mm(2:end) - mean(mm(2:end)) + mm(1);

[fx,x] = ksdensity(mm(2:end),’support’,’positive’);

area(x,fx,’facecolor’,mdlcolour,’edgecolor’,mdlcolour);

% VAR distribution

ww = vec(sqrt(C_var4(i,i,1,:)));

[fx,x] = ksdensity(ww,’support’,’positive’);

plot(x,fx,’linewidth’,1.5,’color’,’red’);

ylim = get(gca,’ylim’);

set(gca,’ylimmode’,’manual’,’xgrid’,’on’,’ygrid’,’on’,’xlim’,...

[min([mm;ww]),max([mm;ww])]);

title(ylabels{i});

if i == 4, l = legend(’Model’,’VAR bootstrap’,’location’,’northeast’); end

end
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%% Autocorrelations

f(end+1) = figure(’defaultlinelinewidth’,1,’defaultaxesfontsize’,10);

for i = 1 : 4

%nextsubplot(3,3);

subplot(2,2,i)

hold on;

% model distribution

mm = vec(R_mc(i,i,2,:));

mm(2:end) = mm(2:end) - mean(mm(2:end)) + mm(1);

[fx,x] = ksdensity(mm(2:end),’support’,[-1,1]);

area(x,fx,’facecolor’,mdlcolour,’edgecolor’,mdlcolour);

% VAR distribution

ww = vec(R_var4(i,i,2,:));

[fx,x] = ksdensity(ww,’support’,[-1,1]);

plot(x,fx,’linewidth’,1.5,’color’,’red’);

ylim = get(gca,’ylim’);

set(gca,’ylimmode’,’manual’,’xgrid’,’on’,’ygrid’,’on’,’xlim’,[-1,1]);

title(ylabels{i});

if i == 4, l = legend(’Model’,’VAR bootstrap’,’location’,’northeast’); end

end
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Chapter 5

Forecasting

In this chapter you learn the basic Iris commands to produce forecasts from

a structural model. The forecasting exercise by itself is very simple, it basi-

cally consists of simulating the model out of sample. It takes more coding

to present the forecast than forecasting itself. You will also learn how to

produce confidence intervals, fan charts, and as an advanced topic, you learn

the principles of imposing judgement on the forecasts. This exercise is par-

ticularly useful for Iris users in central banks.

5.1 Point forecasts

The point forecast are produced by simulating the structural model out of

sample. But to get the forecast right, we need to have correct initial con-

ditions: historical shock and state variables estimates. If you estimate your

model before forecasting out of it, you should save the database with the

smoothed estimates. If you calibrate the model, you have to back out the

smoothed estimates first, and then forecast. For demonstration purposes we

take the latter approach here. But in the sake of using realistic values for

standard deviations of the shocks, we use the estimates from Chapter 4.
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5.1.1 Initial conditions

To produce forecasts we need to know the estimates of historical shocks

and model state variables, because it is their cumulative effect that drives

the forecasts. If the model is satisfactorily parametrised, we evaluate the

historical database by using the Iris command filter() . In a single run of

the Kalman filter it estimates the model state variables, shocks, and evaluates

the likelihood for the given set of parameters.

As in all exercises before, we recommend to open a new m-file and execute

the sequence of commands from there, rather than typing them directly in to

the Matlab command window. You start the code by loading the model and

data, and by setting up the time dimension for the simulation and forecast.

The historical range spans from 1990:Iq to 2008:IIq. The forecast horizon is

from 2008:IIIq to 2011:IVq.

m = loadstruct(’HNL2000.mat’);

d = loadstruct(’US_data.mat’);

starthist = qq(1990,1);

endhist = qq(2008,2);

startfcast = qq(2008,3);

endsfacst = qq(2011,4);

Now the basic working environment is set and we are ready to run the Kalman

filter:

[obj,pe,pred,smooth] =

filter(m,d,starthist+1:endhist,’deviation’,true,’output’,’dbase’);

The set of the smoothed estimates of shocks and states is stored in the

output database called smooth . In their further use, we will denote them

as init cond = smooth.mean . Similarly the set of predicted values (coming

from the prediction step of the Kalman filter) is stored in the pred database.

We plot the smoothed estimates of the shocks in Figure 5.1.

An equivalent result can be obtained by using the command simulate() .

You usually use it if you are interested in the decomposition of model vari-

ables in to the contribution of individual shocks. You declare ’contributions’,true
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Figure 5.1: Estimates of historical shocks
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Note: The estimates are obtained for EHL(2000) model, estimated in the US data sample
from 1990:Iq to 2008:IIq.

as one of the options, and the output will be a database with decomposed

variables. An example of such decomposition is shown in Figure 5.2. Here is

the Iris code that produces the figure:

s = simulate(m,fcast_init,startdate:enddate,...

’anticipate’,false,’deviation’,true,’contributions’,true)’;

If you check the dimension of the decomposed variables, you will note

that except of the contribution of exogenous shocks, the variable has one

extra dimension, The extra dimension carries the effect of (historical) initial

condition. That is why size(s.dy ) will give you the dimension (x-by-6)

instead of (x-by-5), for the EHL(2000) model, which has 5 structural shocks.

You can see the effect of initial condition in Figure 5.2.
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Figure 5.2: Historical decomposition of observable variables
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Note: The estimates are obtained for EHL(2000) model, estimated in the US data sample
from 1990:Iq to 2008:IIq.

5.1.2 Forecasts

When we have the shocks and state variables estimated, to get a point fore-

cast takes only one step. Given the starting conditions, the model is simu-

lated forward. For that we can employ the Iris command filter() again.

As input, we use the database with initial conditions obtained above, and

specify the forecasting horizon startfcast:endfcast :

[obj,pe,pred,smooth] = filter(m,init_cond,startfcast:endfcast,...

’deviation’,true,’output’,’dbase’);

mfcast = smooth.mean;

The model forecasts are stored in the database named mfcast , and we plot

them in Figure 5.3.
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5.2 Confidence intervals

The simplest way to construct confidence intervals, and the fastest one, is

to use the Iris command fmse() , which uses an analytical solution for the

forecast mean-square error estimates on as specified forecast horizon.

Figure 5.3: Point forecasts of the EHL(2000) model
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Note: The shadow area highlights the historical sample. The last point in that area is the
last available data observation. The forecast horizon spans from 2008:IIIq to 2011:IVq.
The dashed lines set 95% confidence intervals for the point forecast.

The fmse() uses the distribution of estimated (or calibrated) exogenous

shocks. The syntax is

[CI,listCI,ci] = fmse(m,startfcast:endfcast);

ci stores the model implied forecast mean-square errors. The time dimension

to the series represents the forecast horizon. Each forecast error is then

conditional on the information available at the last observation.
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In Figure 5.3 we plot the point forecast together with the 95% confidence

bands constructed as ±2*ci .
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5.3 Matlab code

%% Using the model for forecasting

%% Clear memory and screen of everything.

close all

clear all

format short

clc

%% Set up working environment

% Read estimated model and data. Set-up dates for historical simulations

% and forecast horizon.

m = loadstruct(’../Model/EHL2000_rmle.mat’); % Model

d = loadstruct(’../Data/US_data_gaps.mat’); % Data

startdate = qq(1990,1);

enddate = qq(2008,2);

startfcast= qq(2008,3);

endfcast = qq(2011,4);

ylist = get(m,’ylist’);

ylabels = get(m,’yComments’);

elist = get(m,’elist’);

elabels = get(m,’eComments’);

%% Initial conditions

% Estimate model state variables and historical shocks to get initial

% conditions for the forecasts. If we seek a story-telling forecast, we

% can decompose the model series in to shock contributions.

% Initial conditions

[m,smooth,se2,delta,pe,F] = filter(m,d,startdate:enddate,...

’relative’,false,’deviation’,true);

fcast_init = smooth.mean;

% Historical decompositions

s = simulate(m,fcast_init,startdate:enddate,...

’anticipate’,false,’deviation’,true,’contributions’,true)’;

figure()

for i = 1:length(ylist)

subplot(2,2,i)

bar(s.(ylist{i}),’stack’);

title(ylabels{i});

if i == 4, l = legend(elabels,’location’,’Best’); end

end
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%% Point forecast

% Producing point forecast. Simulating the model out of sample

% Forecast

%f = simulate(m,fcast_init,startfcast:endfcast,...

% ’anticipate’,false,’deviation’,true)’;

[m,smooth,se2,delta,pe,F] = filter(m,fcast_init,startdate:endfcast,...

’relative’,false,’deviation’,true);

f = smooth.mean;

%[unc,con] = forecast(m,fcast_init,startfcast:endfcast,[],...

’deviation’,true,’anticipate’,false);

%unc = unc.mean;

%con = con.mean;

%f = dboverlay(fcast_init,unc);

%return

%figure()

%for i = 1:length(ylist)

% subplot(2,2,i)

% plot([unc.(ylist{i}) con.(ylist{i})])

% title(ylabels{i});

% axis tight;

%end

%% Confidence intervals

[CI,listCI,ci] = fmse(m,startfcast:endfcast);

figure()

for i = 1:length(ylist)

subplot(2,2,i)

UB = f.(ylist{i})+2*ci.(ylist{i});

LB = f.(ylist{i})-2*ci.(ylist{i});

plot([UB LB],’-- r’)

hold on

axis tight;

plot(enddate-20:endfcast,f.(ylist{i}))

title(ylabels{i});

grayarea(enddate-20:enddate);

hold on

end
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